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Combinational Logic 
Circuits

Chapter 2

The Sum of Products Notation
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n Boolean Algebra
n Standard Forms
n Implementations of Boolean Functions
n Using only NAND and NOR Gates
n Circuit Equivalence
n Reading: Chapter 2
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Introduction
n The Digital Logic Level is at the bottom of our hierarchical 

model.

n Digital circuits are constructed from a small set of 
primitive elements.

n A special two-valued algebra is used to analyze these 
circuits.

n Boolean Algebra

Binary Logic & Gates

n Binary Logic
n Variables

• Values : T-F , 1-0,ON-OFF
• Names : A,B,...2

n Operations
• AND , OR , NOT

n Logic Gates
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Gates
n A digital circuit is one in 

which only two logical 
values are present - 0 and 
1.

n Typically, a signal between 
0-1 volts represents a 
binary 0, a signal between 
2-5 volts represents a 
binary 1.

n Tiny electronic devices, called gates, can compute various 
functions over these two-valued signals.

n These gates form the hardware  basis on which all digital 
computers are built.

Simple Gates 
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Boolean Algebra 
n To describe the circuits that can be built by combining 

gates, a new type of algebra is needed, one in which 
variables and functions can take on only the values 0 and 
1.

n Such an algebra is called a Boolean algebra.
n George Boole (1815-1864).
n A Boolean function   has one or more input variables and 

yields a result that depends only on the values of these 
variables.

n A simple function, f, can be defined by saying that f(A) is 1 
if A is 0 and f(A) is 0 if A is 1.

n This function is the NOT function.

Describing Boolean Functions
n Boolean functions of n variables only 2n possible 

combinations of input values.

n Thus , a function can be completely described by giving a 
table with 2n rows, each row telling the value of the 
function for a different combination of input values - a 
truth table.

n A function can   be also completely described by using the  
2n-bit binary number obtained by reading the result 
column of the truth table vertically.

n Thus NAND is 1110, NOR is 1000, AND is 0001 and OR is 
0111.

n Only 16 Boolean functions of two variables exist.
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x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F1 0 F11 F1 2 F13 F1 4 F1 5

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

/ / +  '  '

Operator 

Symbol

Boolean Function Operator Symbol Name Comments

F0  = 0

F1  = XY

F2  = XY'

F3  = X

F4  = X'Y

F5  = Y

F6  = XY' + X'Y

F7  = X + Y

F8  = (X + Y)'

F9  = XY + X'Y'

F10 = Y'

F11 = X + Y'

F12 = X'

F13 = X' + Y

F14 = (XY)'

F15 = 1

X Y

X/Y

Y/X

X   Y

X+Y

X  Y

X   Y

Y'

X    Y

X'

X     Y

X  Y

Null

And

Inhibition

Transfer

Complement

Implication

Exclusive-OR

O R

Identity

Binary Constant 0

Not OR

Complement

Implication

NAND

Inhibition

Transfer

NOR

Equivalance* X equals Y

Not Y

If Y then X

Not X

If X then Y

Not and

Binary Constant 1

X and Y

X but not Y

X

Y but not X

Y  

X or Y but not both

X or Y  

Laws of Boolean Algebra
n In general, a circuit designer starts with a Boolean function 

and then apply the laws of Boolean algebra to it in an 
attempt to find a simpler but equivalent one.

n From the final function, a circuit can be constructed.
n To use this approach, we need some identities from 

Boolean algebra. 
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Identities of Boolean Algebra

Comments on The Identities
n It is interesting to note that each law has two forms that 

are duals of each other. 

n By interchanging AND and OR and also 0 and 1, either 
form can be produced from the other one.

n All the laws can be easily proven by constructing their 
truth tables.

n Except for DeMorgan’s law, the absorption law, and the 
AND form of the distributive law, the results are 
reasonably intuitive.

n DeMorgan’s law can be extended to more than two 
variables, for example, ABC = A + B + C .
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Consequences of DeMorgan’s 
Law
n DeMorgan’s law suggests an alternative notation.

n An OR gate with inverted inputs is equivalent to a NAND 
gate.

n A NOR gate can be drawn as AND gate with inverted 
inputs.

n Negating both forms of DeMorgan’s law also has 
interesting consequences  - leads to equivalent 
representations of the AND and OR gates.

Consequences of DeMorgan’s 
Law



9

Using The Identities
n Using the identities it is easy to convert the sum-of-

products representations of a truth table  to pure NAND or 
pure NOR form.

n Example: consider the EXCLUSIVE-OR function 

XOR = AB + AB

n How do we convert this to a completely NAND form?
n The standard sum-of-products circuit is shown in Fig. 3-

8(b). 

n Note that inversion bubbles can be moved along a line at 
will. 

The EXCLUSIVE-OR Gate
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Positive and Negative Logic
n As a  final note on circuit equivalence, we will now 

demonstrate the surprising result that the same physical 
gate can compute different functions , depending on the 
conventions used.

n If we adopt the convention that 0 volts is logical 0 and 5 
volts is logical 1 , this is called positive logic.

n If, however, in negative logic , 0 volts denotes a logical 
1 and 5 volts a logical 0.

n What is the significance?   

Positive and Negative Logic

n Thus, the convention chosen to map voltages onto logical 
values is critical.

n Except where otherwise specified, we will henceforth use 
positive logic, so the terms logical 1, true, and high are 
synonyms, as are logical 0, false, and low.
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Example

n Simplify the given Boolean Function 
by algebraic manipulation.

F = X’YZ + X’YZ’ +XZ 
= X’Y (Z + Z’) + XZ Distributive Law
= X’Y + XZ Z + Z’ = 1

Complement of a Function

n Find the complement of a given 
function:

F = X’YZ’ + X’Y’Z
F’ = (X’YZ’ + X’Y’Z)’ = (X’YZ’)’ (X’Y’Z)’
F’ = (X + Y’ + Z) (X + Y + Z’) 
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Complement of a Function

n A Simpler Method:
n Take the dual
n Complement each variable

F = X’YZ’ + X’Y’Z
Fdual = (X’ + Y + Z’) (X’ + Y’ + Z) 
F’ = (X + Y’ + Z) (X + Y + Z’) 

Standard Forms

n Minterms & Maxterms
n Sum of Products
n Product of Sums
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Minterms & Maxterms

Mj = mj

Example
n The Boolean Function can be expressed as sum 

of product terms or product of sum terms.

F = XYZ + XYZ + XYZ + XYZ

X Y Z F F
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
1 1 0 0 1
1 1 1 1 0

F = m0 + m2 + m5 + m7

F (X,Y,Z) = Σ m (0,2,5,7)

F = m1 + m3 + m4 + m6

F = m1 + m3 + m4 + m6

F = m1 m3 m4 m6

F = M1 M3 M4 M6

= Π M ( 1,3,4,6)
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Example
n A function that is not expressed in terms of sum 

of minterms can be converted to sum of 
minterms by use of truth tables.

E = Y + XZ

X Y Z E
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

E = Σ m (0,1,2,4,5)

E = Σ m (3,6,7)

Sum of Products

F = Y + XYZ + XY
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Product of Sums

F = X (Y + Z) (X + Y + Z)

The Sum of Products Notation  
n We will consider an  example.

n We will consider the truth table for a Boolean function of 
three variables: M = f(A,B,C).

n In particular, we will consider the majority logic 
function , that is, it is 0 if a majority of its inputs are 0 
and 1 if a majority of its inputs 1.

n Although any Boolean function can be fully specified by 
giving its truth table, as the number of variables increases, 
this notation becomes increasingly cumbersome.

n Instead , another notation is frequently used.
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An Alternative  Notation  

n Note that any Boolean function can be specified by telling 
which combinations of input variables give an output value 
of 1.

n By convention, we will place a bar over an input variable 
to indicate that its value is inverted - the absence of a bar 
means that it is not inverted.

n We will use implied multiplication or a dot to mean the 
Boolean AND function and  “+” to mean the Boolean OR 
function.

n Thus, for example, AB’C takes the value 1 only when A=1 
and B=0 and C=1.

n Also, AB’ + BC’ is 1 only when (A=1 and B=0) or (B=1 and 
C=0).

The Majority Function   

n The majority function can be defined as follows:

M = ABC + ABC +ABC +ABC

n A function of n variables can thus be described by giving a 
“sum” of at most 2n-variable “product” terms.

n This formulation is especially important, as we will see 
shortly, because it leads directly to an implementation of 
the function using standard gates. 
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The Majority Function  

Implementations of Boolean 
Functions   

1. Write down the truth table for the function.
2. Provide inverters to generate the complement of 

each input.
3. Draw an AND gate for each term with a 1 in the 

result column.
4. Wire the AND gates to the appropriate inputs.
5. Feed the output of all the AND gates into an OR 

gate.
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Using only NAND and NOR 
Gates   
n It is often convenient to implement circuits using only a 

single type of gate.
n Both NAND and NOR gates are said to be complete, 

because any Boolean function can be computed using 
either of them.

n One way to implement a Boolean function using only 
NAND or only NOR gates is :
1. Follow the procedure given above for constructing it 
with NOT, AND,  and OR.
2. Then replace the multi-input gates with equivalent 
circuits using two-input gates.
3. Finally, the NOT, AND, and OR gates are replaced by 
the following circuits.

Using only NAND and NOR 
Gates   
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Circuit Equivalence   
n Circuits with fewer and/or simpler gates (fewer inputs) are 

better.
n Boolean algebra can be a valuable tool for simplifying 

circuits.
n Example:

M = AB + AC

n Many of the rules of ordinary algebra also hold for 
Boolean algebra.

n In particular, AB + AC can be factored into A(B+C) using 
the distributive law.

n Two functions are equivalent if and only if they have the 
same output for all possible inputs.

n Thus, AB + AC is equivalent to A(B+C) . 

Circuit Equivalence   
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Map Simplification

n Two Variable Map
n Three Variable Map
n Four Variable Map

Two Variable Map

•Representations of Functions In the map.
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Three Variable Map

The adjacent squares to m5 (101) are m7 (111), m4 (100), m1
(001). 

m5 + m7 = XYZ + XYZ

= XZ ( Y + Y ) = XZ

Examples
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Four Variable Map

Example:
n Simplify the Boolean function:

F = ABC + BCD + ABCD + ABC
n Simplify the Boolean function:

F = ABC + BCD + ABCD + ABC

F = BD + BC + ACD



23

Example:
n Simplify the function:

F = Σ m (1,3,7,9,12,14)
n Simplify the function:

F = Σ m (1,3,7,9,12,14)

F = ABD + ACD + BCD

FG
DE

D

E

F

G

Example:
n Simplify the function:

F = Σ m (3,4,5,6,7,9,12,13)
n Simplify the function:

F = Σ m (3,4,5,6,7,9,12,13)

F = AB + BC + ACD + ACD

FG
DE

D

E

F

G
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Prime Implicants

Prime Implicants
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Prime Implicants

Simplifying a Product of Sums 
Form

F = AB + CD + BD
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Don’t Care Conditions

Exclusive-Or Gate
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Odd Function

Parity Generation and 
Checking


