Multimedia Database Systems *

Sherry Marcus
Mathematical Sciences Institute

Cornell University
Ithaca, NY 14853.

E-mail: marcus@msicedar.cit.cornell.edu.

V.S. Subrahmanian
Institute for Advanced Computer Studies
Institute for Systems Research
Department of Computer Science
University of Maryland
College Park
Maryland 20742.

E-mail: vs@cs.umd.edu

Abstract

Though there are now numerous examples of multimedia systems in the commercial
market, these systems have been developed primarily on a case-by-case basis. The large-
scale development of such systems requires a principled characterization of multimedia
systems which is independent of any single application. It requires a unified query lan-
guage framework to access these different structures in a variety of ways. It requires
algorithms that are provably correct in processing such queries and whose efficiency can
be appropriately evaluated. In this paper, we develop a framework for characterizing
multimedia information systems which builds on top of the implementations of individ-
ual media, and provides a logical query language that integrates such diverse media.
We develop indexing structures and algorithms to process such queries and show that
these algorithms are sound and complete and relatively efficient (polynomial-time). We
show that the generation of media-events (i.e. generating different states of the different
media concurrently) can be viewed as a query processing problem, and that synchro-
nization can be viewed as constraint solving. This observation allows us to introduce the
notion of a media presentation as a sequence of media-events that satisfy a sequence
of queries. We believe this paper represents a first step towards the development of
multimedia theory.

1 Introduction

Though numerous multimedia systems exist in today’s booming software market, relatively
little work has been done in addressing the following questions:

*Author for Correspondence: V.S. Subrahmanian. This research was supported by the Army Research
Office under grant DAAL-03-92-G-0225, by ARPA/Rome Labs contract Nr. F30602-93-C-0241 (Order Nr.
AT16), and by an NSF Young Investigator award IRI-93-57756.

e What are multimedia database systems and how can they be formally /mathematically
defined so that they are independent of any specific application domain ?

e Can indexing structures for multimedia database systems be defined in a similar uni-
form, domain-independent manner ?

o [s it possible to uniformly define both query languages and access methods based on
these indexing structures ?

e Is it possible to uniformly define the notion of an update in multimedia database sys-
tems and to efficiently accomplish such updates using the above-mentioned indexing
structures ?

e What constitutes a multimedia presentation and can this be formally /mathematically
defined so that it is independent of any specific application domain ?

In this paper, we develop a set of initial solutions to all the above questions. We provide
a formal theoretical framework within which the above questions can be expressed and
answered.

The basic concepts characterizing a multimedia system are the following: first, we define
the important concept of a media-instance. Intuitively, a media-instance (e.g. an instance
of video) consists of a body of information (e.g. a set of video-clips) represented using some
storage mechanism (e.g. a quadtree, or an R-tree or a bitmap) in some storage medium
(e.g. video-tape), together with some functions and/or relations (e.g. next minute of video,
or who appears in the video) expressing various aspects, features and/or properties of this
media-instance. We show that media-instances can be used to represent a wide variety of
data including documents, photographs, geographic information systems, bitmaps, object-
oriented databases, and logic programs, to name a few.

Based on the notion of a media-instance, we define a multimedia system to be a set of
such media-instances. Intuitively, the concatenation of the states of the different media
instances in the multimedia system is a snapshot of the global state of the system at a given
point in time. Thus, for instance, a multimedia system (at time ¢) may consist of a snapshot
of a particular video-tape, a snapshot of a particular audio-tape, and segments of affiliated
(electronic) documentation. In Section 4, we develop a logical query language that can
be used to express queries requiring multimedia accesses. We show how various “intuitive”
queries can be expressed within this language. Subsequently, we define an indexing struc-
ture to store multimedia systems. The elegant feature of our indexing structure is that
it is completely independent of the type of medium being used — in particular, if we are
given a pre-existing representation/implementation of some information in some medium,
our method shows how various interesting aspects (called “features”) of this information
can be represented, and efficiently accessed. We show how queries expressed in our logical
query language can be efficiently executed using this indexing structure.

Section 5 introduces the important notion of a media presentation based on the notion of
a media-event. Intuitively, a media-event reflects the global state of the different media
at a fixed point in time. For example, if, at time ¢, we have a picture of George Bush on
the screen (i.e. video medium) and an audio-tape of George Bush saying X, then this is a

media-event with the video-state being “George Bush” and the audio-state being “George
Bush saying X.” A media presentation is a sequence of media-events. Intuitively, a
media-presentation shows how the states of different media-instances change over time.
One of the key results in this paper is that any query generates a set of media-events
(i.e. those media-events that satisfy the query). Consequently, the problem of specifying a
media-presentation can be achieved by specifying a sequence of queries. In other words,

Generation of Media Events = Query Processing.

Finally each media-event (i.e. a global state of the system) must be “on” for a certain
period of time (e.g. the audio clip of Bush giving a speech must be “on” when the video
shows him speaking). Furthermore, the next media-event must come on immediately upon
the completion of the current media-event. We show that this process of synchronizing
media-events to achieve a deadline may be viewed as a constraint solving problem, i.e.

Synchronization = Constraint Solving.

2 Basic Ideas Underlying the Framework

In this section, we will articulate the basic ideas behind our proposed multimedia informa-
tion system architecture. For now, we will view a media-source as some, as yet unspeci-
fied, representation of information. Exactly how this information is stored physically, or
represented conceptually, is completely independent of our framework, thus allowing our
framework to be interface with most existing media that we know of.

Suppose M is a medium and this medium has several “states” representing different bodies
of knowledge expressed in that medium — associated with this data is a set of “features”
— these capture the salient aspects and objects of importance in that data. In addition,
there is logically specified information describing relationships and/or properties between
features occurring in a given state. These relationships between features are encoded as
a logic program. Last, but not least, when a given medium can assume a multiplicity
of states, we assume that there is a corpus of state-transition functions that allow us to
smoothly move from one state to another. These are encoded as “inter-state” relationships,
specifying relations existing between states taken as a whole. As the implementation of these
inter-state transition functions is dependent on the medium, we will assume that there is
an existing implementation of these transition functions. As we make no assumptions on
this implementation, this poses no restrictions. Figure 1 shows the overall architecture for
multimedia information systems.

The ideas discussed thus far are studied in detail in Section 4 where we develop a query
language to integrate information across these multiple media sources and express queries,
and where we develop access structures to efficiently execute these queries.

All the aspects described thus far are independent of time and are relatively static. In real-
life multimedia systems, time plays a critical role. For instance, a query pertaining to audio-
information may need to be synchronized with a query pertaining to video-information, so
that the presentation of the answers to these queries have a coherent audio-visual impact.

STATE TRANS.
FUNCTIONS

STATE TRANS.
FUNCTIONS

Logic Program Logic Program

MEDIUM 1 | "7 7 o rororororrenenenes MEDIUM n

MULTIMEDIA
INTEGRATOR

Figure 1: Multimedia Information System Architecture

Hence, the data structures used to represent information in the individual media (which so
far, has been left completely unspecified) must satisfy certain efficiency requirements. We
will show that by and large, these requirements can be clearly and concisely expressed as
constraints over a given domain, and that based on the design criteria, index structures to
organize information within a medium can be efficiently designed.

3 Media Instances

In this section, we formally define the notion of a media-instance, and show how it can be
used to represent a wide variety of data stored on different kinds of media. Intuitively, a
medium (such as video) may have data stored on it in many formats (e.g. raster, bitmap,
vhs_format, pal, secam, etc.). Thus, raster is an example of an instance of the medium
video because video information may be stored in raster format. However, in addition to
just storing information, media instances, as defined below contain information on how to
access and manipulate that information.

Definition 1 A media-instance is a 7-tuple mi = (ST, fe, A\, R, F, Var;, Var;) where ST
is a set of objects called states, fe is a set of objects called features, A is a map from .5 to 2fe,
Var; is a set of objects called state variables ranging over states, Vary is a set of objects
called feature variables ranging over features, R is a set of inter-state relations, i.e. relations
(of possibly different arities) on the set ST, and F is a set of feature-state relations. Fach
relation in F is a subset of fe' x ST where i > 1.

Bush Clinton Nixon Clinton Reno

AR A

Figure 2: Two Picture Frames

3.1 The Clinton Example

We will try to explain the intuitions underlying the definition of a media-instance by consid-
ering three media (video, audio and document) representing various political figures. This
example will be a “running example” throughout the paper.

Example 1 (A Video-Domain) Consider bitmapped photographs of various high-ranking
US government officials shown in Figure 2.

Intuitively, a media instance mi = (ST, fe, R, F, Var,, Var;y) depicting the above two
photographs contains:

1. a state s € ST captures a certain structure used to store information. For example, in
Figure 2, the set ST is the set of all possible bitmaps of the appropriate dimensions.
The two photographs shown in Figure 2 represent two specific states (i.e. bitmaps)
in ST. By just looking at a state, it is impossible to say anything about the objects
of interest in that state.

2. A featureis a piece of information that is thought to be an item of significance/interest
about a given state. For instance, the features of interest in our bitmapped domain
may include clinton, gore, bush, nixon, reno, reagan, kissinger. (The fact
that only some of these features appear in the two pictures shown in Figure 2 is
irrelevant; the missing features may occur in other pictures not depicted above).

3. A is a map that tells us which features are possessed by a given state. Thus, for
instance, suppose s; and sy denote the two states depicted in Figure 2. Then

A(s1) = {bush,clinton,nixon}.

A(sz) = {clinton,reno}.

The first equation above indicates that the features possessed by state s; are clinton,
nixon, and bush.

4. Relations in R represent connections between states. For instance, the relation
delete nixon(S,S’) could hold of any pair of states (S,S’) where ' contains nixon
as feature, and S’ has the same features as S, with the feature nixon deleted. As im-
plementation of inter-state relations is fundamentally dependent upon the particular
medium in question, we will develop our theory to be independent of any particular
implementation (though we will be assuming one exists).

5. Relations in F represent relationships between features in a given state. Thus, for
instance, in the photograph of Clinton and Reno shown in Figure 2(b), there may be
a relation left(clinton,Reno,sy) specifying that Clinton is standing to the left of
Reno in the state s9.

2

Definition 2 A state-term of a media-instance mi = (ST,fe, R, F, Vary, Vary) is any
element of (ST U Vary). A feature-term of media-instance mi = (ST, fe, R, 7, Var;, Var;)
is any element of (fe U Vary).

Definition 3 If R € R is an n-ary relation in media-instance mi = (ST, fe, A\, R, F, Vary,
Var;) and t1,...,t, are terms, then R*(#1,...,t,) is a state-constraint in media instance
mi. This constraint is solvable iff there exists a way of replacing all variables occurring in
t1,...,t, by states in ST so that the resulting n-tuple is in relation R.

Here, R* is a symbol (syntactic entity) denoting the relation R (semantic entity).

Definition 4 If ¢ € F is an n-ary relation in media-instance mi = (ST, fe, \, R, F, Var)

and ¢q,...,c,—1 are features terms and s is a state-term, then ¢*(cq, ..., c,—1, s) is a feature-
constraint. This constraint is solvable iff there exists a way of replacing all variables in
€1,...,¢n—1 by features in fe and replacing s (if it is a state variable) by a state in ST so

that the resulting n-tuple is in relation ¢.
Here, ¢* is a symbol (syntactic entity) denoting the relation ¢ (semantic entity).

The concept of a media-instance as defined above is extremely general and covers a wide
range of possibilities. Below, we give a number of examples of media-instances, specifying
different areas of applicability of this framework.

Example 2 Let us return to the Clinton-scenario depicted by the two pictures shown in
Figure 2. It may turn out that some relevant audio-information is also available about
that particular cast of characters, i.e. clinton, gore, bush, nixon, reno, reagan,
kissinger, as well as some other entities e.g. who, unesco, world bank. This, then, may
be the set of features of a (restricted) audio media-instance. For instance, we may have
a set of audio-tapes a1, az,as where a; depicts Clinton speaking about the WHO (World
Health Organization), az may be an audio-tape with Clinton and Gore having a discussion

about unesco, while a3 may be an audio-tape in which Bush and Clinton are engaged in a
debate (about topics too numerous to mention). The feature assignment function, then is

defined to be:

Ala;) = {clinton,who}.
Alaz) = {clinton, gore,unesco}.
Alas) = {clinton,bush}.

There may be an inter-state relation called after defined to be the transitive closure of
{(a1,a3),(az,as)} saying that az occurs after a; and as occurs after ay. Feature-state rela-
tions specify connections between features and states. For instance, the relation topic may
contain the tuples (who,aj), (unesco, ag) specifying the topics of a; and as, respectively.
Likewise, the relation speaker(i,person,frame) may specify that the i’th speaker in a
particular frame is person so and so. Thus, with respect to the audio-frame a5, we may
have the tuples:

speaker(1,clinton, a)
speaker(2, gore,as)
speaker(3,clinton, a)
speaker(4, gore,as)

specifying that Clinton speaks first in a9, followed by Gore, followed again by Clinton, and
finally concluded by Gore. OO

A more detailed scenario of how audio-information can be viewed as a media-instance is
described later in Example 9. The following example revisits the Clinton-scenario with
respect to document information.

Example 3 Suppose we have three documents, dy, dy and ds reflecting information about
policies adopted by various organizations. Let us suppose the set of features is identical to
the set given in the previous example. Suppose document dy is a position statement of the
World Health Organization about Clinton; document dy is a statement made by Clinton
about the WHO and document ds is a statement about UNESCO made by Clinton. The
feature association map, A is defined as follows:

A(d;) = {who,clinton}.
A(dz) = {who,clinton}.
A(ds) = {unesco,clinton}.

Note that even though d; and ds have the same features, this doesn’t mean that they convey
the same information — after all, a WHO statement about Clinton is very different from a
statement made by Clinton about the WHO. Hence, let us suppose we have a feature-state
relation in F called contents((author, topic,state)), and that this relation contains the
following triples:

contents(who,clinton,d4)
contents(clinton, who, ds)
contents(clinton,unesco,ds).

red green blue green green | red

red green red red green | red

Figure 3: Example for the Matrix Media-Instance

The set R of inter-state relations is left empty for now. OO

A more detailed scenario of how documents can be viewed as a media-instance is described
later in Example 10. Above, we have described a scenario containing information pertaining
to certain objects (e.g. clinton, gore,, etc.) and shown how this information can be
represented using video, audio and document media-instances. We will refer to these
three particular scenarios as the “Clinton-example” in the rest of this paper.

3.2 Examples of Media-Instances

The following examples show how the notion of a media-instance is very general and can be
used to describe a wide variety of media types (and data representations on that medium)
that are likely to be encountered in practice.

Example 4 (2 x 2 Matrices) Consider the set of 2 x 2 matrices whose values can be in
the set { red, blue, green }. This forms the set, ST, of states of a media-instance LM. We
can define several inter-state relations on this media-instance. For instance, we may define:

1. M; similar M5 iff matrices My and My have the same color in at least 2 pixel entries.
In figure 1, matrices A and B are similar, but A and C are not.

2. M, have the same colors M, iff the set of colors in M; and the set of colors in My are
the same. In figure 1, A and C' have the same colors, but A and B do not, and B and
C' do not either.

Note that A, B,C shown in Figure 3 are state-terms in the matrix media-instance. In this
example, we assume that the feature set is empty, and hence, the function A is empty and

F is empty. OO

Example 5 (Quad-Tree Media-Instance) Consider any elementary record structure
called INFO, and suppose we consider the space of all quad-trees [17] that can be constructed

using this record structure as the information field(s) in a node. In addition, there are four
fields, NW, SW, NE, SE denoting the four quadrants of a rectangular region. Then we can define
a media-instance called QT = (ST, fe, A\, R, F, Var,, Vary) where ST is the set of all such
quadtrees (this set may be infinite). The variables in Var; can be instantiated to specific
quadtrees. R may contain a bunch of relations of (possibly) different arities. Some examples
of such relations are:

e nw_empty is a unary relation such that nw_empty(V) is true of quad-tree V iff the
NW-link of each node in quadtree V' is empty.

o Visame_numV; iff quad-trees V7 and V3 have the same number of nodes (even though
both quadtrees may be very different).

o Visame V5 iff V7 and V5, are identical.

o between(V7, V,, V3) iff V7 is a subtree of V3 and V3 is a subtree of Vs.

Suppose the quadtrees in question describe the geographical layout of Italy. Then some of
the features of interest may be: Rome, Venice, Genoa, Milan. There may an inter-feature
relationship called larger_than such that:

larger_than(milan,genoa,S)
larger_than(rome,venice,S)
. etc.

Above, S is a state-variable and the above constraints reflect the fact that Milan is larger
than Genoa in all states. However, there may state-specific feature constraints: for instance,
in a specific quad-tree instance showing a detailed map of Rome, we may have a constraint
saying:

in(rome, colosseum,sy).

However, in a full map of Italy, the constraint
in(rome, colosseum, fullmap)

may not be present because the Colosseum may be a feature too small/unimportant to be
represented in a full map of Italy. The feature assignment function would specify precisely
in which states which features are relevant. OO

Example 6 (Relational Database Media-Instance) Consider any relational database
having relational schemas

Ri(AY,. ., Ay), .o Rie(AF, . AR).

The media-instance, RDB of relational databases can be expressed as a 7-tuple (ST, fe, A\, R,
F,Vary, Var,) as follows. Let ST be the set [J¥, Uik, dom(Aé). Let ® = {R,...,R}}
where R? is the set of tuples in relation R;. The variables range over the elements in ST.
All other parts of the 7-tuple are empty. OO

Example 7 (Deductive Database Media-Instance) Suppose we consider definite Horn
clause logic programs [14] over a given alphabet. Then we can define a media-instance DDL
as follows: ST, the set of states, is the set of ground terms generated by this alphabet.
fe = () and so is A\. Var; is simply the set of variable symbols provided in the alphabet
(and, as usual, these variables range over the ground terms in the language). For each
n-ary predicate symbol p in the alphabet, there is an n-ary relation, R? in ®; R contains
no other relations. (A logician might recognize that DDL is, intuitively, just an Herbrand
model [14]). All other components of the media instance are empty. OO

Example 8 (Object-Oriented Media-Instances) Suppose we consider an inheritance
hierarchy containing individuals ¢4, ..., %,, classes ¢q,.. ., ¢., methods mq, ..., m,, and prop-
erties p1,...,pr. Let H be the hierarchy relationship, i.e. H(z,y) means that individ-
ual/class z is a member/subclass of class y. Then we can define a media-instance, OOL
as follows: the set of states, ST, is {i1,...,%n,€1,...,¢,,m1,...,ms}. Variables range over
individuals, classes and methods. Each property p; is a unary relation in R.

Some additional examples of relations that could be in & are:

e subclass(Vy, V) iff V; is a subclass (resp. individual) of (resp. in) class V;.

e same_num(V7, V3) iff V3 and V; are both classes containing the same number of indi-
viduals.

e Animportant relation is the applicability of methods to classes. This could be encoded
as a special relation, applicable(m;, ¢,,) saying that method m; is applicable to class
Cy- All other components of the 7-tuple are empty.

2

Example 9 (Audio Media-Instances) Suppose we consider audio input. It is well-
known that voice/audio signals are sets of sine/cosine functions'. Let VL be the language
defined as follows. The set, ST, is the set of all sine/cosine waves. Features may include
the properties of the signals such as frequency and amplitude which in turn determine
who/what is the originator of the signals (e.g. Bill Clinton giving a speech, Socks the cat
meowing, etc.). State variables range over sets of audio signals. Examples of relations in
are:

e same_amplitude(V7, V3) iff V4 and V3 have the same amplitude.

e Similarly, binary relations like higher frequency and more_resonant may be defined.

Relations in F may include feature-based relations such as owns(clinton,socks,S) spec-
ifying that Socks is owned by Clinton in all states in our system. OO

! Technically, it would be more correct to say that it is possible to approximate any audio signal with sine
and cosine waveforms (using Fourier series) as long as the signal is periodic. The reason is that you need
the fundamental frequency (or time period) to decompose the signal into a series.

10

Example 10 (Document Media-Instances) Suppose we consider an electronic docu-
ment storage and retrieval scheme. Typically, documents are described in some language
such as SGML. Let DOCL be the media-instance defined as follows. ST is the set of all
document descriptions expressible in syntactically valid form (e.g. in syntactically correct
SGML and/or in Latex or in some other form of hypertext). State variables range over
these descriptions of documents. Examples of relations in & are:

e university_tech_rep(V') is true iff the document represented by V' is a technical report
of some university.

o cut_paste(Vq, Vy, V5, Vy) iff V4 represents the document obtained by cutting V; from
document V3 and replacing it by V5.

o comb _health_benefits_chapter(V1, ..., Vs, V) iff V represents the document obtained by
concatenating together, the chapter on health benefits from documents represented by
Vi,...,Vso. For example, Vi,...V50 may be handbooks specifying the legal benefits
that employees of companies are entitled in the 50 states of the U.S.A. V', in this case,
would be a document describing the health benefits laws in the different states.

Features of a document may include entities such as:
dental,hospitalization,emergency_care.

Feature constraints (i.e. members of F) may include statements about maximal amounts
of coverage, e.g. statements such as:

max_cov(dental,5000,d.1),
max_cov(hospitalization,1000000,d.1),
max_cov(emergency,100000,d.1).

Here, d_1 is a specific document describing, say, the benefits offered by one health care
company. Conversely, d_2 may be a document reflecting similar coverage offered by another
company, except that the maximal coverage amounts may vary from those provided by the
first company. OO

Definition 5 A multimedia system MMS is a finite set of media instances.

4 Indexing Structures and a Query Language for Multime-
dia Systems

Consider a multimedia system M = {My,..., M, } that a user wishes to retrieve infor-
mation from. In this section, we will develop a query language and indexing structures for
accessing such multimedia systems.

11

4.1 Frame-Based Query Language

In this section, we develop a query language to express queries addressed to a multimedia
system MMS = {My,..., M, } where

M; = (STZ',fei7 /\i,%i,}"i,Vari,Varé).
We will develop a logical language to express queries. This language will be generated by
the following set of non-logical symbols:
1. Constant Symbols:

(a) Each f € fe' for 1 < i < nis a constant symbol in the query language.
(b) Each s € ST for 1 < i < n is a constant symbol in the query language.

(c) Each integer 1 < ¢ < n is a constant symbol.
2. Function Symbols: flist is a binary function symbol in the query language.

3. Variable Symbols: We assume that we have an infinite set of logical variables

Vi,oo Vi
4. Predicate Symbols: The language contains
(a) a binary predicate symbol frametype,

(b) a binary predicate symbol, €,

(c) for each inter-state relation R € R of arity j, it contains a j-ary predicate symbol
R*.

(d) for each feature-state relation 1 € R} of arity j, it contains a j-ary predicate
symbol ¥*.

As usual, a term is defined inductively as follows: (1) each constant symbol is a term, (2)
each variable symbol is a term, and (3) if 7 is an n-ary function symbol, and #1,...,t, are
terms, then n(#1,...,%,) is a term. A ground term is a variable-free term. If p is an n-ary
predicate symbol, and tq,...,%, are (ground) terms, then p(t1,...,%,) is a (ground) atom.
A query is an existentially closed conjunction of atoms, i.e. a statement of the form

(DA & ..., Ay).

Example 11 Let us return to the video-domain in the Clinton-example (Figure 2). Let us
suppose that we have the following feature-state relations.

1. running mate(X,Y,S): X’s running mate is Y.
2. appointed(X,Y,P,S): X appointed Y to position P in state S.

3. with(X,Y,S): X is with Y in state S.

12

Observe that in the first two relations listed above, the state (i.e. the video-frame) does not
actually matter — Clinton’s running mate is Gore, independent of which picture is being
looked at. Clinton appointed Reno as Attorney General, and this is independent of the
picture being looked at. The third relation above is picture-specific, though. In picture
frame 1 Clinton is with Bush and with Gore — this contributes the facts:

with(clinton, bush, 1).
with(clinton, nixon, 1).

while the fact
with(clinton, reno, 2).

is contributed by the second picture. In addition, we will allow background inference rules
to be present; these allow us to make statements of the form:

with(Y,X,S) — with(X,V,S)
specifying that if X is with Y in state S, then Y is with X in that state.

A user of the multimedia system consisting of the picture frames may now ask queries such
as:

1. (3X,P,S)appointed(clinton,X,P,S) & with(clinton,X,S) & frametype(video)): This
query asks whether there is anyone who is a Clinton-appointee who appears in a pic-
ture/video frame with Clinton. The answer is “yes” with X = reno, P = Attorney
General and S = 2. (We are assuming here that atoms defining the predicate appointed
are stored appropriately.)

2. (3X,Y,S,51,S2)president(X,S1), & president(Y,S2) & X # clinton & Y # clinton
& X # Y& with(clinton,X,S) & with(clinton,Y,S) & frametype(S, video)): This query
asks if there is any picture in which which three Presidents of the USA (one of whom
is Clinton) appear together.

3. (3S)(clinton € flist(S) & horse € flist(S) & on(clinton,horse) &
frametype(S,video)): This question asks if there is a picture of Clinton on a horse.

4. (3S)(clinton € flist(S) & socks € flist(S) & meowing_at(socks,clinton) &
frametype(S,audio)): Is there an audio-frame in which both Clinton and Socks are
“featured” and Socks, the cat, is meowing at Clinton ?

5. (3S1,S82)nixon € f1list(Sq) & frametype(Sq,video) & X € £1ist(S1) & X # nixon&
person(X) & X € £flist(Sq) & frametype(So, audio)): This query looks to find a per-
son pictured in a video-frame with Nixon, who is speaking in an audio-frame elsewhere.

2

13

In general, if we are given a media-instance
M; = (ST, fe', \', ®*, F*, Var], Var},),

then we will store information about the feature-state relations as a logic program. There
are two kinds of facts that are stored in such a logic program.

State-Independent Facts: These are facts that reflect relationships between features
that hold in all states of media-instance M;. Thus, for example, in the Clinton example,
the fact that Gore is Clinton’s vice-president is true in all states of the medium M;. This
is represented as:

vice pres(clinton,gore,S) «

where S is a state-variable.

State-Dependent Facts: These are facts that are true in some states, but false in others.
In particular, if ¢ € fe is a j-ary relation (j > 1), and tuple £,s € ¢, then the unit clause
(or fact)

¢*(E,s) —

is present in the logic program. Thus, for instance, in a particular picture (e.g. figure 2),
Clinton is to the left of Reno, and hence, this can be expressed as the state-dependent fact

left(clinton, reno, sy)

where s9 is the name of the state in Figure 2(b).

Derivation Rules: Last, but not least, the designer of the multimedia system may add
extra rules that allow new facts to be derived from facts in the logic program. For instance,
if we consider the predicate left(personi,person2,S) denoting that personi is to the
left of person2 in state S, then a designer of the media-instance in question (video) may
want to add a derived predicate right and insert the rule:

right(P1,P2,S) — 1left(P2,P1,S).

A word of caution is in order here. The more complex the logic programs grow, the more
inefficient are the associated query processing procedures. Hence, we advocate using such
derivation rules with extreme caution when building multimedia systems within our frame-
work; however, we leave it to the system designer (based on available hardware, etc.) to
make a decision on this point according to the desired system performance.

4.2 The Frame Data Structure
In this section, we will set up a data structure called a frame that can be used to access

multimedia information efficiently. We will discuss how frames can be used to implement
all the queries described in the preceding section.

14

Suppose we have n media instances, My, ..., M, where
M; = (ST fe', X', R|, R, Var], Var})

for 1 < ¢ < n. We will have two kinds of structures used, in conjunction with each other,
to access the information in these » media instances.

1. The first of these, called an 0BJECT-TABLE, is used to store information about which
states (possibly from different media instances) contain a given feature. Thus, for
each feature f € (Ji_, fe', a record in the OBJECT-TABLE has as its key, the name f,
together with a pointer to a list of nodes, each of which contains a pointer to a state
(represented by a data structure called a frame described below) in which f occurs as
a feature. As the 0BJECT-TABLE is searched using alphanumeric strings as the keys,
it is easy to see that the 0BJECT-TABLE can be organized as a standard hash-table,
where relatively fast access methods have been implemented over the years.

2. The second of these structures is a frame. It should be noted that the 0BJECT-TABLE
data structure and the frame data structure are closely coupled together. With each
state s € Ji, ST?, we associate a pointer which points to a list of nodes, each of
which, in turn, points to a feature in the 0BJECT-TABLE (or rather, points to the first
element in the list of nodes associated with that feature).

We now give formal definitions of these structures, and later, we will give examples showing
how these structures represent bodies of heterogeneous, multimedia data.

Definition 6 Suppose M; = (STi,fei,/\i, i é,Vari,Varé) and framerep is a data
structure that represents the set, ST;, of states. Then, for each state s € ST*, a frame in
medium M; is a record structure consisting of the fields shown in Figure 3 such that:

1. for each feature f € /\i(s), there is a node in f1ist having f as the info field of that
node, and

2. if f occurs in the info field of a node in £f1ist, then f € A\'(s), and

3. if f € fe' is a feature, then there is an object whose objname is f and such that the
list pointed to by the 1ink2 field of this object is the list of all states in which f is
a feature, i.e. is the list of all states s € ST such that f € A*(s).

4. We assume that all feature-state relations are stored as a logic program as specified
in Section 4.1.

The above definition specifies frames independently of the medium (e.g. audio, video, latex
file, quadtree, bit maps, etc.) used to store the specific data involved. The internal represen-
tation of the structures are specified using the data type framerep listed (and intentionally
not defined) above. When several different data structures are being simultaneously used,
we will use framerepy,...,framerepg to denote the different instantiated structures. Some
examples of data representable as frames are the following:

15

frame = record of
name: string; /* name of frame */
frametype: string; /* type of frame: audio, video, etc. */
rep: “framerep ; /* disk address of internal frame representation */
flist: “nodel ; /* feature list */
end record

nodel = record of
info: string ; /* name of object */
link: “nodel ; /* next node in list */
objid: “object ; /#* pointer to object structure named in "info" field */
end record;

object = record of
objname: string ; /* name of object */
1ink2 : “node2 ; /* list of frames */
end record

node2 = record of
frameptr : “frame ;
next : “node2
end record

Figure 4: Data Structure for Frame-Based Feature Storage

16

a “still” photograph;

a video/audio clip;

a Latex document

e a bitmap of a geographic region, etc.

In addition to the above, for any M;, we assume that there is an associated string, called
the frametype of M;. Intuitively, this string may be “video,
consider a couple of very, very simple examples below to see how a collection of objects can
be represented as a frame.

? “audio,” etc. Let us now

Example 12 (Indexing for a Single Medium) Let us return to the Clinton-example
and reconsider the two video-clips v1 and vy in Figure 2. The first video clip shows three
humans who are identified as George Bush, Bill Clinton, and Richard Nixon. The second
clip shows two humans, identified as Bill Clinton and Janet Reno.

This set of two records contain four significant objects — Bush, Clinton, Nixon and
Reno. Information about these four objects, and the two photographs may be stored in the
following way.

Suppose vi and vy are variables of type frame. Set:

vi.rep = 100
vp.rep = 590

specifying that the disk address at which the video-clips are stored are 100 and 590, respec-
tively. Let us consider vy and vy separately.

o the field vi.f1list contains a pointer to a list of three nodes of type nodel. There are
three nodes in the feature list because there are three objects of interest in video-frame
vi. Each of these three nodes represents information about the objects of interest in
video-frame vy.

— the first node in this list has, in its info field, the name BUSH. It also contains a
pointer, P1 pointing to a structure of type object. This structure is an object-
oriented representation of the object BUSH and contains information about other
video-frames describing George Bush (i.e. a list of video-frames v such that for
some node N in v’s flist, N.info = BUSH.) The list of video-frames in which
BUSH appears as a “feature” in the manner just described is pointed to by the
pointer P1.1ink2 = ((vy.flist).objid).1ink2. In this example that uses only
two video-frames, the list pointed to by ((vi.flist).objid).1ink2 contains only
one node, viz. a pointer back to vy itself, i.e. ((vi.flist).objid).1ink2 points
to vq.

— the second node in this list has, in its info field, the name CLINTON. It also
contains a pointer, P2 pointing to alist of video-frames in which CLINTON appears
as a “feature.” In this case, P2.1ink2 points to a list of two elements; the first
contains vy, while the second points to vs.

17

— the third node in this list has, in its info field, the name NIXON. The rest is
analogous to the situation with BUSH.

o the field vo.f1ist contains a pointer to a list of two nodes of type nodel. There are
two nodes because there are two objects of interest in video-frame vo.

— the first node in this list has, in its info field, the name CLINTON. The objid
field in this node contains the pointer P2 (the same pointer as in item 12 above.
The values of the fields in the node pointed to by P2 have already been described
in item 12 above.

— the second node in this list has, in its info field, the name RENO. The objid field
in this node contains a pointer, P4. The node pointed to by P4 has the following
attributes: P4.objname = RENO, while P4.1ink2 points to the start address where
vq is stored.

Figure 4 shows a diagrammatic representation of the storage scheme used to access the two
video-frames described above. In this example, the 0BJECT-TABLE is

bush P1
clinton | P2
nixon P3

reno P4

2

The main advantages of the indexing scheme articulated above are that:

1. queries based both on “object” as well as on “video frame” can be easily handled (cf.
examples below). In particular, the 0BJECT-TABLE specifies where the information
pertaining to these four objects is kept. Thus, retrieving information where accesses
are based on the objects in the table can be easily accomplished (algorithms for this
are given in the next section).

2. the data structures described above are independent of the data structures used to
physically store an image/picture. For instance, some existing pictures may be stored
as bit-maps, while others may be stored as quad-trees. The precise mechanism for
storing a picture/image does not affect our conceptual design. In this paper, we
will not discuss precise ways of storing the 0BJECT-TABLE — any standard hashing
technique should address this problem adequately.

3. Finally, as we shall see in Example 14 below, the nature of the medium is irrelevant
to our data structure (even though Example 12 uses a single medium, it can be easily
expanded to multiple media as illustrated in Example 14 below).

Example 13 Let us return to the Clinton-example, and the two video-frames shown in in
Figure 2. Let (3X,Y)with(X,Y) denote the query: “Given a value of X, find all people Y who
appear in a common video-frame with person X ?” Thus, for instance, when X = CLINTON,
Y consists of RENO,NIXON and BUSH. When X=RENO, then Y can only be CLINTON.

18

type “frame”

type = “nodel”
rep = 100 info = bush info = clintom info = nixon
0
— P1 — P2 — P3
type “frame”
rep = 590 info = clintom info = reno
U2
= P2 = P4
P1 bush vy
—=
P2 clinton
" U2
— ———
P3 nixon
U1 1
—
P4 reno |
v2 1
L=

Figure 5: Data Structure for the 2 Video-Frame Example

19

Such a query can be easily handled within our indexing structure as follows: When X is
instantiated to, say, CLINTON, look at the object with objname = CLINTON. Let N denote
the node (of type object) with its objname field set to CLINTON. The value of N can be
easily found using the O0BJECT-TABLE. N./ink2 is a list of nodes, N’ such that N'.frameptr
points to a frame with Clinton in it. For each node N’ in the list pointed to by N./ink2, do
the following: traverse the list pointed to by (N'.frameptr).flist. Print out the value of
((N.frameptr).flist).objname for every node in the list pointed to by (N'.frameptr).flist.
Repeat this process for each node in the list pointed to by N.1ink2. OO

The following example shows how the same data structure described for storing frames can
be used to store not only video data, but also audio data, as well as data stored using other
media.

Example 14 (Using the Frame Data Structure for Multimedia Information) Sup-
pose we return to example 12, and add two more frames — one is the audio-frame aq from the
Clinton-example, while the other is the structured document d; from the Clinton example.
Note that in Example 12, the structure used to store a picture/video-clip did not affect the
design of a frame. Hence, it should be (correctly) suspected that the same data structure
can be used to store audio data, document data, etc.

We know that our audio-frame aq is a text read by Bill Clinton, and that it is about the
World Health Organization (WHO, for short). Then we can create a pointer, aq (similar
to the pointers v; and vy in Example 12). The pointer a; points to a structure of type
frame. Its feature list contains two elements, CLINTON and WHO referring to the fact that
this audio-clip has two objects of interest. The list pointed to by P2 is then updated to
contain an extra node specifying that ¢; is an address where information about Clinton is
kept. Furthermore, the pointer associated with the object WHO in the OBJECT-TABLE is P5
which points to an object called WHO. The list of frames associated with P5 consists of just
one node, viz. a.

We also know that the document d; is a position statement by the WHO about CLINTON. Then
we have a new pointer, dy (similar to the pointers v; and v, in Example 12). The pointer
dy points to a structure of type frame. Its feature list contains two elements, CLINTON and
WHO referring to the fact that this audio-clip has two objects of interest. The list pointed
to by P2 is then updated to contain an extra node specifying that dy is an address where
information about Clinton is kept. Furthermore, the pointer list of frames associated with
the entry in the 0BJECT-TABLE corresponding to WHO, i.e., P5, is updated to consist of an
extra node, viz. d.

Figure 6 contains the new structures added to Figure 45in order to handle these two media.

2

4.3 Query Processing Algorithms

In this section, we will develop algorithms to answer queries of the form described in Sec-
tion 4.1. As queries are existentially closed conjunctions of atoms, and as atoms can only

20

ay

dy

P5

P2

type “frame”

rep = 1000

type = “nodel”

info = who

info = clintoj

h

type “frame”

rep = 4500

= P5

info = clinton

— P2

info = who

= P2 = P5
who

ai dl

L= L=

clinton

U1)

| |

E— =
aq dy

| |

Figure 6: Data Structure for Multimedia-Frame Example

21

be constructed in certain ways, we will first discuss how atomic queries can be answered
(depending on the kinds of atoms involved) and then show how conjunctive queries can be
handled (just as a JOIN).

4.3.1 Membership Queries

Suppose we consider a ground atom of the form t € flist(s) where ¢ is an object-name
and s is a state. As the query is ground, the answer is either yes or no. The algorithm
below shows how such a query may be answered.

proc ground_in(t:string; s:Tnodel):boolean;
found := false; ptr := s.flist;
while (not(found) & ptr # NIL do
if (ptr.info = t) then found := true
else ptr := ptr.link ;
return found.
end proc.

It is easy to see that the above algorithm is linear in the length of flist(s).

Suppose we now consider non-ground atoms of the form t € flist(s) where either one, or
both, of t,s are non-ground.

(Case 1: s ground, ¢ non-ground) In this case, all that needs to be done is to check if s.f1ist
is empty. If it is, then there is no solution to the existential query “(3t)t € flist(s).”
Otherwise, simply return the “info” field of s.flist. Thus, this kind of query can be
answered in constant time.

(Case 2: s non-ground, ¢ ground) This case is more interesting. ¢ is a feature, and hence, an
object. Thus, ¢t must occur in the 0BJECT-TABLE. Once the location of ¢ in the 0BJECT-TABLE
is found (let us say PTR points to this location), and if PTR.link2 is non-NIL, then return
(((PTR.link2).frameptr).name). If PTR.link2 is NIL, then halt — no answer exists to the
query “(3ds)t € £list(s).” Thus, this kind of query can be answered in time O(k) where k
is the length of the list PTR.link2.

(Case 3: s non-ground, ¢ non-ground) In this case, find the first element of the 0BJECT-TABLE
which has a non-empty “link2” field. If no such entry is present in the table, then no answer

exists to the query “(3s,t)t € flist(s).” Otherwise, let PTR be a pointer to the first such

entry. Return the solution

t = PTR; s = (((PTR.link2).frameptr).name).
Thus, this kind of query can be answered in constant time.

4.3.2 Other Queries

The other three types of predicates involved in an atomic query can be answered by simply
consulting the logic program. For instance, queries of the form (3N, S)frametype(N,.S)

22

can be handled easily enough because the binary relation frametype is stored as a set
of unit clauses in the logic program representation. Similarly, queries involving feature-
state relations can be computed using the logic program too. Queries involving inter-state
relations can be solved by recourse to the existing implementation of those operations. As
described earlier, inter-state relationships are domain dependent, and we envisage that the
implementation of these relationships will be done in a domain specific manner.

Answers to conjunctive queries are just joins of answers to their atomic parts. Join queries
can be optimized by adapting standard methods to work with our data structures.

4.4 Updates in Multimedia Databases

It is well-known that database systems need to be frequently updated to reflect new in-
formation that was not available before, or which reflect corrections to previously existing
information. This situation will affect multimedia database systems in the same way cur-
rent database systems are affected by it. However, how these updates are incorporated will
change because of the nature of the indexing structures we use. Updates to an integrated
multimedia system can be of two types:

1. Feature Updates within States: [t may be the case that features in a given
state were either not identified at all, or were incorrectly identified. For instance,
a pattern recognition algorithm which extracts features from video may leave Jack
Kemp unclassified simply because he was not on the list of features the system knew
about. Am enhanced pattern recognition algorithm pressed into service later may
wish to add a new feature, viz. kemp, to the list of features possessed by a certain
video-frame. In the same vein, a Bill Clinton look alike may mistakenly be classified
as Bill Clinton and later, it may become apparent that the feature clinton should be
deleted from this video-clip (as Clinton is not in the video). We show, in Section 4.4.1
and 4.4.2 below, how features can be efficiently added and deleted from states.

2. State Updates: When new states arrive they need to be processed and inserted
into the multimedia database system. For instance, new video-information showing
Clinton speaking at various places may need to be added. In the same, deletions
of existing states (that have been determined to be useless) may also need to be
accomplished. Section 4.4.3 and 4.4.4 specify how these insertions and deletions may
be accomplished.

4.4.1 Inserting Features into States

In this section, we develop a procedure called feature_add that takes a feature f and a
pre-existing state s as input, and adds f to state s. This must be done in such a way that
the underlying indexing structures are modified so that the query processing algorithms can
access this new data.

proc feature_add(f:feature; s:state);
Insert f into OBJECT-TABLE at record R.

23

Let N be the pointer to state 5.

Set R to N.

Add R to the list of features pointed to by node N.
end proc.

It is easy to see that this algorithm can be executed in constant time (modulo the complexity
of insertion into the 0BJECT-TABLE).

4.4.2 Deleting Features From States

In this section, we develop a procedure called feature_del that takes a pre-existing feature
f and a pre-existing state s as input, and deletes f from s’s feature list.

proc feature_del(f:feature; s:state);

Find the node N in s’s flist having N.info = f.

Set T to N.objid.

Delete N.

Examine the list of states in T./ink2 and delete the node whose frameptr
field is s.

end proc.

It is easy to see that this algorithm can be executed in linear time (w.r.t. the lengths of the
lists associated with s and f, respectively).

4.4.3 Inserting New States
Adding a new state s is quite easy. All that needs to be done is to:

1. Create a pointer S to a structure of type frame to access state s.
2. Insert each feature possessed by state s into S’s flist.

3. For each feature fin s’s f1ist, add s into the list of frames pointed to by f’s frameptr
field.

It is easy to see that the complexity of inserting a new state is linear in the length of the
feature list of this state.

4.4.4 Deleting States

The procedure to delete state s from the index structure is very simple. For each feature
fin s’s f1list, delete s from the list pointed to by f.frameptr. Then return the entire list
pointed to by S (where S is the pointer to the frame representing s) to available storage.
It is easy to see that the complexity of this algorithm is

length(£list(s))+ > f € £1ist(s){(f.frameptr)

24

where length(flist(s)) is the number of features s has, and {(f.frameptr) is the length of
the list pointed to by f.frameptr, i.e. the number of states in which f appears as a feature.

In this section, we have made three contributions: we have defined a logical query language
for multimedia databases, an indexing structure that can be used to integrate information
across these different media-instances, query processing procedures to execute queries in
the query language using the indexing structure, and database update procedures that use
the indexing structure based on improved data.

5 Multimedia Presentations

The description of multimedia information systems developed in preceding sections is com-
pletely static. It provides a query language for a user to integrate information stored in
these diverse media. However, in many real-life applications, different frames from differ-
ent media sources must come together (i.e. be synchronized) so as to achieve the desired
communication effect. Thus, for example, a video-frame showing Clinton giving a speech
would be futile if the audio-track portrayed Socks the cat, meowing. In this section, we
will develop a notion of a media-event — informally, a media event is a concatenation of the
states of the different media at a given point in time. The aim of a media presentation is to
achieve a desired sequence of media-events, where each individual event achieves a coherent
synchronization of the different media states. We will show how this kind of synchroniza-
tion can be viewed as a form of constraint-solving, and how the generation of appropriate
media-events may be viewed as query processing. In other words, we suggest that:

Generation of Media Events = Query Processing.

Synchronization = Constraint Solving.

5.1 Generation of Media Events = Query Processing

In the sequel, we will assume that we have an underlying multimedia system MMS =

{My,..., M.} where M; = (ST, fe', \', R}, R, Var}, Var}).

Definition 7 A media-event w.r.t. MMS is an n-tuple, (s1,...,s,) where s; € ST, i.e. a
media-event is obtained by picking, from each medium M;, a specific state.

Intuitively, a media-event is just a snapshot of a medium at a given point in time. Thus, for
instance, if we are considering an audio-video multimedia system, a media-event consists of
a pair (a,v) representing an audio-state @ and a video-state v. The idea is that if (a,v) is
such a media-event, then at the point in time at which this event occurs, the audio-medium
is in state a,and the video-medium is in state v.

Example 15 Suppose we return to the Clinton Example, and suppose we consider the
video-frame shown in Figure 2(b). Let us suppose that this represents the state s; when
Reno was sworn in as Attorney General, and let us suppose there is an audio-tape ay4
describing the events. Then the pair (s1,a4) is a media-event; intuitively, this means that

25

state s; (video) and state a4 (audio) must be “on” simultaneously. (We will go into details
of synchronization in a later section. SO

We now formally define the notion of “satisfaction” of a formula in the query language by
a media-event.

Definition 8 Suppose me = (s1,...,5,) is a media event w.r.t. the multimedia system
MMS = {My,..., M,} as specified above, and suppose F'is a formula. Then we say that
me satisfies I' (or me makes I’ true), denoted me |= F as follows:

1. if ' = frametype(a,b) is a ground atom, then me |= ' iff a = s; for some 1 <i < n
and the frametype of M; is b. (Recall, from the definition of the frame data structure,
that associated with each M; is a string called M;’s frametype.)

2. if F = (¢ € f1list(b)), and there exists an 1 < i < n such that ¢ is a feature in fe
and b = s;, then me = F iff ¢ € X'(s;).

3.if F = ¢*(t1,...,1n,5) and for some 1 < i < n, t1,...,t, € fe' and s € ST, then
me = Fiff (t1,...,1,,5) € ¢ € RNS.

4. if F = (G & H), then me |= I iff me = G and me |= H.

5. if F' = (3z)F and z is a state (resp. feature) variable, then me = F' iff me = F[z /1]
where F[z/t] denotes the replacement of all free occurrences of z in F' by t where ¢ is
a state (resp. feature) constant?

If I cannot be generated using the inductive definition specified above, then it is the case
that me [£ F.

Definition 9 A multimedia specification is a sequence of queries @1, @32, ...to MMS.

The intuitive idea behind a multimedia specification is that any query defines a set of
“acceptable” media-events, viz. those media-events which make the query true. If the goal
of a media specification is to generate a sequence of states satisfying certain conditions (i.e.
queries), then we can satisfy this desideratum by generating any sequence of media events
which satisfies these queries.

Definition 10 Suppose meg = (S1,...,5,) is the initial state of a multimedia-system, i.e.
this is an initial media-event at time 0. Suppose @)1, @2, ... is a multimedia specification. A
multimedia presentation is a sequence of media-events mey, ..., me;,... such that media-
event me; satisfies the query @);.

The intuitive idea behind a multimedia presentation is that at time 0, the initial media-
event is (s1,...,5,). At time 1, in response to query @)1, a new media-event, me; which
satisfies ()1 is generated. At time 2, in response to query ()7, a new media-event, mes, in
response to query (), is generated. This process continues over a period of time in this way.

>The notion of a “free” variable is the standard one, cf. Shoenfield [19]).

26

Example 16 (Multimedia Event Generation Example) Let us suppose that we have
recourse to a very small multimedia library consisting of five video-frames, and five audio-
frames. Thus, there are two media involved, M, (audio) and My (video), and there are five
states in each of these media. The tables below specify the audio states and video states,

respectively:
Audio Video

Frame Name Features Frame Name Features
a1 clinton v clinton, gore, bush
a3 clinton, socks 2 clinton, gore
as gore V3 clinton
ay bush V4 gore, Teno
as clinton, gore Vs clinton, gore, reno

Let us now suppose that the initial media-event is some pair meg = (g, vg) consisting of a
blank, i.e. the feature lists for both media are initially empty (i.e. there is no video, and no
audio at time 0). Suppose we consider the evolution of this multimedia system over three
units of time. Let us consider the multimedia specification ()1, @3, Q3 where:

@1 = (3S1,S9)(frametype(S1,video) & frametype(Sy,audio) & clinton € £flist(Sq) &
gore € flist(Sq1) & clinton € £1ist(Sy)).

@2 = (3S1,S2)(frametype(S1,video) & frametype(Sy,audio) & clinton € £flist(Sq) &
gore € flist(Sq) & gore € £list(Sy)).

(3 = (3S1,S9)(frametype(S1,video) & frametype(Sy,audio) & clinton € £flist(Sq) &

gore € flist(S1) & bush € £f1list(Sq) & clinton € £1list(Sy) & gore € £1list(Sy)).

Observe that query @1 can be satisfied by any substitution that sets 57 to an element of
{v1,v2,v5} and Sy to an element of {ay, as,as} — thus there nine possible combinations of
audio/video that could come up in response to this query at time 1. Had the user wanted
to eliminate some of these nine possible s/he should have added further conditions to the

query.

When query @ is processed, 57 can be set to any of {vy,v,,v5} as before, but S5 may be
set only to one of {as,as}. Thus, any of these six possible audio-video combinations would
form a legitimate media event at time 2.

Lastly, to satisfy @3, 57 must be set to v; and 53 must be set to as; no other media-event
would satisfy @s.

As a final remark, we observe that not all queries are necessarily satisfiable (and hence,
for some queries, it may be impossible to find an appropriate media-event). For instance,
consider the query (35)(frametype(S5, audio) & reno € £list(5)). It is easily seen that
there is no audio-frame in our library which has Reno in its feature list, and hence, this
query is not satisfiable. OO

27

5.2 Synchronization = Constraint Solving

In preceding sections, we have not considered the problem of synchronization. In particular,
it is naive to assume, as done previously, that queries ()1, @2, @3, ... will be posed one after
the other at times 1,2,3,..., respectively. Rather, experience with multimedia systems
existing in the market suggests that a query may be “in force” for a certain period of time.
In other words, the multimedia system (or the Multimedia Integrator shown in Figure 1)
may be given the following inputs:

e a sequence Q)1,Q2,...,Qx of queries indicating that query ()1 must be answered (i.e.
a media-event that satisfies query @)1 be “brought up”), followed by a media-event
satisfying query @9, etc., and

e a deadline d by which the entire sequence of media-events must be completed, and

o for each query @;, 1 < i < n, a lower bound LB; and an upper bound UB; reflecting
how long the media-event corresponding to this query should be “on.” LB; and UB;
are integers — we assume discrete time in our framework.

The Multimedia Integrator’s job is to:

e (Task 1) Answer the queries Qq,...,Q,, i.e. find media events mey,..., me, that
satisfy the above queries.

o (Task 2) Schedule the actual start time and end time of each media-event, and ensure
that this time achieves the lower-bound and upper-bound alluded to earlier.

Task 1 has already been addressed in the preceding section; we now address task 2. We
show that the scheduling problem is essentially a constraint satisfaction problem which may
be formulated as follows.

Individual Media Constraints. Let s; be a variable denoting the start time of media-
event me;, and let e; be a variable denoting the execution time of media-event me; — it is
important to note that the values of these variables may not be known initially. Then, as
we know that media-event me; must be “on” for between LB; and UB; time units, we know
that:

LB; < e; < UB;

is a constraint that must be satisfied within our framework. Furthermore, the constraints
$i>20;€ >0

must be satisfied as well.

Synchronization. The only remaining thing is to ensure that the media-event to query
()41 starts immediately after the media-event satisfying query ;. This may be achieved
by the following constraint:

Si41 = Si T €

where 7 < n.

28

Deadline Constraint. Finally, we need to specify that the deadline has to be achieved,
i.e. the completion-time of the last media-event must be achieved on, or before the deadline.
This can be stated as:

s;i+e; < d.

Together with the constraint that all variables (i.e. s1,...,8,,€1,...,€,) are non-negative,
the solutions of the above system of equations specify the times at which the media-events
corresponding to queries 01,2, ..., Q, must be “brought up” or “activated”.

5.3 Internal Synchronization

In the preceding section, we have assumed that though a media-event involves a multiplicity
of participating media, all these different media-states are brought up simultaneously and
synchronously. We call the problem of synchronizing the individual media-states participat-
ing in a particular media-event internal synchronization as this is related to the media-event
generated by a specific query. An easy solution is to assume that while the media-event cor-
responding to query); is “on,” the system computes a media-event, me;;,, corresponding
to query (J;4+1 and stores the individual media-states in a buffer. Thus, there is a buffer,
BUF; corresponding to each media-instance, M;. In the next section, we discuss how these
buffers can be organized and managed.

5.4 Media Buffers

Internal synchronization requires that at any given point in time, if the media-event me;
corresponding to query); is “on,” then the media-event me;; corresponding to query
()i+1 is ready and loaded in the buffers. Let

me; = (S1,...,8)

Sy, sh).

—~~

me;; =

Then, for each 1 < i < n, it suffices to store the set of differences (this set is denoted §;)
between state s; and state si. These two states reflect, respectively, the status of media-
instance M; when query @; is “on” and when query @;4+1 is “on.” For instance, if media-
event M; is of frametype video, then s; and s may be pictures. Suppose, for instance,
that we are discussing an audio-video presentation (say of some cowboys), and there are
three differences between states s; and s, i.e. §; = {dy,dy,ds} where:

1. dq represents a pistol which just appeared in a cowboy’s hand,
2. dg represents a dog turning his head,

3. d3 represents a leaf falling in the breeze.
Then it may be the case that d; is the “most important” of these changes, d; is the second
most important, and dz is the least important of these differences. Hence, it may be critical,

when bringing up state s; from the buffer, that d; be brought up first, then d; and only
finally, ds.

29

In general, we assume that associated with each medium M;, we have a classification
function, cf;, which assigns, to each difference, a non-negative integer called that difference’s
classification level. The buffer, BUF,;, associated with media-instance M; is organized as a
prioritized queue — all differences with priority 1 are at the front of the queue, all differences
with priority 2 are next in the queue, and so on. Thus, when the queue is flushed (i.e. when
the process of bringing state s! “up” is started), then the differences are brought up in
the specified priority order. Note that if two differences are both labeled with the same
classification level, then it is permissible to bring them up in any order relative to each

other.

6 Related Work

There has been a good deal of work in recent years on multimedia. Zdonik [29] has specified
various roles that databases can play n complex multimedia systems [29, p.409]. One of
these is the logical integration of data stored on multiple media — this is the topic of this

paper.

Kim et. al. [27, 28] show how object-oriented databases (with some enhancements) can be
used to support multimedia applications. Their model is a natural extension of the object-
oriented notions of instantiation and generalization. The general idea is that a multimedia
database is considered to be a set of objects that are inter-related to each other in various
ways. The work reported here is compatible to that [27, 28] in that the frames and features in
a media-instance may be thought of as objects. There are significant differences, however,
in how these objects are organized and manipulated. For instance, we support a logical
query language (Kim et. al. would support on object-oriented query language), and we
support updates (Kim et. al. can do so as well but using algorithms compatible with
their object-oriented model). We have analyzed the complexity of our query processing
and update algorithms. FFurthermore, the link between query processing and generation of
media events is a novel feature of our framework, not present in [27, 28]. Last, but not
least, we have developed a formal theoretical framework within which multimedia systems
can be formally analyzed, and we have shown how various kinds of data representations on
different types of media may be viewed as special cases of our framework.

Oomoto and Tanaka [15] have defined a video-based object oriented data model, OVID.
What the authors do primarily is to take pieces of video, identify meaningful features
in them and link these features especially when consecutive clips of video share features.
Our work deals with integrating multiple media and provide a unified query language and
indexing structures to access the resulting integration. Hence, one such media-instance we
could integrate is the OVID system, though our framework is general enough to integrate
many other media (which OVID cannot). The authors have developed feature identification
schemes (which we have not) and this complements our work. In a similar vein, Arman et.
al. [2] develop techniques to create large video databases by processing incoming video-data
so as to identify features and set up access structures. Another piece of relevant related work
is that of the QBIC (Query by Image Content) system of Barber et. al. [3] at IBM, They
develop indexing techniques to query large video databases by images — in other words, one
may ask queries of the form “Find me all pictures in which image I occurs.” Retrievals

30

are done on the basis of similarity rather than on a perfect match. In constrast to our
theoretical framework, [3] shows how features may be identified (based on similarity) in
video, and how queries can be formulated in the video domain.

Cardenas, et. al. [5] have developed a query language called PICQUERY+ for querying
certain kinds of federated multimedia systems. The spirit of their work is similar to ours
in that both works attempt to devise query languages that access heterogeneous, federated
multimedia databases. The differences, though, are in the following: our notion of a media-
instance is very general and captures, as special cases, many structures (e.g. documents,
audio, etc.) that their framework does not appear to capture. Hence, our framework can
integrate far more diverse structures than that of [5]. However, there are many features
in [5] that our framework does not currently possess — two of these are temporal data and
uncertain information. Such features form a critical part of many domains (such as the
medical domain described in [5]), and we look forward to extending our multimedia work in
that direction, in keeping with a similar effort we have made previously [21] for integrating
time, uncertainty, data structures, numeric constraints and databases.

Little and Ghafoor [13] have developed methods for satisfying temporal constraints in mul-
timedia systems. This relates to our framework in the following way: suppose there are
temporal constraints specifying how a media-buffer (as defined in this paper) must be
flushed. Little and Ghafoor [13] show how this can be done. Hence, their methods can be
used in conjunction with ours. In a similar vein, Prabhakaran and Raghavan [16] show how
multimedia presentations may be synchronized.

Other related works are the following: Gaines and Shaw [10] develop an architecture to
integrate multiple document representations. Eun et. al. [6] show how Milner’s Calcu-
lus of Communicating Systems can be used to specify interactive multimedia but they
do not address the problem of querying the integration of multiple media. Gemmel and
Christodoulakis [7] study delay-sensitive data using an approach based on constrained block
allocation. This work is quite different from ours.

Finally, we note that multimedia databases form a natural generalization of heterogeneous
databases which have been studied extensively in [1, 8, 11, 12, 18, 20, 21, 22, 23, 24, 25,
26, 30]. How exactly the work on heterogeneous databases is applicable to multimedia
databases remains to be seen, but clearly there is a fertile area to investigate here.

7 Conclusions

As is evident from the “Related Work” section, there is now intense interest in multimedia
systems. These interests span across vast areas in computer science including, but not lim-
ited to: computer networks, databases, distributed computing, data compression, document
processing, user interfaces, computer graphics, pattern recognition and artificial intelligence.
In the long run, we expect that intelligent problem-solving systems will access information
stored in a variety of formats, on a wide variety of media. Our work focuses on the need for
unified framework to reason across these multiple domains. In the Introduction, we raised
four questions. Below, we review the progress made in this paper towards answering those

31

four questions, and indicate directions for future work along these lines.

¢ What are multimedia database systems and how can they be formally/
mathematically defined so that they are independent of any specific appli-
cation domain ?

Accomplishments: In this paper, we have argued that in all likelihood, the designer
of the Multimedia Integrator shown in Figure 1 will be presented with a collection of
pre-ezisting databases on different types of media. The designer must build his/her
algorithms “on top” of this pre-existing representation — delving into the innards of
any of these representations is usually prohibitive, and often just plain impossible. OQur
framework provides a method to do so once features and feature-state relationships
can be identified.

Future Work: However, we have not addressed the problem of identifying features or
identifying feature-relationships. For instance, in the Clinton Example (cf. Figure 2),
Clinton is to the left of Nixon. However, from a bitmap, it is necessary to determine
that Clinton and Nixon are actually in the picture, and that Clinton is to the left of
Nixon. Such determinations depend inherently on the medium involved, and the data
structure(s) used to represent the information (e.g. if the bitmap was replaced by a
quadtree in the pictorial domain itself, the algorithms would become vastly different).
Hence, feature identification in different domains is of great importance and needs to

be addressed.

¢ Can indexing structures for multimedia database systems be defined in a
similar uniform, domain-independent manner ?

Accomplishments: We have developed a logic-based query language that can be used
to execute various kinds of queries to multimedia databases. This query language is
extremely simple (using nothing more than relatively standard logic), and hence it
should form an easy vehicle for users to work with.

Future Work: The query language developed in this paper does not handle uncertainty
in the underlying media and/or temporal changes in the data. These need to be
incorporated into the query language as they are relevant for various applications
such as those listed by Cardenas et. al. [5].

¢ Is it possible to uniformly define query languages and access methods based
on these indexing structures ?

Accomplishments: We have developed indexing structures for organizing the features
(and properties of the features) in a given media-instance, and we have developed
algorithms that can be used to answer queries (expressed in the logical query language
described in the paper). These algorithms have been shown to be computable in
polynomial-time.

Future Work: Supporting more complex queries involving aggregate operations, as
well as uncertainty and time in the queries (see preceding bullet) will require further
work.

32

e Is it possible to uniformly define the notion of an update in multime-
dia database systems and to efficiently accomplish such updates using the
above-mentioned indexing structures ?

Accomplishments: We have defined a notion of an update to multimedia database
systems that permits new features and states to be inserted into the underlying in-
dexing structure when appropriate. Similarly deletions of old features and states are
also supported. We have shown that these algorithms can be executed efficiently.

Future Work: Of the update algorithms developed in this paper, the algorithm for
deleting states is less efficient than the other three. In applications that require large-
scale state deletions, it may be appropriate to consider alternative algorithms (and
possibly alternative indexing structures as well).

¢ What constitutes a multimedia presentation and can this be formally /mathematically
defined so that it is independent of any specific application domain ?

Accomplishments: We prove that there is a fundamental connection between query
processing and the generation of media-events. What this means is that a media
presentation can be generated by a sequence of queries. This is useful because it
may be relatively easy to specify a query articulating the criteria of importance —
the system may be able to respond by picking any one of several media-events that
satisfies this query. In addition, we show that synchronization really boils down to
solving constraints.

Future Work: A great deal of work has been done on synchronizing multimedia streams
in a network[13, 16]. It should be possible to take advantage of these works to enhance
the synchronization of answers to a query.

Acknowledgements. We are extremely grateful to Sushil Jajodia for many enlightening
conversations on the topic of multimedia databases. We have also benefited from conver-
sations with Sandeep Mehta, Raymond Ng, S. V. Raghavan and Satish Tripathi. We are
grateful to H. Garcia-Molina and C. Faloutsos for drawing our attention to [3].

References

[1] S. Adali and V.S. Subrahmanian. (1993) Amalgamating Knowledge Bases, 11: Algo-
rithms, Data Structures and Query Processing, Univ. of Maryland CS-TR-3124, Aug.
1993. Submitted for journal publication.

[2] F. Arman, A. Hsu and M. Chiu. (1993) Image Processing on Compressed Data for
Large Video Databases, First ACM Intl. Conf. on Multimedia, pps 267-272.

[3] R. Barbet, W. Equitz, C. Faloutsos, M. Flickner, W. Niblack, D. Petkovic, and P.
Yanker. (1993) Query by Content for Large On-Line Image Collections, IBM Research
Report RJ 9408, June 1993.

33

[4] J. Benton and V.S. Subrahmanian. (1993) Hybrid Knowledge Bases for Missile Sit-
ing Problems, accepted for publication in 1994 Intl. Conf. on Artificial Intelligence
Applications, IEEE Press.

[5] A. F. Cardenas, I.T. Ieong, R. Barket, R. K. Taira and C.M. Breant. (1993) The
Knowledge-Based Object-Oriented PICQUFERY+ Language, IEEE Trans. on Knowl-
edge and Data Engineering, 5, 4, pps 644-657.

[6] S.B. Eun, E.S. No, H.C. Kim, H. Yoon, and S.R. Maeng. (1993) Specification of
Multimedia Composition and a Visual Programming Environment, First ACM Intl.
Conf. on Multimedia, pps 167-174.

[7] D.J. Gemmel and S. Christodoulakis. (1992) Principles of Delay-Sensitive Multimedia
Data Storqage and Retrieval, ACM Trans. on Information systems, 10, 1, pps 51-90.

[8] J. Grant, W. Litwin, N. Roussopoulos and T. Sellis. (1991) An Algebra and Calculus
for Relational Multidatabase Systems, Proc. First International Workshop on Interop-
erability in Multidatabase Systems, IEEE Computer Society Press (1991) 118-124.

[9] F. Hillier and G. Lieberman. (1986) Introduction to Operations Research, 4th edition,
Holden-Day.

[10] B. R. Gaines and M. L. Shaw. (1993) Open Architecture Multimedia Documents, Proc.
First ACM Intl. Conf. on Multimedia, pps 137-146.

[11] W. Kim and J. Seo. (1991) Classifying Schematic and Data Heterogeneity in Multi-
database Systems, IEEE Computer, Dec. 1991.

[12] A. Lefebvre, P. Bernus and R. Topor. (1992) Querying Heterogeneous Databases: A
Case Study, draft manuscript.

[13] T.D.C. Little and A. Ghafoor. (1993) Interval-Based Conceptual Models of Time-
Dependent Multimedia Data, IEEE Trans. on Knowledge and Data Engineering, 5, 4,
pps 551-563.

[14] J. Lloyd. (1987) Foundations of Logic Programming, Springer Verlag.

[15] E. Oomoto and K. Tanaka. (1993) OVID: Design and Implementation of a Video-
Object Database System, IEEE Trans. on Knowledge and Data Engineering, 5, 4, pps
629-643.

[16] B. Prabhakaran and S. V. Raghavan. (1993) Synchronization Models for Multimedia
Presentation with User Participation, First ACM Intl. Conf. on Multimedia, pps 157—
166.

[17] H. Samet. (1989) The Design and Analysis of Spatial Data Structures, Addison Wesley.

[18] A. Sheth and J. Larson. (1990) Federated Database Systems for Managing Distributed,
Heterogeneous and Autonomous Databases, ACM Computing Surveys, 22, 3, pp 183—
236.

[19] J. Shoenfield. (1967) Mathematical Logic, Addison Wesley.

34

[20] A. Silberschatz, M. Stonebraker and J. D. Ullman. (1991) Database Systems: Achieve-
ments and Opportunities, Comm. of the ACM, 34, 10, pps 110-120.

[21] V.S. Subrahmanian. (1992) Amalgamating Knowledge Bases, Univ. of Maryland Tech.
Report CS-TR-2949, Aug. 1992. Accepted for publication in ACM Transactions on
Database Systems.

[22] V.S. Subrahmanian. (1993) Hybrid Knowledge Bases for Intelligent Reasoning Sys-
tems, Invited Address, Proc. 8th Italian Conf. on Logic Programming (ed. D. Sacca),
pps 3-17, Gizzeria, Italy, June 1993.

[23] G. Wiederhold. (1992) Mediators in the Architecture of Future Information Systems,
IEEE Computer, March 1992, pps 38-49.

[24] G. Wiederhold. (1993) Intelligent Integration of Information, Proc. 1993 ACM SIG-
MOD Conf. on Management of Data, pps 434-437.

[25] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with granularity of time in tem-
poral databases. In Proc. 3rd Nordic Conf. on Advanced Information Systems Fn-
gineering, Lecture Notes in Computer Science, Vol. 498, (R. Anderson et al. eds.),
Springer-Verlag, 1991, pages 124-140.

[26] G Wiederhold, S. Jajodia, and W. Litwin. Integrating temporal data in a heteroge-
neous environment. In Temporal Databases. Benjamin/Cummings, Jan 1993.

[27] D. Woelk, W. Kim and W. Luther. (1986) An Object-Oriented Approach to Multimedia
Databases, Proc. ACM SIGMOD 1986, pps 311-325.

[28] D. Woelk and W. Kim. (1987) Multimedia Information Management in an Object-
Oriented Database System, Proc. 13th Intl. Conf. on Very Large Databases, pps 319-
329.

[29] S. Zdonik. (1993) Incremental Database Systems: Databases from the Ground Up,
Proc. 1993 ACM SIGMOD Conf. on Management of Data, pps 408-412.

[30] R. Zicari, S. Ceri, and L. Tanca. (1991) Interoperability between a Rule-Based Database
Language and an Object-Oriented Language, Proc. First International Workshop on
Interoperability in Multidatabase Systems, IEEE Computer Society Press (1991) 125-
135.

35

