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ABSTRACT 

 We propose a distributed mutual exclusion algorithm for mobile ad hoc networks. This algorithm 

requires a ring of cluster coordinators as the underlying topology. The topology is built by first providing 

clusters of mobile nodes in the first step and then forming a backbone consisting of the cluster heads in a 

ring as the second step. The modified version of the Ricart-Agrawala Algorithm on top of this topology 

provides analytically and experimentally an order of decrease in message complexity with respect to the 

original algorithm. We analyze the algorithm, provide performance results of the implementation, discuss 

the fault tolerance and the other algorithmic extensions, and show that this architecture can be used for 

other middleware functions in mobile networks. 
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1. INTRODUCTION 

Mobile ad hoc networks (MANETs) do not have fixed infrastructure and consist of mobile 

wireless nodes that have temporary interconnections to communicate over packet radios. The 

facility that ensures that only one node is in its critical section(CS) at any given time, namely 

mutual exclusion in a distributed system such as a MANET has received attention from various 

researchers recently. In general, distributed mutual exclusion algorithms may be classified as 

permission based or token based. In the permission-based algorithms, a node would enter a CS 

after receiving permission from all of the nodes in its set for the CS. In token-based algorithms 

however, the possession of a system-wide unique token would provide the right to enter a CS. 

Examples of permission-based distributed mutual exclusion algorithms are Lamport's algorithm 

[1] (3(N-1) messages), Ricart-Agrawala (RA) algorithm (2(N-1) messages) [2] and Maekawa's 

algorithm [3]. Susuki-Kasami's algorithm [4] (N messages) and Raymond's tree based algorithm 

[5] (log(N) messages) are examples of token based mutual exclusion algorithms. Safety, 

liveness and fairness are the main requirements for any mutual exclusion algorithm. Lamport's 

algorithm and RA algorithm are considered as fair distributed mutual exclusion algorithms in 

literature. For MANETs, a fault tolerant distributed mutual exclusion algorithm using tokens is 

discussed in [6] and a k-way mutual exclusion algorithm for ad hoc wireless networks where 

there may be k processes executing a CS at any time is presented in [7]. 

In this study, we propose a distributed mutual exclusion algorithm (Mobile_RA) for MANETs 

based on RA algorithm which requires a backbone topology in the network. The backbone 

consists of clusters, coordinators of which are connected as a ring. In order to realize this 

topology, a clustering algorithm at the lowest layer provides dynamic clusters of the MANET, 

using the previously designed Merging Clustering Algorithm (MCA) [8]. The Backbone 



Formation Algorithm (BFA) [9] at the second layer provides a virtual ring architecture of the 

coordinators of the clusters formed by MCA. 

We briefly review the operation of these two layers and show the design and implementation of 

the distributed mutual exclusion algorithm which uses the virtual ring structure. Each 

coordinator on the ring performs the required CS entry and exit procedures for the nodes they 

represent. Using this architecture, we improve and extend the RA algorithm described in [10] to 

MANETs and show that the algorithm proposed achieves an order of magnitude reduction in the 

number of messages required to execute a CS at the expense of increased response times and 

synchronization delays. This significant message decrease will be very convenient in 

environments that use wireless sensor networks where energy efficiency, therefore message 

complexity is of paramount importance. The rest of the paper is organized as follows. Section 2 

provides the background on clustering algorithms and the backbone formation algorithm. The 

related work on mutual exclusion in general and in MANETs is described in Section 3. Section 

4 describes the proposed algorithm in detail with its proof of correctness and complexity 

analysis. The implementation results are explained in Section 5, the further extensions are 

discussed in Section 6, and the conclusions are outlined in Section 7. 

2. BACKGROUND 

2.1. Clustering of the MANETs 

Clustering is a fundamental approach to manage the MANET services. In clustered networks, 

nodes are either classified as cluster members, cluster heads or optionally cluster gateways. A 

cluster member is an ordinary cluster node which sends its request to its cluster head. A cluster 

head is responsible for managing intra cluster requests and participating in inter cluster 

operations. The most significant benefit of clustering is maintaining the routing infrastructure 

for multi hop and multicast communications. Furthermore the network load is distributed more 

balanced in clustered networks compared to the networks with no infrastructure. Lastly, the 

clustering method supports a hierarchical management scheme which upper layers can take 

advantage of it. There are two fundamental graph theoretic approaches for clustering in 

MANETs. The first approach is the dominating set based clustering in which cluster heads are 

selected as the elements of the dominating set. Other approach is constructing a spanning tree in 

which single tree or multiple trees are built for communication. 

2.2. Clustering using Dominating Sets 

In a graph G, a set S V (G) is a dominating set if a vertex is in S or has a neighbor in S where 

V is the set of vertices. The minimum size of the dominating set in G is called as the domination 

number. The dominating set S is a connected dominating set if the elements are connected, 

independent dominating set if the elements are independent, total dominating set if the set has 

no isolated vertex [11]. The MANET researchers propose different types of dominating sets 

[12-14] but specifically focus on minimum connected dominating set construction [15-17] 

which is an NP-hard problem. 

2.3. Clustering using Spanning Tree 

A tree is a connected acyclic graph. A spanning subgraph G` of G is a subgraph that has same 

vertex set with G. A spanning tree is a spanning subgraph that has the tree properties. The 

minimum spanning tree (MST) is a spanning tree with minimum edge weights [11]. The MCA 

we have designed partitions a MANET into non overlapping balanced clusters and constructs a 

tree based routing infrastructure. The upper and lower bound parameters are used for balancing 

clusters. The nodes that have strong communication links with each other are included in same 

clusters. The main target of the MCA is to decrease the routing cost and to maintain a robust 



architecture for upper layers. MCA is not a solely routing algorithm, it is a clustering algorithm 

located on top of any ad hoc routing algorithm. MCA is stable against varying mobility and 

density conditions shown in [8]. Fig. 1 shows a mobile network of 20 nodes which is partitioned 

into 4 clusters using MCA. Nodes 14, 18, 17 and 19 are the cluster leaders of the clusters 1, 2, 3 

and 4 respectively. 

 

Figure 1.  Clustering of the Mobile Network 

 

2.4. Backbone Formation in MANETs 

The backbone in wireless ad hoc networks is a path connecting cluster heads that supports a 

network-wide infrastructure for routing and inter cluster operations. There are energy-efficient 

[18], multicast oriented [19], tree based [20] and dominating set based [21] backbones which are 

proposed for MANETs in literature. BFA we have designed [9] constructs a directed ring 

backbone to give better services for upper layer and to maintain an infrastructure for distributed 

algorithms running on ring. When BFA is used on top of a balanced clustering algorithm like 

MCA, a robust infrastructure is constructed for upper layers by supporting load balancing and 

reducing routing delay. BFA is a semi-distributed algorithm in which cluster heads food their 

information to the network to maintain a global knowledge of each other. The ordinary cluster 

members act as router nodes during this operation. The algorithm has two modes of operation; 

hop-based and position-based backbone formation. The information flooded by cluster heads 

depends on the mode of operation. In hop-based BFA, number of hops between cluster heads is 

considered for ring construction. Since cluster heads must share the same information, an 

agreement must be made between them in highly mobile scenarios. In position-based BFA, each 

cluster head floods its position to the network. BFA is stable against varying mobility and 

density conditions shown in [9]. Fig. 2 shows the directed ring architecture formed by the nodes 

19, 14, 17 and 18 in a mobile network of 20 nodes which is partitioned into clusters. 

 



 

Figure 2.  Backbone Formation in Mobile Ad hoc Network 
 

2.5. The Proposed Architecture 

 

The proposed architecture with four layers for distributed mutual exclusion in mobile ad hoc 

networks is shown in Fig. 3. Distributed applications can be implemented on top of these layers. 

The lowest layer is the routing layer which can be any ad hoc network routing protocol like 

AODV [22], DSR [23] or DSDV [24].  

 
Figure 3.  The Proposed Architecture 

 

In this study, we used AODV since it is a widely used routing protocol which also has a stable 

ns2 [25] release [26]. The second layer is the clustering layer in which we can use MCA. In the 

third layer or backbone formation layer, BFA is used that inputs these clustersand builds a 

directed ring of the clusterheads. BFA can be implemented on top of any clustering algorithm 

that produces one clusterhead for each cluster. MCA and BFA handle the link failures caused by 

the mobility of the nodes and also produce stable topologies against varying node densities. 

Finally the last layer is the Mobile_RA for distributed mutual exclusion. Any distributed 

algorithm running on top of a ring architecture can be implemented as the last layer. 

 

 



2.6. Performance Metrics 

 

Performance of a distributed mutual exclusion algorithm depends on whether the system is 

lightly or heavily loaded. If no other process is in the CS when a process makes a request to 

enter it, the system is lightly loaded. Otherwise, when there is a high demand for the CS which 

results in queueing up of the requests, the system is said to be heavily loaded. The important 

metrics to evaluate the performance of a mutual exclusion algorithm are the number of 

messages per request, response time and the synchronization delay as described below: 

• Number of Messages per Request(M): The total number of messages required to enter 

CS is an important and useful parameter to determine the required network bandwidth for that 

particular algorithm. M can be specified for high load or light load in the system as Mheavy and 

Mlight . 

• Response Time(R): The Response Time R is measured as the interval between the 

request of a node to enter a CS and the time it finishes executing the CS. When the system is 

lightly loaded, two message transfer times and the execution time of the CS success resulting in 

Rlight = 2T +E units. Under heavy load conditions, assuming at least one message is needed to 

transfer the access right from one node to another, Rheavy = w(T + E) where w is the number of 

waiting requests. 

• Synchronization Delay(S): The synchronization delay S is the time required for a node 

to enter a CS after another node finishes executing it. The minimum value of S is one message 

transfer time T since one message success to transfer the access rights to another node. The 

lower bounds for M, R and S are shown in Fig. 4. 

 
Figure 4.  Lower Bounds for Performance Metrics 

 

2.7. Token-Based Algorithm 

 

The general Token Passing(TP) Algorithm for mutual exclusion is characterized by the 

existence of a single token where the possession of it denotes permission to enter a CS [10]. The 

token circulation can be performed in a logical ring structure or by broadcasting [4]. In a ring 

based TP Algorithm, any process that requires its CS will block the token and issue it when it 

finishes executing. Fairness is ensured in this algorithm as each process waits at most N - 1 

entries to enter the CS. There is no starvation since passing is in strict order. The main 

difficulties with TP Algorithm are as follows. There would be the idle case of no processes 

entering CS which would incur overhead of constantly passing the token. There could be lost 

tokens which would require diagnosis and creating a new token by a central node or distributed 

control is needed and to prevent duplicate tokens, central coordinator should ensure generation 

of only one token. Crashes should also be dealt with as these would require detection of the 

dead destinations in the form of acknowledgements. One important design issue with TP 

Algorithm is the determination of the holding time for unneeded token. If this time is too short, 

there will be high overhead. However, keeping this time too long would result in high CS 

latency. Performance metrics for TP is given in Fig. 5. 

 



 
Figure 5.  Performance Metrics of General Token-Based Algorithms 

 

2.8. Ricart Agrawala Algorithm 

 

The RA represents a class of decentralized, permission based mutual exclusion algorithms. In 

RA Algorithm, when a node wants to enter a CS, it sends a timestamped broadcast Request 

message to all of its peers in that CS request set. When a node receives a Request message, it 

returns a Reply message if it is not in the CS or requesting it. If the receiving node is in the CS, 

it does not reply and queues the request. 

However, if the receiver has already made a request, it compares the timestamp of its request 

with the incoming one and replies the sender if the incoming request has a lower timestamp. 

Otherwise, it queues the request and enters the CS. When a node leaves its CS, it sends a reply 

to all the deferred requests on its queue which means the process with the next earliest request 

will now receive its last reply message and enter the CS. The total number of messages per CS 

is 2(N - 1) as (N - 1) requests and (N - 1) replies are needed. One of the problems with this 

algorithm is that if a process crashes, it fails to reply which is interpreted as a denial of 

permission to enter the CS, so all other processes that want to enter are blocked. Also, the 

system should provide some method of clock synchronization between processes. The 

performance metrics for the RA Algorithm are shown in Fig. 6. When a node finishes execution 

of a CS, one message is adequate for a waiting node to enter, resulting in S = T. 

 

Figure 6.  Performance Metrics of Ricart Agrawala Algorithm 

 

3. RELATED WORK 

Distributed mutual exclusion in mobile networks is a relatively new research area. Singhal et al. 

[27] proposed a concept of look-ahead technique for distributed mutual exclusion which instead 

of enforcing mutual exclusion among all the sites of a mobile system, enforces mutual exclusion 

only among the sites which are concurrently competing for the CS, resulting in less message 

overhead. Mutual exclusion algorithm involves two issues: First is identifying sites which are 

concurrently competing for CS, and second enforcing mutual exclusion among these sites. Once 

a site knows all the sites which are concurrently requesting CS, it can use RA method on those 

sites to enforce mutual exclusion. Walter et al. [6] proposed a mobility aware token based 

distributed mutual exclusion algorithm which combines ideas from several papers. The partial 

reversal technique from [28] used to maintain a destination oriented directed acyclic graph 

(DAG) in a packet radio network when the destination is static, is used in the algorithm to 

maintain a token oriented DAG with a dynamic destination. Like the algorithms of [5, 29, 30] 

each node in the algorithm maintains a request queue containing the identifiers of neighboring 

nodes from which it has received requests for the token. Like Dhamdhere and Kulkarni's 

algorithm [30], the algorithm totally orders nodes. The lowest node is always the current token 

holder, making it a sink toward which all requests are sent. Each node dynamically chooses its 

lowest neighbor as its preferred link to the token holder. Nodes sense link changes to immediate 

neighbors and reroute requests based on the status of the previous preferred link to the token 

holder and the current contents of the local request queue. All requests reaching the token holder 

are treated symmetrically, so that requests are continually serviced while the DAG is being re-



oriented and blocked requests are being rerouted. Baldoni [31] et al. proposed a token based 

distributed mutual exclusion algorithm suited for mobile ad-hoc networks. The algorithm is 

based on a dynamic logical ring and combines the two families of token based algorithms (i.e., 

token asking and circulating token) in order to get an optimal number of messages exchanged 

per CS access under heavy request load. The algorithm aims at maintaining device power 

consumption as low as possible by reducing the number of hops traversed per CS execution and 

by not sending any control messages when no processes request the CS. Mobility is addressed 

by exploiting the information of the routing table in order to send each message to the closest 

node in terms of number of hops. 

The h-out of-k mutual exclusion problem is also known as the h-out of-k resource allocation 

problem [32]. It concerns with how to control nodes in a distributed system so that each node 

can access h resources out of totally k shared resources, l ≤ h ≤ k, with the constraint that no 

more than k resources can be accessed concurrently. Jiang [33] proposed a prioritized 

distributed h-out of-k mutual exclusion algorithm for MANETs with real-time or prioritized 

applications. The proposed algorithm is sensitive to link forming and link breaking and thus is 

suitable for MANETs. The proposed algorithm claims the highest priority first serve property 

for real-time applications. For non-real-time applications, one may associate the priority with 

the number of requested resources to achieve the maximum degree of concurrency. Yang [34] 

proposed a distributed algorithm to solve the mutual exclusion problem in MANETs. The 

proposed algorithm improves the CS execution time by allowing at most R tokens to be 

concurrently dispatched, it employs logical ring construction to adapt the token navigation to 

the system requirements and it is designed with the consideration of the dynamical link 

formation characteristics in MANETs and is thus suitable for mobile environments. Wu et al. 

[35] proposed a permission-based MUTEX algorithm for MANETs. In order to reduce the 

message cost, the algorithm uses the "look-ahead" technique as in [27], which enforces MUTEX 

only among the hosts currently competing for the CS. The constraint of FIFO channel is also 

relaxed. The proposed mechanism handles the "doze" mode and "disconnection" of mobile 

hosts. Using timeout, a fault tolerance mechanism is introduced to tolerate transient link and 

host failures. 

4. MOBILE_RA ALGORITHM 

4.1. General Idea and Description of the Mobile_RA Algorithm 

 

The main idea of the Mobile_RA algorithm is to form coordinators as interface of other nodes 

to the ring [10,36,37]. The relation between the cluster coordinator and an ordinary node is 

similar to a central coordinator based mutual exclusion algorithm. The FSM for the ordinary 

node is given in Fig. 7 where its algorithmic representation is given in Alg. 1. Each node is in 

N_IDLE state initially. When a node wants to enter CS, an internal Request_CS event occurs, 

upon this event the node sends a Node_Req to its coordinator and makes a state transition to 

N_WAITRP state. After the node receives Coord_Rep message from the coordinator, it makes 

state transition to N_EXECS state and executes CS. When the node finishes the execution of CS, 

an internal Release_CS event occurs and node sends a Node_Rel message to its coordinator. 

 



 

Figure 7.  Finite State Machine of the Mobile_RA Node Algorithm  
 

                             
 

Algorithm 1.  Mobile_RA's Ordinary Node Pseudocode for Nodej Receiving Message from 

Nodei 

 
The coordinator side of the distributed algorithm is more complicated than the ordinary node 

side. The types of messages exchanged in the coordinator side of the algorithm are Node_Req, 

Coord_Req, Coord_Rep and Node_Rel which are described below: 

 

• Node_Req: Any node which wants to execute CS, sends a Node_Req message to its 

coordinator. After sending this message, node waits for Coord_Rep message from its 

coordinator to execute CS. 

 

• Coord_Req: When a coordinator receives a Node_Req message from an ordinary node, 

it sends Coord_Req message to the next coordinator on the ring if all pending requests in its 

cluster have greater timestamps than the timestamp of this Node_Req message. Otherwise, it 

enqueues this message this message to the wait_queue. If a coordinator receives a Coord_Req 

message, it forwards this message according to the timestamp of this message. If the 

coordinator which is the originator of this message receives its own message, it sends a 

Coord_Rep message if there no other waiting requests with timestamp lower than itself or a CS 

executing node at the same time. 

 

• Coord_Rep: A node which wants to execute CS, will execute CS after receiving this 

message from its coordinator. 

 

• Node_Rel : After executing CS, the node sends this message to its coordinator 

indicating that their execution is completed.  



 

The coordinators can be either in IDLE, WAITRP or WAITND state as described below: 

 

• IDLE: Coordinators in IDLE state only forwards the Coord_Req messages to the next 

coordinator on the ring. If a Node_Req message is received, coordinator sends a Coord_Req 

message to the next coordinator and makes a transition to WAITRP state. 

 

• WAITRP: Coordinator in WAITRP state waits for its original Coord_Req message. 

Coord_Req messages of other coordinators are enqueued if the timestamp is greater. After 

receiving its original Coord_Req message, coordinator makes a transition to WAITND state. 

Received Node_Req messages are forwarded as Coord_Req messages to next coordinators. 

 

• WAITND: Coordinator in WAITND state waits for Node_Rel message from its cluster 

member which executes CS. After receiving Node_Rel, it makes a transition to IDLE state, if 

there is no pending request from its clustermembers in its wait_queue. Otherwise it makes a 

transition to WAITRP state. Received Node_Req messages are forwarded as Coord_Req 

messages to the next coordinators. 

 

The finite state machine of the Mobile_RA coordinator is shown in Fig. 8 [10,36] and its 

algorithmic representation is given in Alg. 2. 

 

Figure 8.  Finite State Machine of the Mobile_RA Coordinator Algorithm 

 

 



 
  

Algorithm 2.  Mobile_RA's Coordinator Pseudocode for Nodej Receiving Message from Nodei 

 

 

4.2. An Example Operation 

 

Fig. 9 shows an example scenario for the Mobile_RA Algorithm. There are 30 nodes in this 

scenario, and the network is partitioned into 4 clusters. Node 17, node 28, node 29 and node 24 

are the clusterheads. The name of a cluster is the id of its clusterhead. Node 15, node 13, node 

23 makes request for CS respectively at 4.10s, 4.20s, 4.25s. Execution time of CS is taken as 

350ms. The following describes the events that occur: 

 



 
Figure 9.  Operation of the Mobile_RA Algorithm 

 

 

1. Node 15, in cluster 17 makes a CS request at 4.10s by sending a Node_Req (15, 17, 4.10) 

message to node 17 which is the cluster coordinator. Node 17 receives the message at 4.11s and 

changes its state to WAITRP. Node 17 sends a Coord_Req (15, 17, 4.10) message to the next 

coordinator (node 28) on the ring. Node 28, which is in IDLE state and has no pending requests 

in its cluster, receives the Coord_Req (15, 17, 4.10) message at 4.13s and forwards the message 

to the next coordinator (node 24) on the ring. The message traverses the ring and is received by 

node 17 which is in WAITRP state at 4.21s meaning all of the coordinators have confirmed that 

either they have no pending requests or their pending requests all have higher timestamps. Node 

17 sends a Coord_Rep message to node 15 and changes its state to WAITND. Node 15 receives 

the Coord_Rep message at 4.18s and enters the CS. Step 1 is depicted in Fig. 9.(a). 

2.  Node 13, in cluster 29 makes a CS request by sending a Node_Req (13, 29, 4.20) at 4.20s. 

Node 29 receives the Node_Req (13, 29, 4.20) message at 4.21s and sends a Coord_Req (13, 29, 

4.20) message to its next coordinator (node 17) on the ring. Node 17, which is in WAITND 

state, receives the message and enqueues the Coord_Req (13, 29, 4.2) at 4.22s. Node 23 makes 

a CS request at 4.25s. Node 29 which is in WAITRP state receives the Coord_Req (23, 24, 4.25) 

message and enqueues the message at 4.28s. Step 2 is depicted in Fig. 9.(b). 



 

3. Node 15 exits from CS at 4.53s and sends a Node_Rel message to node 17. Node 17 which is 

in WAITND state receives the message at 4.54s and makes a transition to IDLE state. Node 17 

dequeues and forwards Coord_Req (13, 29, 4.20) message to the next coordinator (node 28). 

The Coord_Req (13, 29, 4.20) message is forwarded by node 24 since its request has higher 

timestamp. Node 29 receives its original request at 4.60s and sends a Coord_Rep message to 

node 13. Node 13 enters the CS at 4.61s. Step 3 is depicted in Fig. 9.(c). 

 

4. Node 13 finishes to execute CS at 4.96s. Node 29 receives the Node_Rel message at 4.97s. 

Node 29 dequeues and forwards the Coord_Req (23, 24, 4.25) message to its next coordinator 

(node 17) on the ring. Operation is continued as explained before. Node 24 receives Node_Rel 

message from node 23 at 5.38s. The Step 4 is depicted in Fig. 9.(d). If there are multiple 

requests within the same cluster, timestamps are checked similarly for local request. The order 

of execution in this example is nodes 15 � 13 � 23 in the order of the timestamps of the 

requests. 

 

4.3. Analysis 

 
4.3.1. Proof of Correctness 
 

In this section we prove the correctness of Mobile_RA Algorithm by showing the safety, 

liveness and fairness attributes. We define the terms below: 

 

• Ni : The node whose id equals to i. 

 

• RTi : The request of Ni where its timestamp is Ti . 

 

• Ci : Ni 's coordinator node. 

 

Theorem 1. In Mobile_RA Algorithm, at most one host can be in the CS at any time (safety 

attribute). 

 

Proof. We prove the theorem by contradiction. Assume that two nodes Ni and Nj are executing 

the CS concurrently. In this situation, Coord_Req messages of Ci and Cj must be circulated 

through the ring and they must be received by their originators concurrently. If Ti > Tj than Cj 

enqueues Coord_Req message of Ni . When Cj receives its own Coord_Req message, it sends a 

Coord_Rep message to Nj . After Nj finishes the execution of the CS, it sends a Node_Rel 

message to Cj . When Cj receives this message, it dequeues the Coord_Req message of Ni and 

forwards to Ci where Ci waits for the Coord_Req message of Ni . Therefore Ni and Nj can not 

execute CS concurrently. If Ti = Tj than node ids are used to break symmetry as shown in the 

algorithmic representation in Alg. 2. In all cases only one node executes CS, the other nodes 

wait for it. 

Theorem 2. The Mobile_RA Algorithm is deadlock and starvation free (liveness attribute). 

 

Proof. The proof is by contradiction. Assume that a node (Ni) waits endlessly for Coord_Rep 

message which will never arrive. In this situation, Coord_Req message of Ni must be enqueued 

by some other coordinator (Cj) and that message will not be dequeued. If Cj has other requests 

such that RTj < RTi , than Cj enqueues the Coord_Req message of Ni , but later it dequeues and 

forwards this Coord_Req message when Cj receives Node_Rel from Nj . If Cj has no request 

than it forwards the Coord_Req message of Ni . We contradict with our assumption.  



 

Theorem 3. Each node gets a fair chance to execute CS in Mobile_RA Algorithm where 

requests are executed in order. (fairness attribute). 

 

Proof. We prove the theorem by contradiction. Assume that Nj executes the CS earlier than Ni 

although Ti < Tj . In this situation, each coordinator should have a empty queue or RTj should be 

at the top of the queue. But since Ci enqueued RTi in its queue and the requests in queue are 

ordered according to their timestamps from smallest to greatest, we contradict with our 

assumption.  

4.3.2. Performance Metrics 
 

The upper and lower bounds for total message number, response time and synchronization delay 

are analyzed below [10, 36]. 

 

Theorem 4. The total number of messages per CS using the Mobile_RA Algorithm is k+3d 

where k is an upper bound on the number of neighbor nodes in the ring including the cluster 

coordinators and d is an upper bound on the diameter of a cluster. 

 

Proof. An ordinary node in a cluster requires three messages (Node_Req, Coord_Rep and 

Node_Rel) per CS to communicate with the coordinator. Each of these messages would require 

maximum d transfers between a node and the coordinator. The full circulation of the 

coordinator request (Coord_Req) requires k messages resulting in k+3d messages in total.  

 

Corollary 1. The Synchronization Delay (S) in the Mobile_RA Algorithm varies from 2dT to (k + 

2d - 1)T. 

 

Proof. When the waiting and the executing nodes are in the same cluster, the required messages 

between the node leaving its CS and the node entering are the Node_Rel from the leaving node 

and Coord_Rep from the coordinator resulting in 2dT message times for Smin. However, if the 

nodes are in different clusters, the Node_Rel message has to reach the local coordinator in d 

steps, circulate the ring through k-1 node to reach the originating cluster coordinator in the 

worst case and a Coord_Rep message from the coordinator is sent to the waiting nodes in d 

steps resulting in Smax=(k-1)T+2dt=(k+2d-1)T.  

 

Corollary 2. In the Mobile_RA Algorithm, the response times are Rlight=(k + 3d)T + E and Rheavy 

varies from w(2dT +E) to w((k +2d-1)T + E) where k is the number of clusters and w is the 

number of pending requests. 

 
Proof. According to Theorem 1, the total number of messages required to enter a CS is k+3d. If 

there are no other requests, the response time for a node will be Rlight=(k + 3d)T + E including 

the execution time(E) of the CS. If there are w pending requests at the time of the request, the 

minimum value Rheavy min is w(2dT + E). In the case of Smax described in Corollary 1, Rheavy max 

becomes w((k + 2d-1)T + E) since in general Rheavy=w(S + E).  

 
The comparison of Mobile_RA and RA is shown in Fig. 10. If m is an upperbound on the 

number of nodes in a cluster and if we further assume k=m, the message complexity of 

Mobile_RA becomes N +3d. 

 



 
Figure 10.  Comparison of Mobile_RA and RA 

 

5. Performance Evaluation 

 
We implemented the distributed mutual exclusion algorithm with the ns2 simulator. IEEE 

802.11 standards are used for medium access control and physical layer where the transmission 

range of a mobile node is 250m. The clustering algorithm, MCA [8], is modified, tuned and the 

results are re-measured that means the results in this section are different from the results in 

[37]. A random load generator is implemented to generate high, medium and low loads for 

different number of nodes. Total number of nodes are selected from 10 to 50 nodes. We limit 

the upper bound of the network size to 50 since MANET simulations greater than this size is not 

very applicable [7, 26, 38-42]. Different sizes of flat surfaces are chosen for each simulation to 

create very small, small and medium distances between nodes, as well as, high dense, dense and 

medium connected topologies. Surface areas vary from 120m x 600m to 600m x 600m, 130m x 

650m to 650m x 650m, 140m x 700m to 700m x 700m respectively. Average degree of the 

network is approximately N/4 for the medium connected, N/3.5 for the dense connected and N/3 

for the highly dense connected networks where N denotes the total number of nodes in the 

network. Random movements are generated for each simulation and random waypoint model is 

chosen as the mobility pattern. Low, medium and high mobility scenarios are generated and 

respective node speeds are limited from 1.0m/s to 5.0m/s, 5.0m/s to 10.0m/s, 10.0m/s to 

20.0m/s. Upper bound and lower parameters are changed to obtain different size of clusters.  

 

Response times and synchronization delays as measured with respect to load, mobility, density 

and number of clusters are recorded. Execution of CS is selected as 100ms. Response time 

increases linearly with the load as seen in Fig. 11. In low loaded networks, average response 

times vary from 4,93s to 11,49s whereas in high loaded networks average response times vary 

from 8,15s to 20,75s as seen in Fig. 11. The synchronization delay is 0 in low load scenarios 

since there will be no waiting requests in the queues. The synchronization delay values vary 

from 500ms to 2200ms in medium loaded scenarios as shown in Fig. 12. When the load is 

increased synchronization delay linearly increases due to waiting time of requests in the queue 

as seen in Fig. 12. Also response time and synchronization delay increases due to collisions and 

routing delays caused by high network traffic as shown in Fig. 11 and Fig. 12. 
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Figure 11.  Average Response Time against 

Load 
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Figure 12.  Average Synchronization Delay 

against Load 
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Figure 13.  Average Response Time against 

Mobility 
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Figure 14.  Average Synchronization Delay 

against Mobility 

 
Response time and synchronization delay increase by the mobility parameter due to the rapid 

change of network topology as shown in Fig. 13 and Fig. 14. In static networks, the average 

response time increases from 500ms to 750ms. In high mobile scenarios, due to frequent link 

changes, the response time values vary from 10s to 20s. 
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Figure 15.  Average Response Time against 

Density 
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Figure 16.  Average Synchronization Delay 

against Density 
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Figure 17.  Average Response Time against the 

Number of Clusters 
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Figure 18.  Average Synchronization Delay 

against the Number of Clusters 

 

Fig. 15 and Fig. 16 show the effect of distance between nodes to response time and 

synchronization delay. Generally, for the networks with higher connectivity, the average 

response time and synchronization delay values are 0.1-1s lower. To measure the effect of 

clustering, cluster upper and lower bound parameters of MCA are adjusted to create 3 to 7 

clusters. In fixed number of nodes, as the cluster size increases, total number of clusters in the 

network decreases. This also reduces the number of cluster leaders forming the ring and routing 

delay which causes a decrease in the response time and synchronization delay as shown in Fig. 

17 and Fig. 18.  



 

Fig. 19 and Fig. 20 show the impact of clustering nodes as opposed to leaving them without a 

hierarchy. RA algorithm is implemented in MANETs and compared with Mobile_RA. The 

average response time and synchronization delay values can be seen in Fig. 19 and Fig. 20. The 

Mobile_RA is far more scalable than RA for MANETs as seen in Fig. 19 and Fig. 20. 
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Figure 19.  Comparison of Response Times 
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Figure 20.  Comparison of Synchronization 

Delay 

 

Consequently, our results conform to the analysis that response time values against low and 

medium loads increase linearly with a small gradient. Synchronization delay values against 

medium and high load also increase linearly. Response time against high load makes a sharp 

increase due to high network traffic. Synchronization delay values are stable under different 

mobility and density. Also, response time and synchronization delay values decrease linearly 

against the number of clusters in MANET. Clustering the network greatly reduces the response 

time and the synchronization delay values in the flat mobile ad hoc networks. 

6. DISCUSSIONS 

In the proposed architecture shown in Fig. 3, the link failures caused by the mobility of the 

nodes are handled by the periodic execution of MCA and BFA. Therefore Mobile_RA does not 

need to deal with the topological changes. Since MCA and BFA isolates the upper layers from 

the link failures, other protocols such that Chang and Robert's leader election [43] can be used 

to select a super leader to provide a central authority [44]. This infrastructure is robust in the 

case of updating the failed links but failures of the nodes are not covered. For example a 

coordinator may fail during executing Mobile_RA which results to stop the execution of the 

distributed algorithm. By the addition of an fault tolerance module orthogonal to these 

architecture, the node failures can be recovered as shown in Fig. 21. This module can take the 

cluster information from MCA and can choose the backup cluster heads. The other nodes 

belonging to the same cluster can be informed about the backup cluster head. Each backup polls 

its cluster head periodically and receives heart beat signals. If a cluster head does not send a 

heart beat signal for a predefined number of times, than the backup becomes the new cluster 

head. If a backup does not poll a cluster head for a predefined number of times than the cluster 

head chooses a new backup. By this way, a recovery mechanism for the crash of a clusterhead 

and its backup is maintained but if both of them fails at the same time, additional procedures are 

needed. Fault tolerance module can extract the ring information from BFA where each cluster 

head may broadcast its backup id to the ring. If a cluster head in the ring crashes, the backup 

will take the place of the crashed cluster head in the ring. 

 



 
Figure 21.  Fault Tolerance Module 

 

To provide fault tolerance of the distributed mutual exclusion, the coordinators should share its 

wait_queue with their backup nodes. If a coordinator is crashed, the backup should have all 

information of the coordinator. The coordinators executing Mobile_RA Algorithm sends their 

wait_queue to their fault tolerant module as shown in Fig. 21 when an update in the wait_queue 

occurs. The wait_queue is appended to the heartbeat message which is sent periodically to the 

backup cluster head upon an update. By this way, if a crash occurs in a cluster head, its backup 

will be the new cluster head, the new cluster head will choose a new backup, the ring will be 

repaired and since backup is the replica of the cluster head, the distributed mutual exclusion 

operations may continue to progress. Also the new cluster head will advertise itself to the 

cluster members. The crashes in the ordinary nodes are easy to handle. If a node crashes during 

CS execution, the coordinator will make a state transition form WAITND state to IDLE state 

and continue to process new requests. 

 

 
Figure 21.  Finite State Machine of the Extended Mobile_RA Algorithm 

 
Mobile_RA can be extended to solve h-out of-k problem as shown in Fig. 22. A new variable 

called total number of requests (req) is added. When a coordinator receives a Coord_Req 

message, if req does not exceed k, Coord_Req message is forwarded else it is enqueued. When a 

Node_Rel message is received by the coordinator, req is decremented. 

 



7. CONCLUSIONS 

We proposed a hierarchical distributed mutual exclusion algorithm for mobile ad hoc networks. 

The communication infrastructure to run the algorithm consists of a number of clusters of 

mobile nodes where each cluster is represented by a coordinator and the coordinators are 

connected to form a ring. The cluster formation and ring formation can be handled efficiently by 

the Merging Clustering Algorithm and the Backbone Formation Algorithm. Due to this 

hierarchical structure, significant gains in total message complexities are obtained with respect 

to the original Ricart-Agrawala Algorithm as shown in Fig. 6. Equating the specified parameters 

in fact gives an order of improvement over the classical Ricart Agrawala Algorithm. We also 

showed experimentally that the response times and synchronization delays conform to 

theoretical analysis. We discussed the fault tolerance and algorithmic extensions for the 

proposed architecture. Our work is ongoing and we are planning to implement other distributed 

system middleware functions on top of this layered architecture. 
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