
Performance Evaluation of Group
Communication Architectures in Large Scale

Systems using MPI

Kayhan Erciyes1, Orhan Dagdeviren1, and Reşat Ümit Payli2

1 Izmir Institute of Technology
Computer Eng. Dept., Urla, Izmir 35430, Turkey
{orhandagdeviren, kayhanerciyes}@iyte.edu.tr

2 Computational Fluid Dynamics Laboratory
Purdue School of Engineering and Technology

Indiana University-Purdue University
Indianapolis, Indiana 46202, U.S.A.

rpayli@iupui.edu

Abstract. Group communication is an important paradigm for fault
tolerance in large scale systems. We describe various group architectures
as pipelined, hierarchical, daisy and hypercube groups each consisting
of separate clusters, investigate the theoretical performance bounds of
these architectures and evaluate their experimental performances using
MPI group communication primitives. We first derive time bounds for
multicast message deliveries in these architectures and then provide tests
to measure the times taken for the same operation. The multicast mes-
sage delivery times are tested against the number of clusters within a
group and the size of the multicast message. We conclude that daisy ar-
chitecture is favorable both in terms of delivery times and message sizes
theoretically and experimentally.

1 Introduction

A group is a logical name for a set of computing elements whose membership
may change with time. Replication using process groups for fault tolerance has
attracted many researchers for many years [1–3]. There are several systems which
provide fault tolerant group communication such as Transis [4], Horus [5] and
Totem [6]. Moshe [7] extends these services to a WAN. The common goal of these
projects is to provide a reliable multicast communication for process groups.

MPI is a library specification for message passing, proposed as a standard by
a broadly based committee of vendors, implementors and users [8, 9]. MPI pro-
vides enhanced group communication primitives [10]. An MPI communication
operation always specifies a communicator. This identifies the process group that
is engaged in the communication operation and the context in which the commu-
nication occurs. In this study, we investigate and evaluate Group Communication
primitives in the pipelined, daisy, hierarchical and hypercube architectures using

MPI. Background on process groups and MPI Group Communication primitives
is reviewed in section 2. Sections 3, 4, 5, 6 briefly describe the architectures
with the test results obtained. Finally a comparison of the results with the dis-
cussions is presented in Section 7.

2 Background

2.1 Group Communication

Replication is a common approach to achieve fault tolerance in a distributed
system such that replicas provide redundancy in case of a failure of a server.
Two main classes of replication are the active and passive replications. In passive
replication, client deals only with one replica and the primary sends messages
to the secondaries to update their views. A client sends a message to all of
the replicas in active replication and the states of the replicas are maintained
as identical, in general, using finite state machines. To ensure consistency of
the replicas, a group communication primitive called the Total Order Multicast
may be used which guarantees that the requests by the clients are received
by all replicas in the same order. The group management module should also
provide the two primitives; send multicast to send a message to all members
and receive multicast to receive a message sent by a member of the group. These
two primitives can be realised using various approaches such as reliable broadcast,
reliable FIFO broadcast and total order multicast. Reliable Broadcast of a message
in a group ensures that messages are delivered by all processes or none.

2.2 MPI Group Communication Primitives

In MPI, process groups allow a subset of processes to communicate among them-
selves using local process identifiers and to perform collective communication
operations without involving other processes. The context forms part of the en-
velope associated with a message. A receive operation can receive a message only
if the message was sent in the same context. Hence, if two routines use differ-
ent contexts for their internal communication, there can be no danger of their
communications being confused. All communication operations have used the
default communicator MPI COMM WORLD , which incorporates all processes
involved in an MPI computation and defines a default context. A set of group
communication routines which are used for creating new groups and communi-
cators, multicasting messages to all process in a communicator is defined in MPI
is summarized below:

– MPI Comm group : Function MPI Comm group (MPI Comm comm,
MPI Group *group) returns the process group associated with the com-
municator.

– MPI Comm create : The collective function MPI Comm create (MPI Comm
old comm, MPI Group group, MPI Group *new comm) creates a new com-
municator from the processes listed in group.

– MPI Comm split : Collective function MPI Comm split (MPI Comm old
comm, int partition, int new rank, MPI Comm *new comm) partitions the
processes in an existing communicator(old comm) into one or more sub-
groups.

– MPI Group incl : Function MPI Group incl (MPI Group old, int new size,
int *old ranks, MPI Group *new) produces a new group from an existing
group. The size of the the new group is specified by parameter new size.

– MPI Barrier : MPI Barrier(MPI Comm) is a collective communication
function that performs a barrier synchronization among all processes in the
specified communicator.

– MPI Bcast : Function MPI Bcast (void *buffer, int cnt, MPI Datatype
dtype, int root, MPI Comm comm) is a collective communication opera-
tion allowing one process to broadcast a message to all other processes in a
communicator [11].

3 Pipelined Architecture

Pipelined architecture is constructed by the serial arrangement of groups which
includes equal size of processors. Each group has a leader which is responsible
to send and receive messages from another group and to multicast messages to
its group elements. A pipelined architecture with 24 processors and 4 groups is
shown in Fig. 1. Each group has 6 processors in which 0, 6, 12 and 18 are the
group leaders.

Pipelined architecture can be constructed by row wise partitioning of the
MPI COMM WORLD communicator. Leaders of each group can send messages
using MPI Send and MPI Recv primitives in MPI COMM WORLD communi-
cator.

Group 2Group 1 Group 3 Group 4

0 6 12 18

1

2

3

4

5 7

8

9

10

11 13

14

15

16

17

20

21

22

2319

Fig. 1. Pipelined Architecture with 24 processors and 4 groups

Theorem 1. Multicast communication in pipelined architecture takes Θ(mk)
time where m is an upperbound on the number of clusters and k is an upperbound
on the number of processors in a cluster,

Proof. Assume for simplicity, each multicast operation within a cluster of the
pipelined group will consist of k one-to-one communications. Each of these mu-
ticast communications is performed sequentially, one after each other along the

pipeline. Therefore, we would have a total of m ∗k message deliveries within the
clusters and m−1 messages among the clusters, resulting in a total of mk+m−1
steps to deliver the multicast message to all group members. The total time can
therefore be approximated by Θ(m(k + 1)− 1) ∼ Θ(mk)

We performed the tests on the 120 processors of the AVIDD cluster of Indiana
University, U.S.A. AVIDD is an IBM eSeries cluster which consists of 96 nodes.
Each node has 2 2.4GHz Intel Pentium 4 Xeon CPUs and a 2.5GB memory with
the Myricom Myrinet interconnect. Peak performance of the cluster is 0.55 Tera
Flops. One-to-all broadcast performance of pipelined group in this environement
is measured with respect to message size and total group number. In Fig. 2,
message size is varied from 4 bytes to 40K bytes, processor number is fixed at
24 and the total group count is varied between 2 and 8. A pipelined architecture
with 8 groups results in the minimum mean time of 806 microseconds for a group
multicast operation.

Fig. 2. Pipelined Architecture Multicast Run-times against Message Size

Fig. 3. Pipelined Architecture Multicast Run-times against Total Group Number

In Fig. 3 total group number is varied from 2 to 8 groups, message size is fixed
at 4 bytes and the total processor number is varied from 24 to 120. Pipelined
architectures with 24 and 48 processors seem to finish one-to-all broadcast op-

eration in approximate time values but a sharp increase occurs when we double
48 processors to 96 processors.

4 Daisy Architecture

Daisy architecture is constructed by a number of groups in which leaders are
connected to form a group which overlaps with all other groups. Each group
leader is responsible to multicast messages to its group. A daisy architecture
with 24 processors and 5 groups are shown in Fig. 4.

0

6

12

18

8

2 1

54

3

10

11

9

7

13 14

17

1615

20

22

19

21

23

Group 1

Group 2

Group 3

Group 4

Group 5

Fig. 4. Daisy Architecture with 24 processors and 5 groups

Theorem 2. Multicast communication in the daisy architecture takes O(3k)
time where k is an upperbound on the number of processors.

Proof. A multicast operation within a cluster of the daisy group will take k one-
to-one communications to reach the central cluster. There will be k one-to-one
mesages by the central cluster and another k mesages by the outer clusters which
are performed in parallel resulting in a total of O(3k) message times.

It should be noted that the message delivery time of the daisy architec-
ture is independent of the number of clusters and the final delivery in the
outer clusters are performed as parallel multicast communications. Daisy ar-
chitecture can be constructed by row wise and column wise partitioning of
the MPI COMM WORLD communicator. Column wise communicators except
group leaders’s communicator are destroyed by MPI Comm free. Experimental
setup is the same as in pipelined test. A daisy architecture with 8 groups results

in the minimum mean time of 338 microseconds which is shown in Fig. 5. In
Fig. 6 when we double the 48 processors a sharp increase occurs.

Fig. 5. Daisy Architecture Multicast Run-times against Message Size

Fig. 6. Daisy Architecture Multicast Run-times against Total Group Number

5 Hierarchical Architecture

Hierarchical Architecture is constructed by different levels of groups which can
contain different number of processors as in [12]. A hierarchical architecture
with 24 processors and 7 groups is shown in Fig. 7. Level 1, Level 2 and Level 3
groups contains 3,4 and 4 processors respectively. Group leaders are responsible
to exchange messages between upper level of connected groups. Processor groups
can be created by MPI Comm group and MPI Group incl. Communicators
of these groups can be created by MPI Comm create.

Theorem 3. Multicast communication in the hierarchical architecture takes O(2kl)
time where l is an upperbound on the number of levels of hierarchy.

Proof. In the worst case, it would take 2l − 1 steps for a multicast message to
reach the farthest node where l is the count of levels of the hierarchy. Since
there are k nodes in each cluster, there would be O(2k(l− 1)) ∼ O(2kl) unicast
messages to accomplish a multicast communication in the worst case.

20

23

2221

12

13 14

15 19

1817

16

30

1 542

6

8 10

9

117

Group2 Group3 Group4Group1

Group 6Group 5

Group 7

Level 1 Groups

Level 2 Groups

Level 3 Groups

Fig. 7. Hierarchical Architecture with 24 processors and 7 groups

Corollary 1. For the special case of a binary tree of the hierarchical architec-
ture, multicast communication takes O(2k log m) time.

Proof. For the binary tree of the hierarchical architecture, there would be a total
of 2l−1 tree nodes meaning m = 2l−1. We can therefore approximate l = log m.
The total count of multicast communication steps is 2l − 1. Each multicast
communication has k unicast communications resulting in a O(k ∗ (2l−1)) steps
for the total multicast. Substituting for l in the complexity equation yields ∼
O(2k log m) for the total time of multicast in the binary tree in the worst case.

In Fig. 8 one-to-all broadcast times are measured against message size on a
binary tree with 24 processors and 7 groups and 1625 microseconds is the mean
time. In Fig. 9 one-to-all broadcast times are measured with respect to total
processor number with fixed 7 groups and 4 bytes messages. Processor number
is varied between 24 and 96. A significant increase happens when we double the
processor number to 96 processors.

Fig. 8. Hierarchical Architecture Multicast Run-times against Message Size

Fig. 9. Hierarchical Architecture Multicast Run-times against Total Processor Number

6 Hypercube Architecture

A hypercube architecture is a widely used architecture for parallel/distributed
applications [13]. A two-dimensional hypercube of four processors is constructed
from one-dimensional hypercubes by connecting corresponding nodes. In general
a d−dimensional hypercube is constructed by connecting corresponding nodes of
two (d−1) dimensional hypercubes. A hypercube architecture with 24 processors
and 8 groups is shown in Fig. 10. One-to-all broadcast in hypercube topology
can be implemented by modifiying the procedure in [14].

0

8 16

Group 1 1

9 17

Group 2

2

1810
Group 3

3

1911

Group 4

4

12 20

Group 5
5

2113

Group 6

6

14 22 Group 7

7

15 23 Group 8

Fig. 10. Hypercube Architecture with 24 processors and 8 groups

Theorem 4. Multicast communication in the hypercube architecture takes O(k log m)
time where m is an upperbound on the number of clusters (number of hypercube
vertices) and k is an upperbound on the number of processors in the hypercube
vertex cluster.

Proof. A one-to-all communication in a hypercube of m nodes takes log m time.
Since a one-to-all communication of O(k) is performed within each hypercube
vertex cluster prior to sending the message along another dimension, we have
O(k log m) message times ignoring the times taken for the single message deliv-
eries along the edges of the hypercube.

One-to-all broadcast performance in a hypercube architecture with 24 pro-
cessors and 3 dimensions is obtained with respect to message size in Fig. 11 and
a mean time of 1168 microseconds is measured.

Fig. 11. Hypercube Architecture Multicast Run-times against Message Size

We also measured the one-to-all broadcast performance with respect to pro-
cessor number and dimension in Fig. 12. A hypercube architecture with 3 di-
mensions can be realized with 24, 48, 96 and 120 processors, 4 dimensions can
be realized with 48 and 96 processors and 5 dimensions can be realized with 96
processors. A sharp increase can be seen when we double the 48 processors in
Fig. 12.

Fig. 12. Hypercube Architecture Multicast Run-times against Total Processor Number

7 Discussions and Evaluations

We evaluated various group communication architectures in a cluster of 120
processors using MPI. The groups in the tests were connected in pipelined, daisy,
hierarchical and hypercube architectures. In Fig. 13, architectures are compared
with respect to message size with a constant total number of processors of 24.
In Fig. 14, architectures are compared with varying total number of processors.

The comparison of message complexities and the message delivery times of
these architectures are displayed in Table 1. It can be seen that the daisy ar-
chitecture provides the minimum multicast message delivery times for both the

Fig. 13. Architectures Multicast Run-times Comparison against Message Size

Fig. 14. Architectures Multicast Run-times Comparison against Total Processor Count

fixed number of processors and the fixed size of message cases as expected.
Theoretically, the next best performance should have been the hypercube and
the pipelined architecture should have provided the worst performance but the
experimental results did not wholly support this view. Pipelined architecture re-
sulted in similar performance to the hypercube. A larger cluster count may affect
the results. Based on the analysis, we expected that the binary tree architecture
should have twice longer times than the hypercube which conforms to the tests.

Table 1. Comparison of the Group Architectures

Topology Time Complexity Fixed Proc.(t) (µs) Fixed Msg. Size(t) (µs)

Pipelined O(km) 1776 806
Daisy O(3k) 1429 338
Hierarchical(BT) O(2k log m) 4610 1625
Hypercube O(k log m) 1888 1168

Our general conclusion is that the daisy architecture is favorable for multicast
communication using MPI in terms of message delivery times and message sizes.
We are planning to use the daisy architecture based group communication in the
Grid architecture [15] where nodes do fail frequently and hence fault tolerance
using replication is an important paradigm to provide a reliable service.

References

1. Birman K. P., van Renesse, R., Reliable Distributed Computing with the Isis
Toolkit, IEEE Computer Society Press, Los Alamitos, Ca., (1994).

2. Chockler, G, Keidar, I., Vitenberg, R., Group communication specifications: a com-
prehensive study, ACM Computing Surveys, (2001), 33(4) , 427-469

3. Cristian F., Synchronous and Asynchronous Communication, Communications of
the ACM. Special Section on Group Communication, 1996, 39(4)

4. Y.Amir et all, Transis: A communication subsystem for high availability. Proc. of
22nd IEEE Int’l Symp. on Fault-Tolerant Computing, IEEE Press, NJ, 76-84

5. Van Renesse R., Birman K. P.,Maffeis S., Horus : A Flexible Group communication
System, CACM, Special sect. on Group Comm., (1996), 39(4)

6. Y.Amir et all, The TOTEM Single Ring Ordering and membership Protocol, ACM
Trans. Comp. Systems., 1995, 13(4)

7. Keidar, I. et al, Moshe: A group membership service for WANs, ACM Transactions
on Computer Systems (TOCS) (2002), 20(3) , 191-238

8. Gropp, W., Lusk, E., Doss N. and Skjellum, A. : A High-Performance, Portable
Implementation of the MPI Message Passing Interface Standard, MPI Developers
Conference, (1995)

9. Squyres, J. M., Lumsdaine, A., George, W.L., Hagedorn, J.G. and Devaney, J.E.,
: The Interoperable Message Passing Interface (IMPI) Extensions to LAM/MPI,
MPI Developers Conference, Ithica, NY, (2000)

10. Yuan, X., Daniels, S., Faraj, A., Karwande, A. : Group Management Schemes for
Implementing MPI Collective Communication over IP Multicast, The 6th Int. Conf.
on Computer Science and Informatics, Durham, NC, (2002), 8-14

11. Quinn, M. J., : Parallel Programming in C with MPI and OpenMP, International
Edition, Mc Graw Hill, (2003).

12. Tunali, T, Erciyes,K., Soysert, Z.: A Hierarchical Fault-Tolerant Ring Protocol For
A Distributed Real-Time System, Special issue of Parallel and Distributed Comput-
ing Practices on Parallel and Distributed Real-Time Systems, (2000), 2(1), 33-44

13. Allahverdi, N, Kahramanli, S, Erciyes,K. : A Fault Tolerant Routing Algorithm
Based on Cube Algebra for Hypercube Systems , JSA, 2000, 46(2), 201-205

14. Grama, A., Gupta, A., Karypis, G., Kumar, V. : Introduction to Parallel Comput-
ing, Second Edition, Addison Wesley Longman, Inc., (2003).

15. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. Int. Journal of High Performance Computing Applications,
(2001), 15(3), 200-222

