
Ian Johnson UQC146S1 39

What is Image Processing?

Image Processing is the science of image manipulation

Image Processing is NOT Computer Graphics

Computer Graphics is concerned with generating or creating
images. With image processing, we already have an image that we
wish to manipulate. Computer graphics often involves 3D objects,
image processing usually does not.

Image processing algorithms therefore alter images.

Where is Image Processing Used?

• Scientific Imaging – reconstruction, filtering, enhancement

• Industrial control – product inspection, quality control

• Movies – Special Effects, composition, morphing etc.

• Medical – CAT (or CT computer aided tomography) PET (positron

emission tomography) - shows chemistry, MSI (magnetic source
imaging) - shows brain activity (electrical), MRI (magnetic resonance
imaging) – shows soft tissues, X-rays.

• Law enforcement – fingerprint comparison, image enhancement,

ageing mugshots.

Ian Johnson UQC146S1 40

What is a pixel?

A Pixel is a Pix. Element or Picture Element. It refers to the
representation of a single point within an image. A pixel may be simply a
bit (for black & white images), or a much larger data structure.

What is a Bitmap?

Technically, a bitmap should refer to a 1 bit per pixel black & white
image. Most people use it as a more general term.

A bitmap is a binary representation of a picture or image.

Generally, we represent images either in bitmap (pixel based) formats
(e.g GIF) or vector based formats (e.g. Corel Draw, or AutoCad).
Typically a colour bitmap will consist of three bytes per pixel (giving the
red, green & blue components of that pixel's colour –so called
truecolour). These pixels are logically arranged in a 2 dimensional array.
Remember though, that a two dimensional array is simply a way we view
a "chunk" of memory. The image will be stored in RAM or on disk a
simply a sequence of pixel values.

The amount of memory needed to hold a bitmap depends on the size of
the image, the size of the variables used to hold each pixels value, and the
colour depth of the image.

Consider a 1024 x 768 pixel image.

Bit Depth Number of Colours Image size
1 2 96 kilobytes
8 255 768 kilobytes
24 16,581,375 (224) 2,304 kilobytes

Ian Johnson UQC146S1 41

The Portable Bitmap (PBM) file
formats

The portable bit map family of file formats are very simple and portable.

Most people (and software) talks about PBM files. More correctly we
have:

• PBM (Portable BitMap)

• PGM (Portable GrayMap)

• PPM (Portable PixelMap)

Most operating systems have utilities to process these file types.

Free source packaged as pbmplus or netpbm is available for all unix based
operating systems (and ms-dos). These are normally included in linux
distributions. (Redhat 7.0 ships with netpbm-9.5-5).

Worksheet 3 introduces the pbm utilities available here on Solaris

These files are relatively unsophisticated and LARGE!

No form of compression is supported, (if you want to compress these files
use the unix commands compress or gzip).

In order to do anything useful, (and for the first part of your assignment!)
we will need to write functions that can read and write files in these
formats.

We can find the precise details for each of these formats by using the unix
manual and looking in section 5.

Ian Johnson UQC146S1 42

Assuming you have aliased the macro from worksheet 3

pbman –s5 ppm will give you the format of the pixmap type on
Solaris

or

man 5 ppm will do the same on most linux systems

We'll look at this manual page later. While you are free to implement the
full modern standard (post 2000) if you wish, this is not required!

We do not need all of these features and therefore like much commercial
software, we'll choose to ignore them!

All files have a header followed by image data and come in two flavours,
ASCII & RAW.

First part of the header is a magic number:

P1 ASCII bitmap P4 RAW bitmap
P2 ASCII grayscale P5 RAW grayscale
P3 ASCII colour P6 RAW colour

This in ASCII must be the first two characters of the file.
This must be followed by whitespace.

Any line containing a # is a comment from that point to the end-of-line
and is ignored.

Next part is the width in pixels, written in ASCII.
This must be followed by whitespace.

Next part is the height in pixels, written in ASCII.
This must be followed by whitespace.

If not binary:
Next is the max {colour component, gray} value, written in ASCII. PBM
supports 16 bits per colour, you do not need to! (up to 255 is fine)
This must be followed by whitespace.

Ian Johnson UQC146S1 43

Then follows the image data. If the image is ASCII then values are
written in ASCII separated by whitespace, with no line longer than 70
characters.

If the image is RAW, then the final header field must be followed by a
single character of whitespace, followed by the binary data.

Lets look at what the manual says:

The PPM Manual Page
NAME

��� ������	
 ������ �	
 �����

DESCRIPTION

��
 ������	
 ������ ����� �� � 	��
�� ������ �
��������� ��	�� ����
 �	

������

�� ����	� �
 ���
� ���� ���� ����� ��
��
�����	� ��
���
��� �� �� ����	�

�
�������� ���	
 ���������� � 	�� � ���������� ���� ��
 �����
�
 �����
�
�

����
��� �����
����
� ��
 ����� �		��� �
�� 	���	
 ���������� ����� ��
 ����

�
���
� ����� ��	��� ����� �
��� ��� ��� ���
 �� ����	
 � �	
 �� ���� �����

���� ���
� ���
�
��
�� ���������� �� �
� ��� �
�
�� ��
 ��� � ��� ���
�
�� ��

�� �
��
��� �� ����
 ��� ���	��
 �������� �� ����
�� ���� ������ ��� ���� ��

��
 ������

�� ����	� �	�� �
 ���
� ���� �	
� ��
� ������ �� ���� ����� ��
�
�� �
��
��

��
�� ��
 ��
���
 �
������� � ��
 ����	
 ��	�
�� ��
�
 �	
� ��
 ��
�	

�
����
 � ��
 ��� ! �� ��
� �� �� ���
��
����� ������ ��
� ��

������		� ��		
� ! �	
�� ��� �� �
 ����	��
	� ��
���
� ��� ����	� �������

��
 ��������� ��� ���
 !� ���
����	
� " ! ����� ��
 �
�� ��

�� ���

�	�
 ��	��� ���� ��
 �����
� �� #�
����� ��
��"

��
 ����� �
������� �� �� �		����

$! �	
 �������� � � �
#�
��
 � ��
 �� ���
 ! ����
�� ��
�
 ��
 ��

����� �
	����
��� �� ������� �
��
� ��
�� �� �
��

� ����
�� $ ������

Ian Johnson UQC146S1 44

��������� ��� ��
 ��	� ��
 �
��
� �
��
 %�	� &'''� ���
����	� ��
 ����
�

!��� ���	� �� ����
�� ! �	
� �����
 ��� ���� ��
� ��
 ���� ����
�

Each PPM image consists of the following:

• $ "����� ����
�" �� ��
������� ��
 �	
 ���
� $ ��� �	
�� �����

����
� �� ��
 ��� �������
�� " ("�

•)���
����
 *�	��+�� �$,�� -.�� /��0�

• $ ������ ������
� �� $1-�� �������
�� �� �
����	�

•)���
����
�

• $ �
����� ����� �� $1-�� �
����	�

•)���
����
�

• ��
 ������� ��	�� ��	�
 *!����	0� ����� �� $1-�� �
����	� !��� �

	
�� ���� (223(�

• 4
�	��
 �� ���
� ����	
 ����
����
 �������
��

• $ ����
� �)���� 5 �
���� ���
	�� ����

���� ������� ��
 ����
 ��

�����	 6��	��� �
����� ���
�� 6��� ���
	 �� � ����	
� � �
�� ��

�� ���

�	�
 ����	
�� �� ���� ���
�� 6��� ����	
 �� �
��
�
��
� �� ���
 ������

��
���
� 7 �� & ���
�� � ��
 !����	 �� 	
�� ���� &2(� �� �� 7 ���
�

8��
����
� �� �� & ���
�� ��
 ���� ���������� ���
 �� �����

• �� ��
 ����
�� ��
 ����	
 ��	�
� ��
 �����������	 �� ��
 ���
����� � ��

-�6 .
�� 9': �
�� ��

�� ��� �	�
 �� ��
 ���
	� $ ��	�
 � !����	 �� �		

���

 ����	
� �
��
�
��� -�6 ;(2 ����
 ��� ��
 ���� ���
��
 ��	�� ��

��
 ��	�� ����
��
 � ����� ��
 ����
 �� ���� *��
 ��	�� ����
��
 �� �		

��
 ��	��� �� �		 ����
� �� ����� ���� ����
 ����� �
 ������
�0�

• -������
�� ��� � "<" �� ��
 �
��
���	��
� �
��
 ��
 �����	 	��
� ��

����
��� ��� ��
 �����
��

4��
 ���� ��� ��� ��
 ����
�������
�������
�������
��� �� ����
�� �
��

� � ��
 ����� ���� 7 ���

�
� ����	
 ��� ��
 ��
 ���� & ���
� �
� ����	
�

Ian Johnson UQC146S1 45

��
�
 �� �����		� �����
� �
����� � ��
 ! ����� ���� �� ���	� ���
= "�	���"

 ! ������ ��
 ����� ����
� ����� �
�
��		� ������
�
� ��
 �����	 ��
� ��

+���� �� ��
 "���" ! ������ 1

 ������������*20 �� ���
 ����
����� �� ���

�	��� ��� ��� ������ �
	��
 �� ��
 �����
��

��
 ��
�
��
 �� ��
 �	��� ����� ��=

• ��
�
 ��
����	� ��
 ����
 �� � �	
�

• ��
 ����� ����
� �� 3 ����
�� � (�

• 6��� ����	
 �� ��
 ����
� �� �
��
�
��
� �� �� $1-�� �
����	 ����
�

*� ��������� ���
0�

• 6��� ����	
 �� ��
 ����
� ��� ����
 ����
 �
��
 ��� ��
� ��� ��
�

���� �
 �� 	
��� ��
 �������
� � ����
 ����
 �
��

� ��� ���

����	
�� ��� ��
�
 �� �� �������� ��
�
 �� �� �������	�� �
�������� �

��
 ���
	 ��� �����
� >��� ��
 �
#���
� �
�������� �
��

� ��

�	�
 ����	
 � ��
 ���
	 ��� ��
 �
� ����	
 � ��
 �
�� ���
	�

• 4� 	��
 ����	� �
 	���
� ���� 9' �������
���

�
�
 �� ��
����	
 � � ���		 ������ �� ���� �����=

 3

<

�����

? ?

72

' ' ' ' ' ' ' ' ' 72 ' 72 ' ' '

' 72 9 ' ' ' ' ' ' ' ' ' 72 ' 72

' ' ' ' ' '

' 72 9 ' ' '

' ' ' ' ' '

 ������� ���� �
�� ���� ����� ����	� �
 �� 	
��
�� �� ������	
� ���
�����

�������� ���� 	��+� �
���
	� 	�+
 � �������

Ian Johnson UQC146S1 46

COMPATIBILITY

,
��
 $���	 &'''� � ��� ����� ,! �	
 ���	� ��� ���
 � �����	 ��
��
� ����

&22� �
��
� �� ���	� ��� ���
 ���
 ���� ��
 ���
 �
� ����	
� 8	� ��������

��� �
�
�� �� �����

SEE ALSO

 �������*70� ���	������*70� �	�������*70� ��������*70� ��������*70�

��7�����*70� ���������*70� �>�����*70� ���3�����*70� �	������*70�

��������*70� ��������*70� ��������*70� ��������*70� ���������*70�

�������*70� ��������*70� ��������*70� �������7*70� ���������*70�

��������*70� ��������*70� #�������*70� ��������*70� ��������*70�

��������*70� ��������*70� ������	��*70� ������>*70� ���������*70�

��������3*70� ��������
	*70� ��������*70� �������	*70� ��������*70�

��������*70� �������
�*70� ������
*70� �������*70� �����+
*70�

������*70� ���#����*70� ���#�����		*70� ����
	�
*70� ���*20� ���*20�

���*20

AUTHOR

-�������� *-0 7:@:� 7::7 �� %
 ��+���
��

What do we need to do?

The manual page is more thorough but basically repeats what the
previous slides said.

We need to think about how we will code our file reading function.

• What do we want to return to the calling function?
• What do we want to return?
• How do we handle errors?
• What problems are we likely to face?

BREAK IT DOWN!

Ian Johnson UQC146S1 47

Lets just consider P6 type files.

We can create a memory block for this data with either malloc() or
calloc() e.g. something like:

#include <stdlib.h>

main()
 {
 unsigned char *data;

 /* process header & get width height & bpp */

 data = (unsigned char) malloc(width*height*bpp);
 fread(data, 1, width*height*bpp, FilePointer);

 /* more code */
}

We can describe using a flowchart or "JSP like" diagram, what our file
will look like.

We need to read, collect together the characters for, and convert to a
numeric type the data from the header (filetype, width, height, depth).

We need to read and throw away the whitespace separating these, and any
comments.

We can return a value to identify causes of failure, part of a possible
scheme being:

• 0 OK
• 1 Couldn't open file
• 2 Not a raw ppm file
• 3 Header is corrupt
• 4 Couldn't allocate memory
• 5 Data is truncated
• 6 Undefined error

Ian Johnson UQC146S1 48

Classification of Algorithms

Image processing algorithms can be classified into four classes according
to what they operate on.

1. Point algorithms

These modify a pixels value depending on that pixels position or value.
In Adobe Photoshop, the "Image/Adjust/Levels" command belongs to
this class.

2. Area algorithms

These modify a pixels value depending on the value of that pixel and its
neighbours. In Adobe Photoshop the "Filters/Artistic/Palette Knife"
command belongs to this class.

3. Geometric algorithms

These modify the position or arrangement of pixels. In Adobe
Photoshop, the "Filters/Blur/Gaussian Blur" command falls into this
class.

4. Frame algorithms

These generate new pixel values depending on two or more images.
Combining images, even operations as simple as cut & paste fall into this
class.

Ian Johnson UQC146S1 49

How do we perceive images?

When we see, light reflected by an image enter the eye through the
cornea (the fixed outer lens of the eye). The cillary muscles flex, altering
the shape of the lens, to focus the image on the retina. The retina contains
photoreceptors, called rods & cones, having around 125 106 rods and 7
106 cones.

• Rods are sensitive to luminance or intensity. They work in very low

light but play no part in colour vision.

• Cones are concentrated in the fovea, at the centre of the retina. There

are three types of cone, sometimes referred to as red, green and blue.
From these we get our sense of hue. Calling the cones red, green and
blue is misleading. For most colours, more than one type of cone will
respond, giving us the ability to distinguish colour.

• Vision is sharpest (i.e we can see small detail clearly) in the fovea,

decreasing as we move out. Light sensitivity is greatest in the
peripheral vision however due to a higher percentage of rods.

Human Eye - courtesy of encarta

Ian Johnson UQC146S1 50

Cone Response (graph from Crane)

Colour Models

Since the human eye responds to three colours, many colour models are
based on three values, often referred to as tristimulus values. Many many
different models exist, a new very common model being sRGB.

Ian Johnson UQC146S1 51

Additive v Subtractive

Generally, when we discuss RGB models we are talking about an additive
model, whilst CMY generally means subtractive. The additive (RGB)
model is show below.

The subtractive model:

Magenta

Red

Cyan

Green

White

Yellow

Blue

Cyan Magenta

Yellow

Green

Black

Blue

Red

Ian Johnson UQC146S1 52

In general, we can regard these colour spaces as cubic. That is each
colour can be represented by a box within a three dimensional array or
cube, having an axis for (with a subtractive model) R, G, & B

We will need to look at a totally different model shortly, but for now we
can consider our next programming task.

Gray scale conversion.

Our first programming problem!

Gray scale conversion can be performed as a simple average 1/3 R + 1/3
G + 1/3 B.

The NTSC standard suggests 0.299 R + 0.587 G + 0.114 B, since our
perception in intensity terms is different for each colour.

There are some alternative methods, based on the HIS colour model
which we will meet shortly.

Remember 255+255+255 will not fit in a byte!

Red

Green

Blue

