
1

Lecture 2

Combinational Logic
Circuits

Chapter 2

The Sum of Products Notation

n Binary Logic and Gates

n Boolean Algebra
n Standard Forms
n Implementations of Boolean Functions
n Using only NAND and NOR Gates
n Circuit Equivalence
n Reading: Chapter 2

2

Introduction
n The Digital Logic Level is at the bottom of our hierarchical

model.

n Digital circuits are constructed from a small set of
primitive elements.

n A special two-valued algebra is used to analyze these
circuits.

n Boolean Algebra

Binary Logic & Gates

n Binary Logic
n Variables

• Values : T-F , 1-0,ON-OFF
• Names : A,B,...2

n Operations
• AND , OR , NOT

n Logic Gates

3

Gates
n A digital circuit is one in

which only two logical
values are present - 0 and
1.

n Typically, a signal between
0-1 volts represents a
binary 0, a signal between
2-5 volts represents a
binary 1.

n Tiny electronic devices, called gates, can compute various
functions over these two-valued signals.

n These gates form the hardware basis on which all digital
computers are built.

Simple Gates

4

5

Boolean Algebra
n To describe the circuits that can be built by combining

gates, a new type of algebra is needed, one in which
variables and functions can take on only the values 0 and
1.

n Such an algebra is called a Boolean algebra.
n George Boole (1815-1864).
n A Boolean function has one or more input variables and

yields a result that depends only on the values of these
variables.

n A simple function, f, can be defined by saying that f(A) is 1
if A is 0 and f(A) is 0 if A is 1.

n This function is the NOT function.

Describing Boolean Functions
n Boolean functions of n variables only 2n possible

combinations of input values.

n Thus , a function can be completely described by giving a
table with 2n rows, each row telling the value of the
function for a different combination of input values - a
truth table.

n A function can be also completely described by using the
2n-bit binary number obtained by reading the result
column of the truth table vertically.

n Thus NAND is 1110, NOR is 1000, AND is 0001 and OR is
0111.

n Only 16 Boolean functions of two variables exist.

6

x y F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F1 0 F11 F1 2 F13 F1 4 F1 5

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

/ / + ' '

Operator

Symbol

Boolean Function Operator Symbol Name Comments

F0 = 0

F1 = XY

F2 = XY'

F3 = X

F4 = X'Y

F5 = Y

F6 = XY' + X'Y

F7 = X + Y

F8 = (X + Y)'

F9 = XY + X'Y'

F10 = Y'

F11 = X + Y'

F12 = X'

F13 = X' + Y

F14 = (XY)'

F15 = 1

X Y

X/Y

Y/X

X Y

X+Y

X Y

X Y

Y'

X Y

X'

X Y

X Y

Null

And

Inhibition

Transfer

Complement

Implication

Exclusive-OR

O R

Identity

Binary Constant 0

Not OR

Complement

Implication

NAND

Inhibition

Transfer

NOR

Equivalance* X equals Y

Not Y

If Y then X

Not X

If X then Y

Not and

Binary Constant 1

X and Y

X but not Y

X

Y but not X

Y

X or Y but not both

X or Y

Laws of Boolean Algebra
n In general, a circuit designer starts with a Boolean function

and then apply the laws of Boolean algebra to it in an
attempt to find a simpler but equivalent one.

n From the final function, a circuit can be constructed.
n To use this approach, we need some identities from

Boolean algebra.

7

Identities of Boolean Algebra

Comments on The Identities
n It is interesting to note that each law has two forms that

are duals of each other.

n By interchanging AND and OR and also 0 and 1, either
form can be produced from the other one.

n All the laws can be easily proven by constructing their
truth tables.

n Except for DeMorgan’s law, the absorption law, and the
AND form of the distributive law, the results are
reasonably intuitive.

n DeMorgan’s law can be extended to more than two
variables, for example, ABC = A + B + C .

8

Consequences of DeMorgan’s
Law
n DeMorgan’s law suggests an alternative notation.

n An OR gate with inverted inputs is equivalent to a NAND
gate.

n A NOR gate can be drawn as AND gate with inverted
inputs.

n Negating both forms of DeMorgan’s law also has
interesting consequences - leads to equivalent
representations of the AND and OR gates.

Consequences of DeMorgan’s
Law

9

Using The Identities
n Using the identities it is easy to convert the sum-of-

products representations of a truth table to pure NAND or
pure NOR form.

n Example: consider the EXCLUSIVE-OR function

XOR = AB + AB

n How do we convert this to a completely NAND form?
n The standard sum-of-products circuit is shown in Fig. 3-

8(b).

n Note that inversion bubbles can be moved along a line at
will.

The EXCLUSIVE-OR Gate

10

Positive and Negative Logic
n As a final note on circuit equivalence, we will now

demonstrate the surprising result that the same physical
gate can compute different functions , depending on the
conventions used.

n If we adopt the convention that 0 volts is logical 0 and 5
volts is logical 1 , this is called positive logic.

n If, however, in negative logic , 0 volts denotes a logical
1 and 5 volts a logical 0.

n What is the significance?

Positive and Negative Logic

n Thus, the convention chosen to map voltages onto logical
values is critical.

n Except where otherwise specified, we will henceforth use
positive logic, so the terms logical 1, true, and high are
synonyms, as are logical 0, false, and low.

11

Example

n Simplify the given Boolean Function
by algebraic manipulation.

F = X’YZ + X’YZ’ +XZ
= X’Y (Z + Z’) + XZ Distributive Law
= X’Y + XZ Z + Z’ = 1

Complement of a Function

n Find the complement of a given
function:

F = X’YZ’ + X’Y’Z
F’ = (X’YZ’ + X’Y’Z)’ = (X’YZ’)’ (X’Y’Z)’
F’ = (X + Y’ + Z) (X + Y + Z’)

12

Complement of a Function

n A Simpler Method:
n Take the dual
n Complement each variable

F = X’YZ’ + X’Y’Z
Fdual = (X’ + Y + Z’) (X’ + Y’ + Z)
F’ = (X + Y’ + Z) (X + Y + Z’)

Standard Forms

n Minterms & Maxterms
n Sum of Products
n Product of Sums

13

Minterms & Maxterms

Mj = mj

Example
n The Boolean Function can be expressed as sum

of product terms or product of sum terms.

F = XYZ + XYZ + XYZ + XYZ

X Y Z F F
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 1
1 0 1 1 0
1 1 0 0 1
1 1 1 1 0

F = m0 + m2 + m5 + m7

F (X,Y,Z) = Σ m (0,2,5,7)

F = m1 + m3 + m4 + m6

F = m1 + m3 + m4 + m6

F = m1 m3 m4 m6

F = M1 M3 M4 M6

= Π M (1,3,4,6)

14

Example
n A function that is not expressed in terms of sum

of minterms can be converted to sum of
minterms by use of truth tables.

E = Y + XZ

X Y Z E
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

E = Σ m (0,1,2,4,5)

E = Σ m (3,6,7)

Sum of Products

F = Y + XYZ + XY

15

Product of Sums

F = X (Y + Z) (X + Y + Z)

The Sum of Products Notation
n We will consider an example.

n We will consider the truth table for a Boolean function of
three variables: M = f(A,B,C).

n In particular, we will consider the majority logic
function , that is, it is 0 if a majority of its inputs are 0
and 1 if a majority of its inputs 1.

n Although any Boolean function can be fully specified by
giving its truth table, as the number of variables increases,
this notation becomes increasingly cumbersome.

n Instead , another notation is frequently used.

16

An Alternative Notation

n Note that any Boolean function can be specified by telling
which combinations of input variables give an output value
of 1.

n By convention, we will place a bar over an input variable
to indicate that its value is inverted - the absence of a bar
means that it is not inverted.

n We will use implied multiplication or a dot to mean the
Boolean AND function and “+” to mean the Boolean OR
function.

n Thus, for example, AB’C takes the value 1 only when A=1
and B=0 and C=1.

n Also, AB’ + BC’ is 1 only when (A=1 and B=0) or (B=1 and
C=0).

The Majority Function

n The majority function can be defined as follows:

M = ABC + ABC +ABC +ABC

n A function of n variables can thus be described by giving a
“sum” of at most 2n-variable “product” terms.

n This formulation is especially important, as we will see
shortly, because it leads directly to an implementation of
the function using standard gates.

17

The Majority Function

Implementations of Boolean
Functions

1. Write down the truth table for the function.
2. Provide inverters to generate the complement of

each input.
3. Draw an AND gate for each term with a 1 in the

result column.
4. Wire the AND gates to the appropriate inputs.
5. Feed the output of all the AND gates into an OR

gate.

18

Using only NAND and NOR
Gates
n It is often convenient to implement circuits using only a

single type of gate.
n Both NAND and NOR gates are said to be complete,

because any Boolean function can be computed using
either of them.

n One way to implement a Boolean function using only
NAND or only NOR gates is :
1. Follow the procedure given above for constructing it
with NOT, AND, and OR.
2. Then replace the multi-input gates with equivalent
circuits using two-input gates.
3. Finally, the NOT, AND, and OR gates are replaced by
the following circuits.

Using only NAND and NOR
Gates

19

Circuit Equivalence
n Circuits with fewer and/or simpler gates (fewer inputs) are

better.
n Boolean algebra can be a valuable tool for simplifying

circuits.
n Example:

M = AB + AC

n Many of the rules of ordinary algebra also hold for
Boolean algebra.

n In particular, AB + AC can be factored into A(B+C) using
the distributive law.

n Two functions are equivalent if and only if they have the
same output for all possible inputs.

n Thus, AB + AC is equivalent to A(B+C) .

Circuit Equivalence

20

Map Simplification

n Two Variable Map
n Three Variable Map
n Four Variable Map

Two Variable Map

•Representations of Functions In the map.

21

Three Variable Map

The adjacent squares to m5 (101) are m7 (111), m4 (100), m1
(001).

m5 + m7 = XYZ + XYZ

= XZ (Y + Y) = XZ

Examples

22

Four Variable Map

Example:
n Simplify the Boolean function:

F = ABC + BCD + ABCD + ABC
n Simplify the Boolean function:

F = ABC + BCD + ABCD + ABC

F = BD + BC + ACD

23

Example:
n Simplify the function:

F = Σ m (1,3,7,9,12,14)
n Simplify the function:

F = Σ m (1,3,7,9,12,14)

F = ABD + ACD + BCD

FG
DE

D

E

F

G

Example:
n Simplify the function:

F = Σ m (3,4,5,6,7,9,12,13)
n Simplify the function:

F = Σ m (3,4,5,6,7,9,12,13)

F = AB + BC + ACD + ACD

FG
DE

D

E

F

G

24

Prime Implicants

Prime Implicants

25

Prime Implicants

Simplifying a Product of Sums
Form

F = AB + CD + BD

26

Don’t Care Conditions

Exclusive-Or Gate

27

Odd Function

Parity Generation and
Checking

