Graph Matching based Distributed Clustering and Backbone Formation Algorithms for Sensor Networks

Orhan Dagdeviren¹, Kayhan Erciyes²

¹ Izmir Institute of Technology, Computer Eng. Dept., Urla, Izmir 35430, Turkey
Tel: +90 232 750 78 67, Fax: +90 232 750 78 62
² Izmir University, Computer Eng. Dept., Gursel Aksel Bulv., No. 14, Uckuyular, Izmir 35350, Turkey
Tel: +90 232 246 49 49, Fax: +90 232 224 09 09
Email: orhandagdeviren@iyte.edu.tr

Clustering is a widely used technique to manage the essential operations such as routing and data aggregation in wireless sensor networks (WSN)s. We propose two new graph theoretic distributed clustering algorithms for WSNs that use weighted matching method for selecting strong links. To the best of our knowledge, our algorithms are the first attempts that use graph matching for clustering. The first algorithm is divided into rounds, extended weighted matching operation is executed by nodes in each round, thus the clusters are constructed synchronously. The second algorithm is the enhanced version of the first algorithm, which provides not only clustering but also backbone formation in an energy efficient and asynchronous manner. We show the operation of the algorithms, analyze them, provide the simulation results in ns2 environment. We compare our proposed algorithms with the other graph theoretic clustering algorithms and show that our algorithms select strong communication links and create controllable number of balanced clusters while providing low energy consumptions. We also discuss possible applications that may use the structure provided by these algorithms and the extensions to the algorithms.

Received 00 Month 2009; revised 00 Month 2009

1. INTRODUCTION

WSNs do not have any fixed infrastructure and consist of sensor nodes that perform sensing and communicating tasks. Habitat monitoring, military surveillance and target tracking are example application types in WSNs. Clustering the network to construct a robust communication structure is a significant research area in WSNs. Clustering and backbones using clusters are provided in WSNs in order to decrease the number of messages and total time spent for routing the sensed data to the sink. By clustering the network, an efficient topology is constructed which makes routing and data aggregation tasks easier. In clustering schemes, each node is classified as either cluster head or cluster member. Cluster members are ordinary nodes whereas cluster heads perform various task on behalf of the members of the clusters.

A WSN can be modeled as a graph \(G(V,E) \) where \(V \) is the set of vertices (nodes of WSN) and \(E \) is the set of edges (communication links between the nodes). Graph theoretic algorithms use results from graph theory and develop algorithms to solve various difficult problems. Graph theoretic clustering algorithms, similarly, assume that the underlying network is modeled as a graph and provide clusters of the network using this property.

Various algorithms are proposed in literature for clustering in WSNs. LEACH [1] assumes cluster heads consume uniform energy and it provides random rotation of cluster heads. Cluster heads in HEED [2] are elected using a probabilistic method which is based on the residual energy of a node and the number of its neighbors. EECS [3], EEUC [4], and EEMC [5] also employ clustering in WSNs for communication purposes and these systems do not use graph theoretic approaches for clustering.

[6] is one of the only algorithms that performs graph theoretic clustering in sensor networks. Examples of graph theoretic clustering algorithms for various networks are given in [7, 8, 9, 10, 11, 12, 13, 14]. After the network is modeled as a graph then a completely new algorithm may be proposed or distributed versions...
of centralized algorithms may be designed. Existing graph theoretic clustering algorithms generally aim at constructing a backbone of cluster heads directed to the sink node where selection of strong communication channels and cluster quality is not considered when forming the backbone. However, selection of links with higher communication capabilities reduces the total energy consumption at the message transmissions in multi-hop sensor network topologies [15].

A matching in a graph \(G \) is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching \(M \) are saturated by \(M \). A perfect or maximum matching in a graph is a matching that saturates every vertex [16]. If the graph is weighted and we are looking for the maximum selected edge weight than the problem is called weighted matching. Matching has numerous applications such as chemical structure analysis, pattern recognition and machine learning [17].

In this study, we propose two weighted matching based algorithms for clustering and backbone formation in sensor networks. The algorithms try to select heavy edges to provide communication over energy efficient communication links for reliable and efficient communication. In the first algorithm, clusters are enlarged in a synchronous manner where algorithm is executed in rounds and a certain task is performed at each round. The second algorithm is the enhanced version of the first algorithm where backbone formation is also provided along with the application of energy efficient techniques to reduce total number of messages. To the best of our knowledge, these two algorithms are the first algorithms in literature that perform graph theoretic clustering using matching in any type of network. Furthermore, they consider quality of the communication links to provide reliable communication among and within the clusters which is overlooked by the existing clustering algorithms. Lastly, they are fully distributed in nature making them suitable for large scale applications such as sensor networks.

The rest of this paper is organized as follows. In Section 2, the network model and clustering problem is described and the related work is surveyed in Section 3. The proposed algorithms are described in Section 4 and Section 5. The detailed analysis of the algorithms are given in Section 6 and the results of performance tests are presented in Section 7. Possible sensor network applications that may employ the proposed algorithms and extensions to the algorithms are given in Section 8. Conclusions and future works are given in Section 9. Pseudo-codes of the algorithms are given for reference in Section 10.

2. BACKGROUND

2.1. Network Model

The following assumptions are made about the network as in [2, 6, 7, 9, 12]:

- Each node has distinct node_id.
- The nodes are stationary.
- Links between nodes are symmetric. Thus if there is a link from \(u \) to \(v \), there exists a reverse link from \(v \) to \(u \).
- Nodes do not know their positions. They are not equipped with a position tracker like a GPS receiver.
- All nodes are equal in terms of processing capabilities, radio, battery and memory.
- Each node knows its neighbors and the quality of the links connected to the neighbors. The quality of a link is the same for both nodes attached to it.

Based on these assumptions, the network may be modeled as a weighted undirected graph \(G_W(V, E_W) \) where \(V \) is the set of vertices, \(E_W \) is the set of the edges with weights. The weights of the edges can be represented by the link quality indicators supported by various underlying protocols as in [18, 19]. An example weighted undirected graph model is depicted in Fig. 1 where the transmission ranges of the nodes are shown with dotted circles, and the weight of each edge corresponds to its link quality.

The other popular model used in graph theoretical approaches is the unit disk graph model where each node is identified with a disk of unit radius \(r=1 \), and there is an edge between two nodes \(u \) and \(v \) if and only if the distance between \(u \) and \(v \) is at most 1 [20, 21]. Unit disk graphs captures the behavior of broadcast radio transmission, thus it is good for modeling ad hoc and sensor networks [20], but this model lacks representation of link qualities. Weighted undirected graph model not only models the radio transmission but also represents the link qualities by the edge weights.
2.2. The Clustering Problem

Clustering is a basic method to group similar objects from a whole set of objects. The number of groups must be controllable, the size of the groups should be balanced in any clustering scheme and also the operation of grouping should not be costly. In networks, clustering is performed to simply partition the whole network into subnetworks to ease communication tasks. Backbone formation is the construction of the virtual path of cluster heads to provide the relaying of sensed data to the sink. The aims of the proposed approaches for clustering varies. For example, the algorithm in [6] targets to guarantee that each ordinary node is connected to a single cluster head to construct disjoint clusters, whereas the algorithm in [22] argues that overlapping clusters is also a good idea for fault tolerance, node localization, and topology control. The algorithm in [12] produces clusters with star topology in which the cluster head is at the center of the star, on the other hand multi-hop clusters are produced in [6]. Clustering and backbone formation objectives for sensor networks can be listed as follows:

1. Nodes may initiate the clustering and backbone formation operation at any time locally. Hence, these operations should be distributed and asynchronous.
2. In clustering and backbone formation operations, strong communication links should be selected for ease of communication.
3. The cluster heads are the servers of their cluster members. They collect sensed data from their members to process, aggregate, filter and route this data to the sink. A cluster head may consume its energy very fast if it is overcrowded. On the other hand, construction of clusters with very small sizes may not be cost effective. Conclusively, number and sizes of clusters should be controllable by the algorithms to adjust them to the required values.
4. The clustering algorithms should be independent from the underlying protocols as much as possible to interface to various MAC and physical layer standards such as in [18, 19, 23, 24, 25, 26].
5. The algorithms should be efficient in terms of time and message complexity to provide low energy consumptions of sensor networks.
6. Overlapping clusters may provide fault tolerance but sending sensed data by a member node to more than one cluster head may degrade the energy of nodes. The clusters may not be overlapping if fault tolerance is provided by other methods. The fault tolerance methods proposed are discussed in Section 8.

3. RELATED WORK

3.1. Graph Theoretic Clustering Algorithms

Graph theoretic clustering algorithms for ad hoc networks can mainly be classified as dominating set based and spanning tree based. A dominating set is a subset S of a graph G such that every vertex in G is either in S or adjacent to a vertex in S [16]. If the nodes in the dominating set is connected then the dominating set is called connected dominating set (CDS). A two-phased CDS algorithm is proposed in [9], in which initially each vertex marks itself as dominator due to some predefined rules. Dai [10], Nanuvala [11], and Cokuslu [12] added extra heuristics to Wu’s algorithm to reduce the size of the connected dominating set. Yan [13] proposed an energy efficient dominating set based construction by using the nodes’ residual power.

A graph $G_S = (V_S, E_S)$ is a spanning subgraph of $G = (V, E)$ if $V_S = V$. A spanning tree of a graph is an undirected connected acyclic spanning subgraph [27]. Banerjee and Khuller [14] proposed a protocol based on a spanning tree for hierarchical routing in wireless networks. In their scheme, a cluster is a subset of vertices whose induced graph is connected. Erciyes [6] proposed a distributed spanning tree based clustering algorithm (DSTA) for sensor networks. The depth parameter is provided by the algorithm to adjust the diameter of the clusters. The sink periodically sends $PARENT(nhops)$ message to its neighbors to reinitiate the operation. Each node sends the $PARENT((nhops + 1) \ mod \ depth)$ message to its neighbors upon first reception of the $PARENT(nhops)$ message. The recipient of the message with $nhops = 0$ are the SUBROOTS, $nhops < depth$ are the INTERMEDIATE nodes, $nhops = depth$ are LEAF nodes.

3.2. Graph Matching Algorithms

Graph matching algorithms in the literature can be classified into 5 types:

1. Maximum matching algorithms for undirected graphs [28],
2. Maximum weighted matching algorithms for undirected graphs [29],
3. Matching and weighted matching algorithms for bipartite graphs [30],
4. Matching and weighted matching algorithms for trees [31],
5. Matching algorithms for directed graphs [32].

Maximum weighted matching algorithms (type 2) choose the edges to maximize the total weight in this model. Thus type 2 algorithms are the basis of our clustering operation. Maximum weighted matching is in polynomial complexity set (P) and approximation algorithms are proposed for this problem to provide more efficient solutions. Maximum
weighted graph matching algorithms can be centralized or distributed. The centralized algorithms are: Gabow’s maximum weighted matching algorithm [33], Avis’s algorithm with 1/2 approximation ratio [34], Preis’s algorithm with 1/2 approximation ratio [35], Drake’s algorithm with 2/3-ɛ approximation ratio [36], Petité’s algorithm with 2/3-ɛ approximation ratio [37]. The distributed algorithms are: Uehara’s algorithm with 1/Δ (Δ is the maximum nodal degree) approximation ratio [38], Wattenhofer’s algorithm with 1/5 approximation ratio [39], Hoepman’s algorithm with 1/2 approximation ratio [29], Lotker’s algorithm with 1/2 approximation ratio [40] and Nieberg’s algorithm with 1-ɛ approximation ratio [41].

Hoepman’s algorithm is the distributed version of Preis’s centralized algorithm. In Hoepman’s algorithm, it is assumed that all of the nodes know their neighbors and the weights of the edges incident to them. Each node sends a request message to its candidate. The candidate is the neighbor node that is connected on the heaviest edge. If two of the nodes both receive request from each other, the edge connecting them is selected and they will be matched. If a node sends a request message to a matched node, matched node will reply with a drop message. Each node uses two sets: the set of neighbors (N) and the set of requested neighbors (R). A node deletes the source of drop message in its (N).

4. MATCHING BASED SYNCHRONOUS CLUSTERING ALGORITHM

4.1. General Idea

We propose the matching based synchronous clustering algorithm (MASC) which constructs clusters by using maximum weighted matching. One of the goals of the algorithm is the selection of the strong communication links in the undirected weighted graph model to maximize the intra-cluster communication and to focus on clustering quality. MASC works in rounds and each round starts after the previous one is completed by all cooperating nodes. At each round, each cluster head tries to merge with the adjacent cluster over the maximum weight edge connecting them. Merging of clusters at each round reduces the number of dummy clusters that frequently occur in DS based clustering algorithms. Our algorithm is an extended version of Hoepman’s distributed matching algorithm [29] adapted for sensor networks. Hoepman’s algorithm requires only local message exchanges providing scalability on sensor networks. Although the approximation ratio of the algorithm is 1/2, its approximation ratios are very high for randomly and uniformly generated sensor networks as shown in Section 7.1. Even though the approximation ratio of Nieberg’s algorithm is 1-ɛ, it requires construction of a maximal independent set which will result in high time and message complexities for our implementation, thus it is not suitable as a basis for our clustering algorithm.

4.2. Description

We assume that the nodes are time synchronized in addition to the assumptions made in Section 2.1 to be able to start the rounds at the same time. The local algorithm consists of sending messages over adjoining links, waiting for incoming messages and processing messages. The finite state machine (FSM) of the algorithm is shown in Fig. 2, its pseudo-codes are given in Alg. 1 and Alg. 2.

In a clustering session, a node firstly sends a REQUEST message along the strongest link to a destination node. The destination node which is connected to the originator node with the strongest link is called the candidate of the originator node. If the originator node is already the candidate of the destination node, destination node will reply with REQUEST_ACK and clustering operation will be completed. Otherwise if destination node is matched with another node, it will reply with a DROP message and will search for the new candidates. This mechanism is similar to Hoepman’s algorithm: our extension and contribution is to classify nodes as cluster heads and cluster members and giving them different responsibilities for constructing higher level clusters. The states of the algorithm are as follows:

- **LEADER**: LEADER is the cluster head of its cluster. All the nodes are in LEADER state at the beginning of the algorithm execution. If a LEADER receives a REQUEST from its candidate, it replies with a REQUEST_ACK message to maintain a new cluster. In this clustering scheme, one of the nodes will make a state transition to MATCHED_LEADER state and the other node

![FIGURE 2. Finite State Machine of MASC.](image-url)
will be the MEMBER of the new cluster. The selection is made by executing the following procedure:

1. Let \(\text{RSS}_i \) be the second largest \(\text{RSS} \) value of the edge outgoing from the cluster of node \(i \) and \(\text{RSS}_j \) for node \(j \). The id of the node \(i \) is \(\text{id}_i \), node \(j \) is \(\text{id}_j \).
2. The node with the largest \(\text{RSS} \) is the new leader and makes a state transition to MATCHED_LEADER state, the other node is the member.
3. If \(\text{RSS} \) values are equal, the node with the bigger id is the new leader.

We use this leader selection heuristic, since node connected on the edge with second largest RSS will be the next candidate. LEADER node knows all of the neighbors of its cluster members and updates its list for each clustering session by getting the neighbor list from the previous LEADER nodes which participated in these operations.

- **MATCHED_LEADER**: A node in this state rejects the clustering requests by sending a DROP message after which it makes a state transition to LEADER state.
- **MEMBER**: Cluster member nodes are in MEMBER state and they forward the requests to their cluster head.
- **CANDIDATE_WT_ACK**: At the start of a round, each LEADER node sends a REQUEST message to its candidate and makes a state transition to CANDIDATE_WT_ACK state. If a DROP message is received, new candidate is selected. If no other candidate exists, node will make a transition to MATCHED_LEADER state.

We also provide a modified version of MASC called MOD-MASC which uses node id’s in matching instead of edge weights to provide a reference for tests to evaluate the difference in choosing the maximum weight edge or a random edge. MOD-MASC chooses the neighbor with the smallest id for clustering.

4.3. An Example Operation

Assume a WSN with 20 nodes in which also the id of the nodes and the weights of the edges connecting them are given, as shown in Fig. 3. The tracing of an example clustering operation for 3 rounds using MASC is as follows. In the first round, a NEW_ROUND_INTERRUPT occurs in node 13. Node 13 is in initially LEADER state then it makes a state transition to CANDIDATE_WT_ACK state and sends a REQUEST message to its candidate, node 0. The state of the node 0 before receiving the REQUEST messages is LEADER and its candidate is node 13, so it replies with a REQUEST_ACK message. The second largest RSS value of the node 13 is node 5 and node 0 is node 7 so node 0 makes a state transition to MATCHED_LEADER state and node 13 makes a state transition to MEMBER state. At the same time node 11 sends a REQUEST message to node 0. The request of the node 11 is rejected with a DROP message from node 0. Node 14 and node 3, node 4 and node 5, node 12 and node 9, node 15 and node 2, node 10 and node 17, node 6 and node 1, node 11 and node 7 makes clustering operations in the first round similar to the above operation explained. On the other hand, all requests of node 16, node 8, node 19, and node 20 are dropped by their candidates and they cannot find any cluster to join in the first round.

![FIGURE 3. An Example Operation.](image)

In the beginning of the second round, node 12 sends a REQUEST message to node 3. Node 3 that is in MEMBER state receives the REQUEST message and forwards to its LEADER, node 14. Node 14 replies to the REQUEST message with REQUEST_ACK, since the edge connecting the two clusters is the strongest link between them. After REQUEST_ACK is received by node 12, the nodes of the new cluster are: \{14, 3, 12, 9\}. At the end of the second round, the other clusters are formed as: \{13, 0, 11, 7\}, \{6, 1, 8\}, \{15, 10, 2, 17\}. The clustering operations are similar in the third round and at the end of the algorithm, the clusters produced by the algorithm are as follows: \{14, 3, 12, 9\}, \{6, 1, 8, 19\}, \{13, 0, 16, 11, 7\}, \{15, 10, 2, 17, 20\}. The cluster head nodes of each cluster are filled with gray and all of the matched edges are drawn bold as shown in Fig. 3.

5. MATCHING BASED CLUSTERING AND BACKBONE FORMATION ALGORITHM

5.1. General Idea

MASC uses the weighted graph matching as the method to select the strong communication links for clustering, different than the other graph theoretic algorithms.
Also the number of clusters can be controlled by the number of rounds different than the DS based clustering algorithms [9, 10, 11, 12, 13]. The advantages of MASC over other graph theoretical approaches is described in 6 and 7. On the other hand, MASC lacks some important design issues:

- The nodes are assumed to be time synchronized. To maintain this situation, the nodes should implement either a time synchronization protocol [42] or a synchronizer middleware [43].
- The energy consumption of the algorithm execution is greater than the proposed graph theoretical approaches as shown in Section 6 and 7.
- The backbone formation is left to an upper layer protocol.

We propose a matching based asynchronous clustering and backbone formation algorithm (MCUBA) to decrease the disadvantages of MASC as much as possible while preserving its advantages. The MCUBA is based on weighted matching same as in MASC, but in addition to MASC, MCUBA provides fully asynchronous clustering and backbone formation. Also, MCUBA includes methods for reducing energy consumption.

5.2. Asynchronous Cluster and Backbone Formation

MCUBA algorithm constructs clusters and a backbone concurrently and asynchronously. The FSMs for the MCUBA are given in Fig. 4 and Fig. 5 and the detailed pseudo-codes are given in Alg. 3, Alg. 4, Alg. 5, and Alg. 6. FSM in Fig. 4 is used by all of the nodes except the sink node which employs the FSM shown in Fig. 5. LEADER, CANDIDATE_WT_ACK and MEMBER states of MCUBA are similar with those states of MASC's with small modifications. Initially all the nodes except sink node executing MCUBA are in LEADER state. After a LDR_TOUT occurs at a node, it sends a REQUEST message to its candidate and makes a state transition to the CANDIDATE_WT_ACK state. If the destination node’s candidate is the originator node, then the destination node sends a REQUEST_ACK message to the originator node. After the originator node receives REQUEST_ACK message, it can make a state transition to either LEADER, LEADER_END, MEMBER and MEMBER_END state. The basic message flow and leader election procedure of MCUBA is similar to MASC’s.

To control the cluster levels, a parameter named upper_level is introduced. Before the execution of the algorithm, each node’s upper_level parameter is set to the same value. If a leader node’s cluster level reaches the upper_level, it makes a state transition to the LEADER_END state. A node in LEADER_END state drops all of the clustering requests. The same procedure is applied to the member nodes. A node in MEMBER_END state drops all clustering requests.
Matching based Clustering Algorithms for Sensor Networks

FIGURE 5. MCUBA's Finite State Machine for Sink.

without forwarding them to its leader. This approach provides balanced clusters and eliminates unnecessary forwarding of the REQUEST and DROP messages.

When a node receives a REQUEST message from one of its neighbors other than its candidate, it stores this request. After a leader node completes its clustering session, it searches for a new candidate unless it reaches the upper level. The leader node's new candidate might be the source of the previous REQUEST message. In this case, leader node replies with a REQUEST_ACK message. This approach is different from MASC's. In MASC, a node in MATCHED_LEADER state drops all requests.

The backbone formation of the MCUBA is similar to the clustering operation. The main idea behind the backbone formation is combining all of the clusters as a super cluster. The backbone formation is managed by the sink node. The FSM of the sink node is shown in Fig. 5. Initially, sink node participates in the clustering operation similar to the other ordinary nodes. Different than other nodes, sink node is always the leader in clustering sessions. After the cluster of the sink node reaches the upper level, it starts backbone formation. In each backbone formation session, sink node selects the locally heaviest edge outgoing from its cluster. When the cluster level of sink node reaches the upper level, sink node makes a state transition from CANDIDATE_WT_ACK state to SINK_WT_FOR_BACKBONE state by sending a BACKBONE_REQUEST message along the outgoing edge with the heaviest weight. This message is forwarded to the leader of the destination cluster. If this cluster's level already has reached the upper level, the leader of this cluster replies with a BACKBONE_REQUEST_ACK. Otherwise, BACKBONE_REQUEST is stored in this cluster head until the cluster level reaches upper level. If the cluster head changes, the old cluster head forwards the stored BACKBONE_REQUEST message to the new leader. When sink node receives a BACKBONE_REQUEST_ACK, it merges the source cluster and its own cluster then continues the same operation described below until all clusters are merged.

5.3. Reducing Energy Consumption

Overhearing occurs when a node receives a packet that is not destined to itself [23]. Although overhearing causes energy consumption, it may be useful to gather neighborhood information, reliable routing and distributed query processing. To maintain reliable message transmission, ACK messages are sent for each successful message transfer. Overhearing technique is applied to reduce the number of ACK messages to decrease the energy consumption. In Fig. 6, a sensor network with 3 nodes is shown. In the left side of Fig. 6, node A sends a message to node C without using overhearing. In the first step, node A sends its message
to node B. Node B sends the ACK message to node A after it successfully receives the message of node A. In the third step, node B routes the message of node A to node C and node C sends the ACK message to node A as the last step. If we use overhearing technique, the total number of steps reduces to three, since the routed message by node B is also used as an ACK message.

5.4. An Example Operation

An example operation of MCUBA with $upper_level=4$ on a network with 20 nodes is shown in Fig. 7. Each node’s id and the weights of the edges connecting the nodes are given. Node 0 is the sink node executing the algorithm in Fig. 5, other nodes are the ordinary nodes executing the algorithm in Fig. 4. Initially all ordinary nodes are in $LEADER$ state, sink node is in $SINK$ state. Node 0’s candidate is node 16, since the heaviest edge outgoing from node 0 is the edge which connects node 0 to node 16. Node 0 sends a $REQUEST$ message to node 16. Node 16’s candidate is node 0, so node 16 replies with a $REQUEST_ACK$ message to node 0 and they construct a new cluster with level 2. Since node 0 is the sink node, it is chosen as the leader of this cluster. Concurrently, node 5 and node 19 perform a clustering operation similar to this operation. The second largest RSS value of node 5 is 8, node 19’s is 5 as shown in Fig. 7, thus node 5 is chosen as the leader. Node 9 and node 2 make a transition to $LEADER_END$ state since its cluster level reaches the $upper_level$. The nodes in $LEADER_END$ state reject all clustering requests. Node 0 merges its cluster with node 5’s cluster and cluster A becomes: {0, cluster is formed as: {17, 2, 9}, and the new leader of this cluster is node 17. The other clusters with level 3 are constructed as: {3, 8, 12} and {11, 4, 15}. Concurrently, node 1 sends a $REQUEST$ message to node 6. The candidate of node 6 is node 1, so node 6 sends a $REQUEST_ACK$ message to node 1 and cluster D is formed: {1, 14, 6, 18} as shown in Fig. 7. The leader of this cluster, node 1, makes a transition to $LEADER_END$ state since its cluster level reaches the $upper_level$. The nodes in $LEADER_END$ state reject all clustering requests. Node 0 merges its cluster with node 5’s cluster and cluster A becomes: {0,
5, 19, 16} as shown in Fig. 7. The cluster level of node 0 exceeds the upper level, node 0 makes a transition to SINK_WT_FOR_BACKBONE state, and starts backbone formation operation. Node 0 sends a BACKBONE_REQUEST message to node 12, since node 12 is connected to node 0’s cluster on the heaviest edge as seen in Fig. 7. After node 12 receives BACKBONE_REQUEST message, it forwards the message to its leader, node 3, since node 12 is a cluster member. Node 3 records the received BACKBONE_REQUEST message and does not respond since its clustering operation is not finished.

Node 17 receives DROP messages from all its candidates since the levels of cluster A and cluster D reaches upper level and their leaders reject all clustering requests. Because of this situation, node 17 makes a transition to LEADER_END state. The cluster B is formed as: \{17, 12, 9\}. At the same time, the clusters of node 3 and node 7, and the clusters of node 11 and node 10 are merged. The cluster C is formed as: \{3, 12, 8, 13, 7\}, and the cluster D is produced as: \{3, 12, 8, 13, 7\} shown in Fig. 7. Selected edges for communication during the clustering sessions are shown as bold in Fig. 7.

The leader of cluster C, node 3, sends a BACKBONE_REQUEST_ACK message in reply to recorded BACKBONE_REQUEST after level of cluster C reaches upper level. After node 0 receives the BACKBONE_REQUEST_ACK message of node 3, cluster C is merged with the backbone. Node 0 sends a BACKBONE_REQUEST message to node 11 along the heaviest edge which connects backbone to other clusters. Node 11 is in LEADER_END state and replies with a BACKBONE_REQUEST_ACK message after it receives BACKBONE_REQUEST message from node 0. When node 0 receives the BACKBONE_REQUEST_ACK from node 11, cluster E is merged with the backbone. Similarly cluster B and cluster D are merged into the backbone. The iterations of the backbone formation is depicted in Fig. 8. The bold lines in Fig. 8 are the selected edges between clusters for the backbone formation. All the selected edges of backbone are shown with the dashed lines in Fig. 7.

6. ANALYSIS

6.1. Proof of Correctness

Observation 1. In MASC and MCUBA, in a clustering session, source node sends a REQUEST message, destination node either replies with a DROP or REQUEST_ACK message.

Observation 2. In MASC, the nodes in MEMBER state are the cluster members, the nodes in MATCHED_LEADER state are the cluster heads. In MCUBA, the nodes in MEMBER and MEMBER_END state are the cluster members, the nodes in LEADER_END state are the cluster heads and the node in SINK_END state is the sink node.

Observation 3. In a backbone formation session of MCUBA, source node sends a BACKBONE_REQUEST message, destination node replies with a BACKBONE_REQUEST_ACK message.

Lemma 6.1. In MASC and MCUBA, if a node sends a REQUEST message to its candidate, it receives a DROP or REQUEST_ACK message from its candidate.

Proof. We first prove the MASC by cases. The cases explained below are also shown in Fig. 2.

- Case 1: The candidate is in either LEADER or CANDIDATE_WT_ACK state. It sends a REQUEST_ACK message.
- Case 2: The candidate is in MATCHED_LEADER state. It sends a DROP message.
- Case 3: The candidate is in MEMBER state. It forwards the message to its leader. Due to Observation 2, the leader can not be in MEMBER state. Thus we jump to the Case 1 or Case 2.

Lemma 6.2. In MASC no state transitions are possible for a node in MEMBER state and no state transitions before the end of the round is possible for a node in MATCHED_LEADER state. In MCUBA, no state transitions are possible for a node in MEMBER, MEMBER_END, LEADER_END, or SINK_END state.

Proof. In MASC, a node makes a state transition from MATCHED_LEADER state to LEADER state when END_OF_ROUND occurs. No other state transitions are possible for MASC and MCUBA as seen in FSMs in Fig. 2, Fig. 4, Fig. 5, with the pseudocodes in Alg. 1, Alg. 2, Alg. 3, Alg. 4, Alg. 5, and Alg. 6.

Lemma 6.3. In MCUBA, if a source node sends a BACKBONE_REQUEST message, it will be replied with a BACKBONE_REQUEST_ACK message.

Proof. The destination is either a cluster head, member or a node that continues clustering operation. We prove the lemma by cases.

- Case 1: The node is in LEADER_END state. In this state, node replies with a BACKBONE_REQUEST_ACK message.
- Case 2: The node is in MEMBER or MEMBER_END state. The node forwards the BACKBONE_REQUEST message to its leader.
After the execution of MASC, each node is a cluster head or a member node belonging to a cluster.

Proof. We prove by contradiction. If the theorem is valid then according to Observation 2 the node is in MEMBER or MATCHED_LEADER state. We assume the contrary that a node is in CANDIDATE_WT_ACK or LEADER state after the execution of the algorithm. We investigate each cases:

- **Case 1**: The node is in LEADER state. It must not receive any REQUEST message from its candidate or send any REQUEST messages to its candidate. Because if one of these events occurs, node makes a state transition. If node does not receive any REQUEST message, a LEADER_TOUT occurs, it makes a state transition to CANDIDATE_WT_ACK state and sends a REQUEST message to its candidate. According to Lemma 6.1, if it receives a REQUEST message from its candidate it sends a REQUEST_ACK message and makes a state transition to MEMBER or MATCHED_LEADER state. If the node does not have any candidate, a LEADER_TOUT occurs and it makes a state transition to MATCHED_LEADER state.

- **Case 2**: The node is in CANDIDATE_WT_ACK state. The node must not receive any message from its candidate. Because if it receives REQUEST or REQUEST_ACK from its candidate, it makes a state transition to MATCHED_LEADER or MEMBER state. If the node receives DROP message, it makes a state transition to MATCHED_LEADER state or sends a REQUEST message to its candidate. According to Lemma 6.1, if a node sends REQUEST message to its candidate, it receives REQUEST_ACK or DROP message.

All nodes make a state transition to MEMBER or MATCHED_LEADER state. Lemma 6.2 shows that state transitions from MEMBER or MATCHED_LEADER states in a round are not possible. We contradict with our assumption.

THEOREM 6.2. After the execution of MCUBA, a node is the sink node, a cluster head, or a member node belonging to a cluster.

Proof. The proof is the same as in Theorem 6.1. We assume the contrary. Thus the node is either in LEADER, CANDIDATE_WT_ACK, SINK, or SINK_WT_FOR_BACKBONE state. Each case is investigated below:

- **Case 1**: The node is in LEADER state. The node must not receive any messages from its candidate or send any messages to its candidate. If the node receives any message from its candidate, it makes a state transition to the MEMBER, MEMBER_END or LEADER_END state. If the node sends a REQUEST message to its candidate, it makes a state transition to LEADER state. If the node has no candidate, it makes a state transition to LEADER_END state.

- **Case 2**: The node is in SINK state. The possibilities are the same as in case 1. The node makes a state transition to CANDIDATE_WT_ACK, SINK_WT_FOR_BACKBONE or SINK_END state.

- **Case 3**: The node is in CANDIDATE_WT_ACK state. The node must not receive any messages. Due to Lemma 6.1, node receives a DROP or REQUEST_ACK message.

- **Case 4**: The node is in SINK_WT_FOR_BACKBONE state. The node must not receive a BACKBONE_REQUEST_ACK message for each BACKBONE_REQUEST message. But due to Lemma 6.3, each BACKBONE_REQUEST message is replied.

In all cases, each node makes state transition to MEMBER, MEMBER_END, LEADER_END or SINK_END states. Due to Lemma 6.2, state transitions from these states are not possible. We contradict with our assumption.

COROLLARY 6.1. MCUBA and MASC are free from deadlock and starvation.

Proof. We assume the contrary. We assume that MCUBA and MASC are not free from deadlock and starvation. Due to Observation 1, in a clustering
session of MCUBA and MASC, source node sends a REQUEST message, destination node replies with a DROP or REQUEST_ACK message. There must be a problem in this message flow. But it is proven in Lemma 6.1, Lemma 6.2, and Theorem 6.1, that all message flows related to clustering are successful. Due to Observation 3, in a backbone formation session of MCUBA, each received BACKBONE_REQUEST is replied by a BACKBONE_REQUEST_ACK message. If there is a deadlock or starvation then there must be a problem in this flow. But it is proven in Lemma 6.3 and Theorem 6.2 that all message flows related to backbone formation are successful. We contradict with our assumption.

6.2. Clustering Quality

THEOREM 6.3. The upper bound of the cluster level for MASC with r rounds is 2^r.

Proof. The proof is by induction.

- **Base Step**: When $r=1$, the algorithm runs same with Hoepman’s distributed matching. Thus upper bound is 2.
- **Induction step**: We assume that after r^{th} round ends, the upper bound is 2^r. At each round, only one clustering operation is permitted to a cluster head. Because of this, at $(r+1)^{th}$ round, the upper bound is $2^r + 2^r = 2^{r+1}$.

THEOREM 6.4. The upper bound of the cluster level for MCUBA with $s=\text{upper_level}$ is $2(s-1)$.

Proof. The leader node continues clustering operation until it reaches s. So that the upper bound of the cluster level occurs when two clusters with $s-1$ levels combine.

6.3. Selected Edge Weights

In this section we analyze the lower bounds of the total selected edges for clustering and backbone formation operations in MASC and MCUBA. The list of variables used in this section is given below:

- **W**: The total selected edge weight for the clustering operation by using perfect weighted matching.
- **B**: The total selected edge weight for the backbone formation operation by using perfect weighted matching.
- **A**: The total selected edge weight by MASC with r rounds.
- **S**: The total selected edge weight for the clustering operation by MCUBA with upper_level=2^r and $s=\text{upper_level}$.
- **C**: The total selected edge weight for the backbone formation operation by MCUBA with upper_level=2^r and $s=\text{upper_level}$.

THEOREM 6.5. The lower bound of A is:

$$A \geq W \sum_{i=1}^{n} (1/2)^i.$$

Proof. We prove by induction.

- **Base Step**: When $r=1$, the algorithm turns to Hoepman’s distributed matching. Thus $A \geq W/2$ is true.
- **Induction step**: We assume that for $r=n$, $A \geq W \sum_{i=1}^{n} (1/2)^i$ holds. For $r=n+1$, selected edge weights will be 1/2 of the remaining at the worst case.

$$A \geq W \sum_{i=1}^{n} (1/2)^i + W \sum_{i=n+1}^{n} (1/2)^i = W \sum_{i=1}^{n} (1/2)^i + W \sum_{i=n+1}^{n} (1/2)^i.$$

THEOREM 6.6. The $S+C$ is between:

$$W \sum_{i=1}^{s} (1/2)^i \leq S + C \leq W + B.$$

Proof. We prove by induction.

- **Base Step**: For $r=1$, $s=2$. The upper bound of cluster level produced by MCUBA with $s=2$ is 2^s-2 from Theorem 6.4. In this case, MASC and MCUBA creates same clusters. From Theorem 6.5, the selected edge weights are:

$$W \sum_{i=1}^{n} (1/2)^i \leq S = A \leq W + B$$

For $0 \leq C \leq B$

$$W \sum_{i=1}^{n} (1/2)^i \leq S + C \leq W + B$$

$$W \sum_{i=1}^{n} (1/2)^i \leq S + C \leq W + B$$

- **Induction step**: We assume that for $r=2^n$, the theorem is true. When $r=2^{n+1}$, upper_level of MCUBA is 2 $2^{n+1} - 2 = 2^{n+2} - 2$. In this case, the selected edge weights for clustering:

$$S=W \sum_{i=1}^{n+1} (1/2)^i$$

$$W \sum_{i=1}^{n+1} (1/2)^i \leq W \sum_{i=1}^{2^{n+2}-2} (1/2)^i + B \leq W + B$$

For $0 \leq W \sum_{i=1}^{n+1} (1/2)^i \leq W \sum_{i=1}^{2^{n+2}-1} (1/2)^i$ then
6.4. Message and Time Complexities

Theorem 6.7. The message complexity of MASC with \(r \) rounds is \(O(\Delta^2 r) \) per node. The lower bound for message complexity is \(\Omega(r) \) per node.

Proof. In the worst case, the leader of the cluster with \(2^{r-1} \) level is rejected by all neighbors of all nodes belonging to the same cluster. This case is depicted in Fig. 9. The total message transfer in this case is:

\[
2(\Delta - 1) + \ldots + 2(2 r - 1) (\Delta - 1) + (\Delta - 1)\frac{2}{2^{r-1}}
\]

The lower bound occurs when each node only sends one \(\text{REQUEST} \) message and receives a \(\text{REPLY} \) message. In this case only \(2 r \) message exchanges are done. Thus, the lower bound for the message complexity is \(\Omega(r) \).

Theorem 6.8. The time complexity of the MASC with \(r \) rounds is \(O(\Delta^2 r) \).

Proof. The worst case for time complexity is the same as the worst case for the message complexity as seen in Fig. 9. Thus the time complexity of a round is \(O(r \Delta) \). The time complexity for \(r \) rounds is \(O(\Delta^2 r) \).

Theorem 6.9. The message complexity of MCUBA with \(s = \text{upper level} \) has a lower bound of \(\Omega(2^r) \) per node, has an upper bound of \(O(\Delta s) \).

Proof. The worst case is same with MASC as shown in Fig. 9. But the cluster level depends on \(s \). Besides that, each node may send \(n/s \) backbone formation message. The calculations for the worst case are given below:

\[
2(\Delta - 1) + \ldots + 2(2 s - 2 (\Delta - 1) + (\Delta - 1)) + \frac{n}{sm} + \frac{1}{s} + \frac{1}{s}
\]

The best case occurs in the complete graph \(K_n \) in Fig. 10. \(n \) node exchange a \(\text{REQUEST} \) and a \(\text{REPLY} \) message. After then, \(n/2 \) node exchange a \(\text{REQUEST} \) and a \(\text{REPLY} \) message. The operation goes in this way. The equation is given below:
\[n(1+1/2+1/4+...)/n \leq 2 \]

Theorem 6.10. The time complexity of the MCUBA has a lower bound of \(\Omega(\log(n)) \) and upper bound of \(O(n) \).

Proof. We consider clustering and backbone formation together. The best case occurs when clusters with level 1 are connected to form clusters with level 2, clusters with level 2 are connected to form clusters with level 4, and the operation continues similarly. Fig. 10 shows the sample network for the lower bound. We need \(\Omega(\log(n)) \) time for the best case. The worst case occurs when a cluster starts from a single node and ends with level \(n \). In this case, \(n-1 \) iterations are done. So that the worst case complexity is \(O(n) \). Fig. 11 shows the worst case iterations.

6.5. Reductions in Energy Consumption

Theorem 6.11. Assume that the nodes are distributed uniformly and randomly. Also assume that the total energy consumption of the nodes are mainly caused by message transmissions (other energy consumptions than radio are negligible). Overhearing reduces at least 40% of the energy consumed at an average clustering session of MCUBA with upper level \(\geq 8 \).

Proof. Let \(s \) be the upper level. Since cluster level varies between 1 and 2\(s\)-2 with the same probability, the average value of the cluster level is \(s \). In this case, the average value of the cluster diameter is \(s/2 \). Fig. 12 shows the average clustering session between two clusters. Let a \(CONTROL_ACK \) message be a low level acknowledgement for reliable transmission. Without overhearing, for each message transmission of MCUBA, a \(CONTROL_ACK \) message should sent so that the total message transfers for an average clustering session without overhearing is (\(N \)):

\[
N= (\text{REQUEST messages} + \text{REPLY messages} + \text{CONTROL_ACK messages})
\]

\[
N = ((s/2+1) + (s/2+1) + (s+2))
\]

\[
N = 2s+4
\]

By using overhearing, there is no need for \(CONTROL_ACK \) messages except the two last messages which are not routed. So that the total number of messages with overhearing technique is (\(T \)):

\[
T = ((s/2+1) + (s/2+1) + 2)
\]

\[
T = s+4
\]

\[
\frac{N-T}{T} = \frac{s}{2s+4}
\]

for \(s \geq 8 \), \(\frac{s}{2s+4} \geq 40 \%

7. PERFORMANCE EVALUATION

We firstly implemented Hoepman’s distributed matching in ns2 simulator version 2.31 to test its performance. To calculate the approximation ratio of Hoepman’s algorithm, we implemented Gabow’s maximum weighted algorithm [33]. After this, the proposed MASC and MCUBA algorithms were implemented in ns2 simulator. Besides, we implemented a modified version of MASC (MOD-MASC), which uses node id’s in matching instead of edge weights. MOD-MASC chooses the neighbor with the smallest id for clustering. MOD-MASC has the same time and message complexities as MASC, however its approximation ratio may vary significantly due to its random operation. To compare our algorithms with the existing graph theoretic approaches, we implemented DSTA and a dominating set based algorithm (DS). DSTA constructs clusters and ensures spanning tree formation rooted at the sink as described in Section 3.1. We set the depth parameter of DSTA to 3 in our experiments. DS is a connected dominating set based clustering algorithm, an algorithm similar to Wu’s algorithm. Initially all nodes are white in DS algorithm. DS has two rules to find connected dominating set:

1. If the node has two unconnected neighbors it marks itself as black.
2. If the node’s neighbors with greater id cover all neighbors of the node, node marks itself as white.

We generated randomly connected networks with 100 to 400 nodes that are uniformly distributed. IEEE 802.11 radio and MAC standards readily available in ns2 simulator were chosen for lower layer protocols. Two way ground was used as the propagation model. The transmission power is 0.660 mW, the received power is 0.395 mW, and the communication range of a sensor node is 250 m. We measured the performance of the algorithms for average node degrees varying between 4.5 and 6. To vary degrees, different size of flat surface areas were chosen as shown in Table 1.

7.1. Tests for Hoepman’s Algorithm

The approximation ratios of Hoepman’s algorithm were measured against the varying number of nodes and node degrees. To find the approximation ratio, we derived a weighted graph, \(G_w=(V,E_W) \), in which \(V \) is the set of nodes in simulation area and \(E \) is the set edges with RSS values connecting nodes. Gabow’s algorithm is not distributed, it inputs \(G_w \) and outputs the maximum weighted matching set \(E_M \). Let \(E_H \) be the matching found by Hoepman’s algorithm, \(T_H \) be
the total edge weights in E_H and T_M be the total edge weights in E_M, then the approximation ratio of the Hoepman’s algorithm is T_H/T_M. Table 2 shows the approximation ratios of Hoepman’s algorithm. The measured approximation ratio values are greater than 0.99 and are independent from node number and node degree variations. Although the worst case approximation ratio of the algorithm is 0.5 theoretically, for networks of randomly and uniformly dispersed sensor nodes, the approximation ratio is close to the maximum value of 1.

Secondly, we measured the total number of messages and wallclock time values of the Hoepman’s algorithm. Fig. 13 shows the number of messages used in Hoepman’s algorithm. Number of messages increase linearly against the number of nodes, and increase slightly against the node degree. A node, on the average, sends four messages for distributed matching including the acknowledgment messages for reliable message transfer. The wallclock time values of the algorithm varies between 2s to 3s as seen in Fig. 14 and as with the total number of message measurements, wallclock time values are stable against the node number and average node degree. We can conclude from our measurements that Hoepman’s algorithm has very high approximation ratios and it is scalable with regards to message and wallclock time measurements. Thus, Hoepman’s algorithm is very suitable as the basis of our iterative clustering algorithms for sensor networks.

7.2. Selected Edge Weights

Selection of stronger links for clustering and backbone formation is an important criteria for our algorithms.
Matching based Clustering Algorithms for Sensor Networks

We measured the total selected edge weights of MASC and MCUBA. The edge weights were represented with the RSS values defined in IEEE 802.11 [19]. The weight of selected edges in \(r \)th round are heavier than \((r + 1) \)th round, so the slope of the function must be decreasing. As seen in Fig. 15, as the number of rounds and number of nodes increase, the selected total edge weight by MASC increases. As the number of rounds increases, the slope of the function decreases as shown in Fig. 15. We measured the total selected edge weights by MCUBA with upper level=10. As the average node degree increases, although the percentage of strong links to weak links remains same, the total number of strong links increases. Since MCUBA chooses strong links instead of randomly choosing, the total selected edge weight increases as the number of nodes and average node degree increases as shown in Fig. 16.

We compared the total selected edge weights of the algorithms as seen in Fig. 17. We can classify the algorithms as: Weighted matching based algorithms (MCUBA and MASC), matching based algorithms (MOD-MASC), dominating set based algorithms (DS), and spanning tree based algorithms (DSTA). We implemented MCUBA with \(\text{upper}_\text{level}=10 \), MASC and MOD-MASC with 4 rounds, the cluster levels produced by the algorithms in this case are approximately equal. As seen in Fig. 17, weighted matching based and matching based algorithms select stronger links than the dominating set based and spanning tree based approaches. It can be stated from here that, graph matching technique has a better performance than the existing graph theoretical approaches with regards to link selection. Weighted matching based algorithms target to maximize the edge weights, on the other hand id-based matching algorithms randomly chooses the edges. Due to this fact, as seen in Fig. 17, the total selected RSS values of MCUBA and MASC are higher than the MOD-MASC. MCUBA constructs clusters and forms backbone, on the other hand MASC only produces clusters. Because of this, the total edge weights selected by MCUBA for communication is higher than those selected by MASC as seen in Fig. 17. On the average, if the total edge weights selected by DSTA is \(W \), the edge weights selected by DS is 2.3\(W \), MOD-MASC is 3.7\(W \), MASC is 4.6\(W \) and MCUBA is 7\(W \).

7.3. Clustering Quality

To evaluate quality of the produced clusters, we used two metrics: Number of clusters and the node count in clusters. The node count in a cluster is called the level of the cluster. The number of clusters must be controllable in a preferable clustering algorithm. In MASC, for each round, low level clusters merge to form...
higher level clusters such that the number of clusters decrease as the number of rounds increase. As seen in Fig. 18, the number of clusters are approximately equal to the half of the number of nodes in the first round and cluster number decreases as the number of rounds increases. In MCUBA, the cluster levels can be adjusted by the upper_level parameter, so that the number of clusters is controllable. The number of clusters produced by MCUBA with upper_level=10 is measured against number of nodes and average node degree as shown in Fig. 19. The number of clusters produced by MCUBA is stable and controllable as seen in this figure. We also vary the upper_level of MCUBA between 5, 7, 10, and 20 to measure the effect of upper_level parameter as shown in Fig. 20. The number of produced clusters by MCUBA are 19, 16, 10 and 6 respectively. From these measurements, we can state that the MCUBA’s upper_level parameter controls the number of clusters efficiently as expected.

A comparison of the number of clusters produced by algorithms is seen in Fig. 21. DS is restricted by the connected dominating set construction, thus number of clusters may not be controllable. On the other hand, the cluster levels are adjustable in DSTA with depth parameter. Among all of the implemented algorithms, DS has the worst performance as shown in Fig. 21 because number of clusters is more than half of the nodes. DSTA with depth=3 performs well since the number of clusters increases linearly with a small slope as the number of nodes increases. MCUBA with upper_level=10 produces 46 clusters, MASC with 4 rounds produces 65 clusters, DSTA produces 102 clusters, DS produces 247 clusters for the sensor network with 400 nodes having average degree of 4. MCUBA and MASC perform very well since the number of clusters is stable against the number of nodes. They achieve the merging clustering operations to construct clusters with higher level, thus the number of clusters are controllable.

The second criteria of the clustering performance is the balancing of the clusters. Our balance metric is the coefficient of variation (CV) which is computed as standard deviation / mean. If CV < 1 is then the distribution is considered to be of low variance else it is of high variance. We measure the CV values of MCUBA against node degree and upper_level parameter. The CV values of MCUBA with upper_level=10 are stable against node degree and number of nodes as seen in Fig. 22. The average value of CV measurements of MCUBA with upper_level=10 is 0.43. We fix the average node degree to 4 and vary the upper_level of MCUBA between 5, 7, 10, and 20 to measure CV. The measured CV values are stable and vary between 0.40 and 0.25 as seen in Fig. 23. The comparison of CV
values measured by MASC with 4 rounds, MCUBA with upper_level=10 and DSTA with depth=3 is seen in Fig. 24. Since the number of clusters produced by DS is not controllable, we do not include DS in this comparison. The average CV values of MASC, MCUBA and DSTA are 0.44, 0.45, and 1.29 respectively.

7.4. Energy Consumptions

Energy efficiency is an important objective for WSN. We measured the energy consumption of the algorithms for clustering and backbone formation. It is assumed that the energy consumptions occur mostly by message transfers. The energy consumption of MASC increases linearly against the number of rounds and the number of nodes as shown in Fig. 25. Beside this, as shown in Fig. 26, the energy consumed by MCUBA with upper_level=10 increases linearly against the node degree and the number of nodes. We compared the energy consumption of all approaches as seen in Fig. 27. In DS and DSTA, nodes exchange less number of messages than those in MASC and MOD-MASC, so the energy consumptions of MASC and MOD-MASC are higher. The main reason of this energy consumption is the operation of merging low level clusters to construct high level clusters. To decrease this energy consumption, overhearing technique was applied in MCUBA. The effect of overhearing technique applied in MCUBA to reduce the energy consumption can be seen in Fig. 27. The energy consumption of DS, DSTA and MCUBA perform similarly. On the average, DSTA consumes 0.90J, MCUBA consumes 1.16J, DS consumes 1.32J, MOD-MASC consumes 3.28J, MASC consumes 3.53J per node.

7.5. Wallclock Times

We measured the wallclock times of MCUBA with upper_level=10, MASC with 4 rounds, DSTA with depth=3 and DS. As seen in Fig. 14, at the worst case, the time for the distributed matching is 3s approximately. In our measurements, the time for a round of MASC is 5s in the worst case, so we set the round of MASC to 5s. Although the nodes are idle when they finish the execution of the MASC in a round before 5s, they must wait until the end of the round. Since nodes execute asynchronously in MCUBA, there is no waiting time for all nodes. The wallclock of MASC with 4 rounds is constant and equals 20s. In DSTA, a node forwards each received message to all neighbors, unless it is forwarded before. In DS, the nodes decide their states by learning the states of their neighbors. In this type of algorithms, collisions may frequently occur since each node may exchange messages with its neighbors in the same time intervals. To prevent these collisions, IEEE 802.11 MAC uses an exponential back-off timer so that the execution time of the algorithms increases. As seen in Fig. 28, MCUBA performs best.
among the other approaches, DSTA also performs well whereas MASC performs worst due to waiting times.

8. DISCUSSIONS

In this section, we discuss the applicability and the extensions of our proposed algorithms. MCUBA and MASC are based on selecting strong communication links as described in the previous sections. We use the RSS values available as implemented in IEEE 802.11 standards on ns2 as the link quality metric. Other quality metrics than RSS may be used. Lal shows that in a stationary sensor network, it is possible to obtain a good estimate of the true cost metric based on only a few measurements [15]. Lal also states that the energy consumed on a link has a strong relationship with the state of the wireless channel between two communicating nodes. Therefore one of the design parameters for the energy efficient multi-hop routing is the link selection. We define a sensor network application to run on MCUBA, DS, and DSTA where each node senses events and sends this messages to the sink node. This is a typical requirement for the habitat monitoring application. The definitions for the sink node. This is a typical requirement for the application and the network parameters are given below:

- n: Number of nodes
- Δ: Average node degree
- T: The total time for the application
- p: Period time for the clustering algorithms
- E: Average energy dissipated in a message transfer.
- V: The total number of events sensed by the nodes
- s: MCUBA’s upper level parameter.

We assume that an event is routed from the event catcher node to the sink node in $\log(n)$ hops on the average. Generally, in sensor network applications, nodes may malfunction due to various reasons. Therefore to provide fault tolerance, clustering algorithms run periodically. The message complexity of MCUBA is $O(\Delta s)$, DS and DSTA is $O(\Delta)$. From our simulations, we found the average link quality of DSTA as W, DS as $2.3W$, MCUBA as $7W$ as shown in Section 7.2. Let α, β and γ be the number of retransmissions for a successful packet transmission needed by DSTA, DS, and MCUBA. From Lal’s study [15], we may state that $\alpha < \beta < \gamma$ with regards to average link qualities. The total energy consumption of the sensor network includes energy consumptions of the clustering algorithm and the application with the retransmissions. The total energy consumptions of MCUBA (M), DS (D), and DSTA (T) are:

$$M = ((n\Delta)[T/p] + \log(n)V)\alpha E$$

$$D = ((n\Delta)[T/p] + \log(n)V)\beta E$$

$$T = ((n\Delta)[T/p] + \log(n)V)\gamma E$$

It is obvious from Eq. 2 and Eq. 3, D is smaller than T. We now compare M and D. From Eq. 2 and Eq. 1, $D-M$ is:

$$D - M = ((n\Delta)[T/p(\beta - \alpha)] + \log(n)V(\beta - \alpha))E$$

From Eq. 4, as the number of events increases MCUBA consumes less energy than DS. For $\beta > \alpha$, MCUBA consumes less energy than DS for varied number of nodes, average node degrees and application lifetimes. The application designer should consider these parameters before the selection of the clustering algorithm.

MCUBA and MASC may run on various underlying sensor network protocols. Both algorithms only require send, receive primitives and link quality indicator. The send and receive primitives are important services required from MAC and physical layer [18, 19, 23, 24, 25]. IEEE 802.15.4 provides link quality indicator (LQI) which can be calculated by the combination of signal to noise ratio and the detected energy. In S-MAC and TRAMA, probe packets and overhearing method are used to obtain link quality [44]. B-MAC [25], M-MAC [24], WMEWMA [45] are the other underlying protocols for the multi-hop routing network layers which provide link quality estimation.

MCUBA is the enhanced version of the MASC. The total selected edge weights, cluster quality, time and message complexity of the MCUBA are shown to be better than MASC. Also the simulation results show that MCUBA performs better than MASC. In some clustering approaches, the backbone formation algorithm is located on top of the clustering algorithm [46] where the clusters are constructed first then the cluster heads form the backbone. MASC can be used in this manner as the underlying protocol of a backbone formation algorithm. For example, a ring backbone with balanced clusters can be constructed with MASC and backbone formation algorithm (BFA) proposed in [46] for sensor networks. The second approach for backbone construction is increasing the transmission ranges of the cluster heads [2]. After clustering is completed, cluster heads increase their transmission range for communicating with each other. This approach is also suitable for the MASC. The energy consumption of the MASC can be reduced by the overhearing technique as applied in MCUBA.

Cluster heads may consume their energy more than ordinary nodes since they are responsible for data processing, aggregation and routing messages to the sink. So rotation of the cluster heads may be provided by the clustering approaches. MCUBA and MASC can be easily extended for energy efficient rotating cluster head selection. The graph model can be extended to $G_W(V_W, E_W)$ in which not only edges but also vertices
have weights where the weight of a vertex is its initial energy. We may change the leader selection policy of the MASC and MCUBA using this model. The candidate with the largest weight may be chosen as the backup. This method provides energy efficient cluster head selection and can be implemented on MASC and MCUBA with minor modifications.

The periodic running of the clustering algorithms is not the only way for supporting fault tolerance. One other method is the selection of backup cluster heads [2]. MCUBA and MASC can be extended to provide backup cluster heads. The FSM in Fig. 29 shows the additions needed to provide fault tolerance. After a node makes a state transition to LEADER_END state, it chooses a backup cluster head and sends YOU_ARE_BACKUP to it. Simply, the neighbor node in the same cluster and with the greatest energy may be chosen as the cluster head. If a node in MEMBER or MEMBER_END state receives YOU_ARE_BACKUP message, it makes a state transition to BACKUP_LEADER and the backup polls its cluster head by sending POLL_LEADER messages periodically and makes a state transition to WT_LEADER state. When the cluster head in LEADER_END state receives the POLL_LEADER message, it replies with a HEARTBEAT message.

If the cluster head is not responding, backup cluster head tries to send POLL_LEADER message for poll_number times defined by the user. When backup realizes that the cluster head malfunctions, a LEADER_DEAD event occurs in backup and makes a state transition to LEADER_END state by sending a YOU_ARE_BACKUP message to the new backup. The backup can also malfunction. In this case, a TOUT/POLL occurs in cluster head, it selects a new backup and sends a YOU_ARE_BACKUP message to the new backup. This approach is good when one of the cluster head or cluster member malfunctions. If both of them malfunction, new techniques should be employed. To tolerate faults occurring in ordinary nodes, extended routing tables can be designed. In extended routing tables, a node may store more than one entry for each destination. This information may be obtained during message exchanges and overhearing. On the other hand, since this method causes significant memory space consumption, an optimization must be provided.

9. CONCLUSIONS

We proposed two new graph theoretic algorithms for clustering and backbone formation in WSNs. Our original idea is to use the weighted matching for clustering operation in order to select the edges with the heavy weights. We used Hoepman’s distributed weighted matching algorithm as the basis of our proposed algorithms. Hoepman’s algorithm is implemented and shown to be scalable for sensor networks in terms of total number of messages and time elapsed. Also, the measured approximation ratios for this algorithm using simulations are greater than 99% of the maximum value which makes this algorithm very suitable for our clustering algorithm basis. We showed the design of the proposed algorithms, MASC and MCUBA, by FSM and pseudo-codes. We gave the analysis for the time and message complexity of the algorithms. Also, the lower bounds for the total selected edge quality are given with the upper bounds for the cluster level theoretically. Both algorithms are implemented on simulation environment and the results obtained show that our proposed algorithms select stronger links, produce more evenly distributed and controllable number of clusters then the other graph theoretical approaches. The energy consumed in MASC is reduced in MCUBA by applying overhearing technique. We discussed and analyzed that selection of strong links between nodes for clustering and backbone formation may provide energy efficient multi-hop routing for applications that may run on the infrastructure created by our proposed algorithms. Fault tolerance and energy efficient cluster head rotation extensions are also discussed for the proposed algorithms.

REFERENCES

10. APPENDIX

In this section, the detailed pseudo-codes of MASC and MCUBA are given. The main algorithm and the helper procedures of MASC are shown in Alg. 1 and Alg. 2. MCUBA’s pseudo-codes and the other needed procedures are shown in Alg. 3, Alg. 4, Alg. 5, and Alg. 6.

Algorithm 1 MASC for node j, receiving message from node i

1: initially cur_state_j: the current state of node j
2: $cur_state \leftarrow LEADER$
3: $round \leftarrow 0$
4: msg: the received message, includes: C_i, RSS_i, leader,
5: C_i: the set of nodes in the same cluster with node i
6: RSS_i: the second largest RSS value of a cluster head node i, used to determine the leadership
7: Γ_j: the set of neighbors of node j, which do not belong to the cluster of node i, given as the parameter
8: $M_w(A)$: the operator which returns the id of the node in set A which has the largest weight of the edge connecting to node j
9: $candidate_j \leftarrow M_w(\Gamma_j)$
10: m_rounds: number of maximum rounds, given as the parameter

11: R: the set of collected requests
12: $Legend$: □ State ∧ input message → actions

procedure MAIN(Γ_j, m_rounds)

14: loop

15: □ LEADER ∧ Request →
16: call RQST(msg, m_rounds, Γ_j)
17: □ LEADER ∧ New_Round_Interrupt →
18: $R \leftarrow \emptyset$
19: $candidate_j \leftarrow M_w(\Gamma_j)$
20: send REQUEST to $candidate_j$
21: $cur_state_j \leftarrow CANDIDATE_WT_ACK$
22: □ LEADER ∧ Drop →
23: call DRP (msg, m_rounds, Γ_j)
24: □ MATCHED_LEADER ∧ Request →
25: send DROP to node i
26: □ MATCHED_LEADER ∧ End_Of_Round →
27: $cur_state \leftarrow LEADER$
28: □ CANDIDATE_WT_ACK ∧ Request →
29: call RQST(msg, m_rounds, Γ_j)
30: □ CANDIDATE_WT_ACK ∧ Request_Ack →
31: call CLSTR (msg, m_rounds, Γ_j)
32: □ CANDIDATE_WT_ACK ∧ Drop →
33: call DRP (msg, m_rounds, Γ_j)
34: □ MEMBER ∧ Request →
35: if id $\in C_i$ then
36: send Request_Ack
37: else forward Request to leader j
38: end if
39: end loop
40: end procedure
Algorithm 2 MASC for node_j receiving message from node_i (Part 2)

1. \textbf{procedure} RQST(msg, m_rounds, \Gamma_j)
2. \hspace{1em} if leader_i = id_j then
3. \hspace{2em} send Request_Ack
4. \hspace{1em} else if id_i = candidate_j then
5. \hspace{2em} call CLSTR(msg, m_rounds, \Gamma_j)
6. \hspace{1em} else
7. \hspace{2em} \textbf{end if}
8. \hspace{1em} \textbf{end procedure}

Algorithm 3 MCUBA for node_j receiving message from node_i

1. \textbf{initially} cur_state_j: the current state of node_j
2. \hspace{1em} cur_state ← LEADER
3. \hspace{1em} c_level: the cluster level
4. \hspace{2em} c_level ← 0
5. \hspace{1em} uc_level: the upper cluster level
6. \hspace{2em} b_candidate: the backbone candidate
7. \hspace{1em} msg: is the received message, includes: C_i, RSS_i, leader;
8. \hspace{1em} C_i: the set of nodes in the same cluster with node_i;
9. \hspace{1em} RSS_i: the second largest RSS value of a cluster head node, used to determine the leadership;
10. \hspace{1em} \Gamma_j: the set of neighbors of node_j which do not belong to the cluster of node_j;
11. \hspace{1em} \Gamma_i: the set of neighbors of sink node which do not belong to the backbone
12. \hspace{1em} \textbf{call} \textbf{RQST}(msg, \textbf{uc}_level, \Gamma_j)

Algorithm 4 MCUBA for node_j receiving message from node_i (Part 2)

1. \textbf{procedure} RQST(msg, \textbf{uc}_level, \Gamma_j)
2. \hspace{1em} \textbf{if} leader_i = id_j then
3. \hspace{2em} send Request_Ack
4. \hspace{1em} \textbf{else} if id_i = candidate_j then
5. \hspace{2em} call CLSTR(msg, \textbf{uc}_level, \Gamma_j)
6. \hspace{1em} \textbf{else}
7. \hspace{2em} \textbf{end if}
8. \hspace{1em} \textbf{end procedure}
Algorithm 5 MCUBA for node j receiving message from node i (Part 3)

67: procedure CLSTR($msg, uc_{level}, \Gamma_i$)
68: send Request_Ack
69: leader$_j$ ← id_i
70: cluster$_{level}_j$ ← cluster$_{level}_j + cluster$_{level}_i$
71: if ($id_i = id_{sink}$) or ((RSS$_i > RSS_j$) or (RSS$_i = RSS_j$) and $id_i > id_j$) then
72: forward all REQUESTs in R to leader$_j$
73: forward BR to leader$_j$
74: if cluster$_{level}_j >= uc_{level}$ then
75: cur_state$_j$ ← MEMBER_END
76: else
77: cur_state$_j$ ← MEMBER
78: end if
79: else
80: Γ_j ← $\Gamma_i \cup \Gamma_i$
81: candidate$_j$ ← $M_o(\Gamma_j)$
82: if cluster$_{level}_j >= uc_{level}$ and candidate$_j$ ≠ \emptyset then
83: cur_state$_j$ ← CANDIDATE,WT_ACK
84: else
85: send Drop to all node $\in R$
86: R ← \emptyset
87: if $id_i = sink_j$ then
88: Γ_i ← Γ_j
89: b_candidate$_j$ ← $M_o(\Gamma_b)$
90: cur_state$_j$ ←
91: SINK,WT,FOR,BACKBONE
92: if b_candidate$_j$ ≠ \emptyset then
93: send Backbone_Request to b_candidate
94: else
95: cur_state$_j$ ← SINK_END
96: end if
97: else
98: cur_state$_j$ ← LEADER_END
99: if BR ≠ \emptyset then
100: send Backbone_Request_Ack to BR$_i$
101: end if
102: end if
103: end if
104: end if
105: end procedure
106: procedure ROQST,END(msg)
107: if $id_i \in C_i$ then
108: send Request_Ack to node$_i$
109: else
110: send Drop to node$_i$
111: end if
112: end procedure
113: procedure BCKBN(msg, Γ_j)
114: Γ_b ← $\Gamma_i \cup \Gamma_i$
115: b_candidate$_j$ ← $M_o(\Gamma_b)$
116: if b_candidate$_j$ ≠ \emptyset then
117: send Backbone_Request to b_candidate$_j$
118: else
119: b_candidate$_j$ ← SINK.END
120: end if
121: end procedure

Algorithm 6 MCUBA for node j receiving message from node i (Part 4)

123: procedure DROP($msg, uc_{level}, \Gamma_j$)
124: $\Gamma_j = \Gamma_j \cup \Gamma_i$
125: candidate$_j = M_o(\Gamma_j)$
126: if candidate$_j = \emptyset$ then
127: cur_state ← MATCHED_LEADER
128: else
129: if candidate$_j \in R$ then
130: call CLSTR(msg,candidate$_j$, uc_{level},\Gamma_j)
131: end if
132: end if
133: end procedure
134: procedure LDR($msg, uc_{level}, \Gamma_i$)
135: if cluster$_{level} < uc_{level}$ then
136: Request to candidate$_j$
137: cur_state ← CANDIDATE,WT_ACK
138: else
139: send Drop to all node $\in R$
140: if $id_i \neq id_{sink}$ then
141: cur_state$_j$ ← LEADER.END
142: if BR ≠ \emptyset then
143: send Backbone_Request_Ack to BR$_i$
144: end if
145: end if
146: cur_state ←
147: b_candidate$_j$ ← $M_o(\Gamma_b)$
148: cur_state$_j$ ←
149: SINK,WT,FOR,BACKBONE
150: if b_candidate$_j$ ≠ \emptyset then
151: send BACKBONE,REQUEST to b_candidate
152: else
153: cur_state$_j$ ← SINK.END
154: end if
155: end if
156: end if
157: end procedure