
A Merging Clustering Algorithm for Mobile Ad

hoc Networks

Orhan Dagdeviren, Kayhan Erciyes and Deniz Cokuslu

Izmir Institute of Technology
Computer Eng. Dept., Urla, Izmir 35340, Turkey

{orhandagdeviren, kayhanerciyes, denizcokuslu }@iyte.edu.tr

Abstract. Clustering is a widely used approach to ease implementa-
tion of various problems such as routing and resource management in
mobile ad hoc networks (MANET)s. We propose a new fully distributed
algorithm for clustering in MANETs that merges clusters to form higher
level clusters by increasing their levels. We show the operation of the
algorithm and analyze its time and message complexities and provide
results in the simulation environment of ns2. Our results conform that
the algorithm proposed is scalable and has a lower time and message
complexities than the other algorithms.

1 Introduction

MANETs consist of dynamic collection of nodes with rapidly changing topologies
of wireless links. These networks have many important applications including dis-
aster recovery operations, military operations and personal area networking. An
important way to support efficient communication between nodes of a MANET
is to develop a wireless mobile backbone architecture. Nodes in a MANET are
powered by batteries only. Therefore, amount of communication should be mini-
mized to avoid a premature drop out of a node from the network. Clustering has
become an important approach to manage MANETs. The clustering problem
can be described as classifying nodes in a MANET hierarchically into equiva-
lence classes with respect to certain attributes such as geographical regions or
small neighborhood of 1 or 2 hops from special nodes called the clusterheads[1] .
Clusterheads may perform routing, typically by forming a virtual backbone with
other clusterheads, network management and resource allocation for their cluster
members by cooperating with other clusterheads. The performance metrics of a
clustering algorithm are the number of clusters and the count of the neighbor
nodes which are the adjacent nodes between clusters that are formed [2].

In this study, we propose an algorithm for clustering in MANETs using merg-
ing as in constructing Minimum Spanning Trees where part of a tree or a tree
of a forest designates a cluster. Related work in this area is reviewed in Section
2, we illustrate our algorithm in Section 3, provide implementation results in
Section 4 and the final section provides the conclusions drawn.



2 Background

2.1 Clustering Using a Minimum Spanning Tree

An undirected graph is defined as G = (V, E), where V is a finite nonempty set
and E ⊆ V × V . V is a set of nodes v and the E is a set of edges e. A graph G
is connected if there is a path between any distinct v. A graph GS = (VS , ES)
is a spanning subgraph of G = (V, E) if VS = V . A spanning tree of a graph
is an undirected connected acyclic spanning subgraph. Intuitively, a minimum
spanning tree(MST) for a graph is a subgraph that has the minimum number of
edges for maintaining connectivity [3].

Spanning Tree Algorithms The idea is to group branches of a spanning tree
into clusters of an approximate target size [4]. The resulting clusters can overlap
and nodes in the same cluster may not be directly connected [5]. Gallagher, Hum-
blet and Spira [6], Awerbuch [7], Yao-Nan Lien [8], Ahuja and Zhu [9], Garay,
Kutten and Peleg [10], Banerjee and Khuller [4] have all proposed distributed
spanning tree based algorithms and Srivastava and Ghosh’s [11] distributed k-
tree core algorithm also constructs a distributed spanning tree.

Gallagher, Humblet and Spira’s Distributed Algorithm: Gallagher, Humblet
and Spira [6] proposed a distributed algorithm which determines a minimum-
weight spanning tree for an undirected graph that has distinct finite weights
for every edge. Aim of the algorithm is to combine small fragments into larger
fragments with outgoing edges. A fragment of an MST is a subtree of the MST.

An outgoing edge is an edge of a fragment if there is a node connected to
the edge in the fragment and one node connected that is not in the fragment.
Combination rules of fragments are related with levels. A fragment with a single
node has the level L = 0. Suppose two fragments F at level L and F’ at level L’;

– If L < L’, then fragment F is immediately absorbed as part of fragment F.
The expanded fragment is at level L’.

– Else if L = L’ and fragments F and F’ have the same minimum-weight
outgoing edge, then the fragments combine immediately into a new fragment
at level L+1

– Else fragment F waits until fragment F’ reaches a high enough level for
combination.

Under the above rules the combining edge is then called the core of the new
fragment. The two essential properties of MSTs for the algorithm are:

– Property 1: Given a fragment of an MST, let e be a minimum weight outgoing
edge of the fragment. Then joining e and its adjacent non-fragment node to
the fragment yields another fragment of an MST.

– Property 2: If all the edges of a connected graph have different weights, then
the MST is unique.



The algorithm defines three different states of operation for a node. The
states are Sleeping, Find and Found. The states affect what of the following
seven messages are sent and how to react to the messages: Initiate, Test, Reject,
Accept, Report(W ), Connect(L) and Change-core. The identifier of a fragment
is the core edge, that is, the edge that connects the two fragments together.
A sample MANET and a minimum spanning tree constructed with Gallagher,
Humblet, Spira’s algorithm [6] can be seen in Fig. 1 where any node other than
the leaf nodes which are shown by black color depict a connected set of nodes.
The upper bound for the number of messages exchanged during the execution
of the algorithm is 5Nlog2N +2E, where N is the number of nodes and E is the
number of edges in the graph. A message contains at most one edge weight and
emphlog28N bits. A worst case time for this algorithm is O(NlogN).

(a) (b)

Fig. 1. (a) A MANET (b) Its Minimum Spanning Tree

3 Our Algorithm

3.1 General Idea of the Algorithm

The distributed algorithm proposed finds clusters in a MANET by merging
the clusters to form higher level clusters as mentioned in Gallagher, Humblet,
Spira’s algorithm [6]. However, we focus on the clustering operation by discarding
minimum spanning tree. This reduces the message complexity as explained in
Section 3.4 . The second contribution is to use upper and lower bound heuristics
for clustering operation which results in balanced number of nodes in the clusters
formed.

3.2 Description of the Algorithm

We assume that each node has distinct node id. Moreover, each node knows
its cluster leader id, cluster id and cluster level. Cluster level is identified by
the number of the nodes in a cluster. Leader node is the node with maximum



cluster id. Cluster leader id is identified by the node id of the leader node in a
cluster. Cluster leader id is equal to the cluster id. The local algorithm consists
of sending messages over adjoining links, waiting for incoming messages and
processing messages. The finite state machine of the algorithm is shown in Fig. 2.

Period_TOUT

Node_Info

 / Poll_Node

Mbr_ACK

WT_INFO # of nodes in cluster < k

/ Poll_Node
   Connect_Mbr
/ Connect_Ldr, 

IDLE
MEMBER WT_ACK LEADER

/ Change_Cluster
Ldr_ACK

IDLE_WT
_CONN

LDR_WT
_CONN

Poll_Node,
Ldr_Poll_Node

Connect_Ldr
/Mbr_ACK,
Change_Cluster

Connect_Ldr

Poll_Node / Node_Info

Change_Cluster_ACK
message from all
member nodes

# of nodes in cluster
  < 3K/2
/Node_Info

Tout

Ldr_ACK
/ Change_Cluster

/ Ldr_ACK
Connect_Mbr

/ Ldr_ACK
Connect_Mbr

Period_TOUT / Poll_Node

Change_Cluster

Poll_Node 
/ Ldr_Poll_Node

/Mbr_ACK,Change_Cluster

WT_ACK
LDR_

Fig. 2. Finite State Machine of the Merging Clustering Algorithm

The algorithm requires the sequence of messages as in Fig. 3. Firstly a node
sends a Poll Node message to a destination node. Destination node sends a
Node Info message back to originator node. Originator node then sends a Con-
nect Ldr or Connect Mbr message to destination node to state it is the current
leader or not. Destination node sends a Ldr ACK or Mbr ACK message to orig-
inator node. We assume that the underlying network provides broadcast com-
munication. After the above message exchange, the new leader node multicasts a
Change Cluster message to all cluster nodes and waits for Change Cluster ACK
message from all cluster nodes.Messages can be transmitted independently in
both directions on an edge and arrive after an unpredictable but finite delay,
without error and in sequence. Message types are Poll Node, Ldr Poll Node,
Node Info, Ldr ACK, Mbr ACK, Connect Mbr, Connect Ldr, Change Cluster and
Change Cluster ACK as described below.

– Poll Node: A cluster leader node will send Poll Node (node id, cluster level)
message to a destination node to begin the clustering operation.

– Ldr Poll Node : A cluster member node will send Ldr Poll Node (node id,
cluster level) message to cluster leader node if cluster member node receives



Poll_Node

Node_Info

Ldr_ACK, Mbr_ACK

Connect_Ldr
Connect_Mbr,

Fig. 3. Message Flow Diagram

a Poll Node (node id, cluster level) message from a node which is not in the
same cluster.

– Node Info: A cluster leader node will send Node Info (node id, cluster level)
message if it receives a Poll Node (node id, cluster level) or Ldr Poll Node
(node id, cluster level) message.

– Connect Mbr : A cluster node will send Connect Mbr (node id) message after
it receives a Node Info (node id, cluster level) which has a smaller node id
than sender.

– Connect Ldr : A cluster node will send Connect Ldr (node id) message after
it receives a Node Info (node id, cluster level) message which has a greater
node id than sender’s node id.

– Ldr ACK : A node will send Ldr ACK (node id, cluster level) message when
it receives a Connect Mbr message.

– Mbr ACK : A node will send Mbr ACK message when it receives a Con-
nect Ldr message. The receiver node of the Mbr ACK message is a member
of the cluster.

– Change Cluster : A node will multicast a Change Cluster (node id, clus-
ter level) message after it receives a Ldr ACK message. The leader of a
cluster calculates new level and multicasts Change Cluster (node id, clus-
ter level) to all cluster member nodes to update their cluster id and clus-
ter level information.

– Change Cluster ACK : A node will send a Change Cluster ACK message af-
ter it receives Change Cluster message.

– Period TOUT : This message can be regarded as an internal message. Pe-
riod TOUT occurs for every node in the network to start clustering operation
periodically.

Every node in the network performs the same local algorithm. Each node can be
either in IDLE, WT INFO, WT ACK, MEMBER, LEADER, LDR WT CONN
or IDLE WT CONN states described below.



– IDLE: Initially all nodes are in IDLE state. If Period TOUT occurs, node
sends a Poll Node message to destination node and will make a state tran-
sition to WT INFO state.

– WT INFO: A node in WT INFO state waits for Node Info message.
– WT ACK: A node in WT ACK state waits for a Mbr ACK or Ldr ACK. If

Mbr ACK is received, node will make a state transition to MEMBER state.
If Ldr ACK is received, node will multicast CHANGE LEADER message
and make a state transition to LEADER state.

– MEMBER: A cluster the member node is in the MEMBER state. If a
Poll Node message is received, the node will send Ldr Poll Node message to
the leader node of the cluster. If a Change Cluster message is received, the
node will update its cluster information.

– LEADER: When A cluster leader node is in the LEADER state, if a Poll Node
or a Ldr Poll Node is received, the node will firstly check the 3K/2 parame-
ter to decide on the clustering operation. If cluster level is smaller, node will
send a Node Info message and make a state transition to LDR WT CONN
state.

– LDR WT CONN : A node in LDR WT CONN state waits for Connect Mbr
or Connect Ldr message. If Connect Mbr is received, node will make a state
transition to MEMBER state. If Connect Ldr is received, node will make a
state transition to LEADER state.

– IDLE WT CONN : A node in IDLE WT CONN state waits for Connect Mbr
or Connect Ldr message. If Connect Mbr is received, the node will make a
state transition to MEMBER state.

– LDR WT ACK: A node in LDR WT ACK state waits for Change Cluster ACK
messages from all member nodes in the new cluster.

Timeouts can occur when two nodes are communicating. If a timeout oc-
curs at a node which is not a cluster leader either in IDLE, IDLE WT CONN,
WT INFO or WT ACK states returns back to IDLE state, a node which is a
cluster leader either in LDR WT CONN, WT ACK or WT INFO states returns
back to LEADER state, a node either in LEADER,MEMBER, LDR WT ACK
states doesn’t change its state.

3.3 An Example Operation

Assume the mobile network in Fig. 4. K parameter is given as 4. Initially all the
clusters are in IDLE state. Period TOUT occurs in Node 1, Node 3, Node 4 ,
Node 9 and Node 12. Node 1 sends a Poll Node message to Node 7 and sets its
state to WT INFO. Node 7 receives the Poll Node message and sends Node Info
message to Node 1. Node 7 sets its state to IDLE WT CONN. Node 1 receives
the Node Info message and sends a Connect Ldr message to Node 7 since the
node id of Node 7 is greater than node 1. Node 1 sets its state to WT ACK.
Node 7 receives the Connect Ldr message and sends a Mbr ACK message to
Node 1. Node 1 receives the message and sets its state to MEMBER. Node 7
sends Change Cluster message to Node 1 indicating that new cluster is formed



between and Node 1 and Node 7. Node 1 sends a Change Cluster ACK message
to Node 7 which shows that the clustering operation between Node 1 and Node
7 is completed.Node 8 and Node 9, Node 2 and Node 4 , Node 11 and Node 5,
Node 3 and Node 6 are connected same as Node 1 and Node 2 to form clusters
with level 2.

1 7

6 3

10

5

11

8

9

4

2 12

13

Fig. 4. Clusters obtained using the clustering algorithm

After clusters with level 2 are formed, Node 10 in IDLE state sends a
Poll Node message to Node 7. Node 10 sets its state to WT INFO. Node 7
in LEADER state receives Poll Node message and checks the 3K/2 parame-
ter. Since cluster level of Node 7 is smaller than K, Node 7 sends a Node Info
message to Node 10. Node 7 sets its state to LDR WT CONN. Node 10 in
WT INFO STATE receives NODE INFO message from Node 7 and sends a
Connect Mbr message to Node 7. Node 10 sets its state to WT ACK. Node 7
receives Connect Mbr and sends Ldr ACK message to Node 10. Node 7 sets
its state to MEMBER. Node 10 in WT ACK state receives Ldr ACK message
and multicasts Change Cluster message to Node 1 and Node 7 to update new
cluster information. Node 10 sets its state to LDR WT ACK. Node 1 and Node
7 receives Change Cluster messages and replies with Change Cluster ACK mes-
sages. Node 10 receives Change Cluster ACK messages and sets its state to
LEADER. At the same time, Node 13 in LEADER state sends a Poll Node mes-
sage to Node 4. 12, 13 and 2, 4 forms a new cluster as shown before. Beside this
5, 11 and 8, 9 are connected to form new clusters. The cluster formation scheme
is continued as shown in finite state machine in Fig. 2. The formation of clusters
in Fig. 4 are depicted in Tab. 1.



Table 1. Cluster Formation

Iteration A B C

1 1 7 10 6 3 2 13 5 9

2 1-7 10 6-3 2-4 13-12 5-11 9-8

3 1-7-10 6-3 2-4-13-12 5-11-9-8

4 1-7-10-6-3 No Change No Change

3.4 Analysis

Theorem 1. Time complexity of the clustering algorithm has a lower bound of
Ω(logn) and upperbound of O(n).

Proof. Assume that we have n nodes in the mobile network. Best case occurs
when each node can merge with each other exactly. To double member count at
each iteration such that Level 1 clusters are connected to form Level 2 clusters.
Level 2 Clusters are connected to form Level 4 Clusters and so on. The clustering
operation continues until the Cluster Level becomes m. The lower bound is
Ω(logN). Worst case occurs when a cluster is connected to a Level 1 cluster at
each iteration. Level 1 cluster is connected to a Level 1 cluster to form a Level 2
cluster, Level 2 cluster is connected to a Level 1 cluster to form a Level 3 cluster
and so on. The clustering operation continues until the Cluster Level becomes
n. The upper bound is therefore O(n).

Theorem 2. Message complexity of the clustering algorithm is O(n).

Proof. Assume that we have n nodes in our network. For every merge operations
of two clusters, 4 messages (Poll Node, Node Info, Connect Ldr/Connect Mbr,
Leader ACK/Member ACK ) are required. K Change Cluster messages and K
Change Cluster ACK messages are also required. Total number of messages in
this case is (4+2K)n/K which means that message complexity has an upper
bound of O(n).

Theorem 3. Cluster Levels vary between K and 5K/2− 2.

Proof. A cluster leader periodically polls its neighbors until it reaches the cluster
level with K. This guarantees the minimum cluster level with K.

Assume the scenario that a cluster leader with a cluster level with K-1 tries
to connect to another cluster with level 3K/2-1. Consequently a new cluster with
level 5K/2-2 will be formed.

4 Results

We implemented the merging clustering algorithm with ns2 simulator. A flat
surface of 650m*650m is chosen for the simulation. Dynamic Source Distance
Vector Routing is used as the routing protocol.



Fig. 5. Runtime Performance

Random movements are generated for each simulation. Node speeds are lim-
ited between 1.0m/s and 5.0m/s. The computational run times, cluster node
counts(cluster levels) and total edge cuts are recorded. Fig. 5 displays the run-
time results of the merging clustering algorithm ranging from 10 to 100 nodes.
Fig. 6 depicts the number of nodes in each cluster formed by the merging clus-
tering algorithm. As depicted in Fig. 5, the time complexity increases linearly
as also shown in Theorem 1. Clusters have similar number of nodes showing a
balanced partitioning in Fig. 6.

Fig. 6. Cluster Node Counts



5 Conclusions

We proposed a new fully distributed algorithm for clustering in MANETs and
illustrated its operation. Our original idea is to focus on the clustering opera-
tion by discarding the details of minimum spanning tree algorithms to reduce
time and message complexity. The second contribution is the usage of lower and
upper bound heuristics which results in balanced number of nodes in the clus-
ters formed. The implementation results obtained conform with the theoretical
analysis and show that the algorithm is scalable in terms of its running time
and produces evenly distributed clusters. We are planning to experiment various
total order multicast and mutual exclusion algorithms in such an environment
where message ordering is provided by the cluster heads on behalf of the ordinary
nodes of the MANET.

References

1. Krishna, P., Vaidya, N. H., Chatterjee, M., Pradhan, D. K. : A Cluster-based Ap-
proach for Routing in Dynamic Networks, in SIGCOMM Computer Communica-
tions Review (CCR), (1997).

2. Nocetti, F., B., Gonzalez, J. S., Stojmneovic, I. : Connectivity Based k-Hop Clus-
tering in Wireless Networks, Telecommunication Systems, (2003), (22)1-4, 205-220.

3. Grimaldi, R. P. : Discrete and Combinatorial Mathematics, An Applied Introduc-
tion, Addison Wesley Longman, Inc., (1999).

4. Banerjee, S., Khuller, S. : A Clustering Scheme for Hierarchical Routing in Wireless
Networks, Tech. Report CS-TR-4103, University of Maryland, College Park, (2000).

5. Chen, Y. P., Liestman, A. L., Liu, J. : Clustering Algorithms for Ad Hoc Wireless
Networks, in Ad Hoc and Sensor Networks ed. Y. Pan and Y. Xiao, Nova Science
Publishers, (2004).

6. Gallagher, R. G., Humblet, P. A., Spira, P. M. : A Distributed Algorithm for
Minimum-Weight Spanning Trees, ACM Transactions on Programming Languages
and Systems 5, (1983), 66-77.

7. Awerbuch, B. : Optimal Distributed Algorithms for Minimum Weight Spanning
Tree, Counting, Leader Election and related problems. , Proc. of the 9th Annual
ACM Symposium on Theory of Computing, (1987), 230-240.

8. Lien, Y. N. : A New Node-Join-Tree Distributed Algorithm for Minimum Weight
Spanning Trees , Proc. of the 8th International Conference on Distributed Comput-
ing Systems, (1988), 334-340.

9. Ahuja, M., Zhu, Y. : A Distributed Algorithm for Minimum Weight Spanning Trees
Based on Echo Algorithms, Proc. of the 9th International Conference on Distributed
Computing Systems, (1989).

10. Garay, J.A., Kutten, S., Peleg, D. : A sub-linear time distributed algorithm for
minimum-weight spanning trees, Proc. of the 34th Annual Symposium on Founda-
tions of Computer Science, (1993), 659-668,

11. Srivastava, S., Ghosh, R. K. : Distributed Algorithms for finding and maintaining
a k-tree core in a dynamic network, Information Processing Letters, (2003), 88(4),
187-194.


