

		.E 2-1 Tables for the	Three	Basi	c Logic Operat	ions	
		AND			NOT		
х	Y	$Z = X \cdot Y$	x	Y	Z = X + Y	x	Z = X
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		•
	1	1	1	1	1		

Boolean Algebra To describe the circuits that can be built by combining gates, a new type of algebra is needed, one in which variables and functions can take on only the values 0 and 1. Such an algebra is called a Boolean algebra. George Boole (1815-1864). A Boolean function has one or more input variables and yields a result that depends only on the values of these variables. A simple function, f, can be defined by saying that f(A) is 1 if A is 0 and f(A) is 0 if A is 1. This function is the NOT function.

х	у	\mathbf{F}_{0}	F ₁	\mathbf{F}_2	F ₃	F_4	F ₅	F ₆	\mathbf{F}_7	F ₈	F9	F10	F11	\mathbf{F}_{12}	F ₁₃	F ₁₄	F15
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
	rator												_		_	•	
Syı	mbol		•	/		/		Ð	+	v	۲		\subset			Т	
			Boole	an Fur	ction	Op	erator	Symb	ol		Name			Co	mmen	ts	
		F ₀	= 0								Null		I	Binary	Const	ant 0	
		F1	= XY				X	γY			And			Х	and Y	ć	
		F ₂	= XY'			X/Y			Inhibition Transfer			X but not Y X					
		F3	= X														
		F4	= X'Y			Y/X				Inhibition			Y but not X				
		F5	= Y							Transfer			Y				
		F ₆	= XY'	+ X'Y			XG	₽Y		Exc	lusive	-OR	Х	K or Y	but no	t both	
		F7	= X +	Y			X-	ŀΥ			OR			Х	or Y		
		F8	= (X +	- Y)'			X	Y٧			NOR			N	ot OR		
		F9	= XY ·	+ X'Y'			x	θY		Equ	ivalan	ce*		X e	quals	Y	
		Fı	$F_{10} = Y$			Ŷ				Complement			Not Y				
		F1	$\mathbf{F}10 = \mathbf{I}$ $\mathbf{F}11 = \mathbf{X} + \mathbf{Y}'$			x⊂y				Implication			If Y then X				
		F1	2 = X'			x				Complement			Not X				
		F1	3 = X'	+ Y			xΞ	⊃y		Implication				If X	K then	Y	
		F1	4 = (X)	Y)'			x	Y]	NAND			N	ot and	L	
		F1	5 = 1							I	dentity	,	1	Binary	Const	ant 1	

Identities of Boolean Algebra

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	AĀ = 0	A + Ā = 1
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

Figure 3-6. Some identities of Boolean algebra.

- As a final note on circuit equivalence, we will now demonstrate the surprising result that the same physical gate can compute different functions, depending on the conventions used.
- If we adopt the convention that 0 volts is logical 0 and 5 volts is logical 1, this is called positive logic.
- If, however, in negative logic, 0 volts denotes a logical
 1 and 5 volts a logical 0.
- What is the significance?

K	Y	z	Product Term	Symbol	Sum Term	Symbol
	0	0	$\overline{X}\overline{Y}\overline{Z}$	m ₀	X + Y + Z	M_0
)	0	1	$\overline{X}\overline{Y}Z$	m_1	$X + \underline{Y} + \overline{Z}$	M_1
	1	0	$\overline{X}Y\overline{Z}$	m ₂	$X + \overline{Y} + \overline{Z}$	M_2
	1	1	$\overline{X}\underline{Y}\underline{Z}$	m ₃	$\frac{X + \overline{Y} + \overline{Z}}{\overline{X} + Y + Z}$	M ₃
	0	0	$X\overline{Y}\overline{Z}$ $X\overline{Y}Z$	m4	$\frac{X+Y+Z}{X+Y+Z}$	M ₄
	1	1 0	XYZ	m ₅	$\frac{X+T+Z}{X+Y+Z}$	M ₅ M ₆
	1	1	XYZ	m ₆ m ₇	$\frac{X}{X} + \frac{T}{Y} + \frac{Z}{Z}$	M_6 M_7
	1	1	AIL	1117	ATITZ	1417
			Ν	$I_i = \overline{m_i}$		

