Study Questions and Answers

Binary representation

1. What is the ASCII representation for CHUD :
a. hexadecimal
b. binary

C $=43$
$\mathrm{H}=48$
$\mathrm{U}=55$
$\mathrm{D}=44$
In binary : 01000011010010000101010101000100
2. Represent the following decimal numbers in both binary sign/magnitude and two's complement using 16 bits.
$+512$

- 29

Sign Magnitude:
$512=0000001000000000$
$-29=1000000000011101$
Two's Complement:
$512=0000001000000000$
$-29=1111111111100011$
3. Represent the following two's complement values in decimal:

1101011
Since this starts with a leftmost 1 , it is a negative number. The magnitude of the negative number is determined by flipping the bits and adding 1 :

$$
0010100+1=0010101
$$

This is 21, so the original value was $\mathbf{- 2 1}$.
0101101

Since this starts with a leftmost 0 , it is a positive number and we just compute the magnitude as an unsigned binary number, which is 45 .
4. Represent the following in two's complement using 5 bits and perform the addition. Indicate if there is a carry, an overflow, or both.

```
6+4
6=00110
4=00100
    0 0 1 1 0
+ 00100
    01010 There is no carry and no overflow
6+-6
6=00110
-6 = 11010
    0 0 1 1 0
+ 11010
100000 There is a carry of 1 and no overflow
-12+-4
12=01100
-12 = 10100
4 = 00100
-4=11100
    10100
+ 11100
10000 There is a carry of 1 and no overflow.
```

Note that we can represent $\mathbf{- 1 6}$ but not +16 using 5 bits.
5. Represent the following decimal values using the IEEE 754 single precision floating point representation. For each value, show the representation in binary scientific notation form, show the bit patterns in the IEEE 754 representation, and show the hexadecimal representation of the IEEE 754 representation.

$$
+54
$$

54 in binary is 110110.
Converted to binary scientific notation, this is $1.10110 * 2^{5}$
Sign bit $=0$
Biased Exponent $=127+5=132$

132 in binary is 10000100
Mantissa with the hidden bit is 10110
Putting these together gives us:
01000010010110000000000000000000
In groups of four this is 01000010010110000000000000000000 Which is $\mathbf{4 2 5 8 0 0 0}$ in hex.

-0.875

0.875 in binary is $\mathbf{0 . 1 1 1}$
which is $1.11 * 2^{-1}$ in binary scientific notation
Sign bit $=1$ (negative)
Biased Exponent $=127+\mathbf{- 1}=126$
126 in binary is 01111110
Mantissa with the hidden bit is 11
Putting these together gives us:
10111111011000000000000000000000
In groups of four this is;
10111111011000000000000000000000
Which is BF60000 in hex.
6. Given the following hex that represents an IEEE 754 single precision value, give the decimal value.
$0 \times C 1200000$
C1200000 converted to binary is:
11000001001000000000000000000000

Sign bit $=1$
Biased Exponent = 10000010
Mantissa $($ with hidden 1$)=1.01$
In decimal, the biased exponent is $\mathbf{1 3 0}$.
$130=127+$ actual, so the actual exponent is 3
This means our value is $1.01 * 2^{3}$ or 1010
This is equal to 10
But don't forget we had a negative sign bit, so the value is really -10

