
Introduction to Programming

Algorithm and Flowchart

1

What is in a Computer?

● Computer: Hardware + Software

● Hardware: Input, Output, CPU (CU, ALU, Memory)

● Software: System Software and Application Software

2

Computer Architecture

3

von Neumann Machine Architecture

John von Neumann, 1903-1957

4

Important Features
• Stored program.

• Separation of processing from storage.

• Predefined instruction set.

• Shared buses.

• Sequential architecture.

• Control flow vs. data flow.

5

Software Hierarchy

6

Basic Functions of a Computer

• Input Data
• Process Data
• Output Data
• Store Data

7

Input Data
● Feeding information into a computer

○ Symbols – letters, words, numbers, etc.
○ Pictures (using a camera)
○ Sounds (using a microphone)

● Common forms of input
○ Keyboard
○ Mouse

● Often involves converting analog to digital
8

Process Data
● Analyze data, or use it in a computation.
● Perform some action based on data.
● Generate new data, or change existing data.
● Processing is done in the CPU.
● Processing is managed by a computer program.
● Basic Terms:

○ Program – a sequence of instructions (with data) to accomplish a certain task
○ Process – a program in execution
○ Processor (CPU) - device where a program gets executed

9

Output Data
● Common forms of output

○ Monitor
○ Printers
○ Speakers (music and Sound)
○ File

● Often involves converting digital signals to analog signals

10

Store Data
● Save data on a device for later use.
● Data is always stored in digital form.
● Common Forms:

○ Memory
○ CD ROM
○ Hard Disk
○ Flash Disk
○ Cloud

11

Memory Hierarchy

12

Functions of a Computer

Output Data

Input Data

Store Data

Process Data

13

Analog Digital

Functions of a Computer

14

Computer Categories

Different Types of Computers

15

Computer Categories
● Four categories

○ Personal computers (Notebooks & PCs)
○ Workstation computers
○ Server computers
○ Supercomputers

● Computers can be categorized by
○ function
○ size
○ performance
○ cost

16

Programming
Basics

Programs, Coding, Engineers & More
17

Programming Languages
● Language

○ series of symbols & words that form a meaningful pattern
○ This is true of natural languages such as English, Turkish, Spanish,

Hindi, Arabic, etc...

● Programming
○ language used to write programs to be executed in computers
○ there are many different programming languages

18

Popular Programming Languages
• C, C++, C#, Objective-C
• Java
• JavaScript
• Python
• Basic
• HTML
• PHP
• GO
• SQL
• …………

19

Algorithms
● A sequence of steps for carrying out a task
● Examples:

○ Attending to class
○ Making Tea
○ Withdraw money at ATM

● Capture “the essence” in solving a problem
○ can be implemented into a computer program using some

programming language
20

Pseudocode

Describing an Algorithm with words
21

What is Pseudocode?

• Description of an algorithm's logic
• simpler than spoken English
• looks like a program, but easier to read

• It is often useful
• to express some piece of the solution
• without having to worry about every detail

22

Program: area of a circle

1.Get the value for the radius
2.Calculate the area (pi x radius2)
3.Output radius and area

Area of a Circle Pseudocode

23

When we ask an algorithm, you will write a pseudocode!

Procedural/Structural Programming
● Traditional approach to programming
● Programs

○ a sequence of instructions (statements)
○ statements run in order – from first to last
○ repetition is performed with “looping”
○ decisions are described as “if – then – else”

24

Example Algorithms
Example 1: Write an algorithm to find the average of two
numbers.
Description of the alg.
1. Start
2. Read two numbers
3. Add the two numbers
4. Divide the result by 2
5. Print the result
6. End

Pseudocode of the alg.
1. Start
2. Read two numbers in x and y
3. Set w = x + y
4. Set z = w / 2
5. Print z
6. End

25

Analyzing the Problem

- To write an algorithm, we first analyze the problem:
- What is the input(s)
- What is the output(s)
- What is the relation between the input and output

- How we can reach from the input to the output

26

Algorithms
Example 2: Write an algorithm to take your birth year
and print your age

1. Start
2. Read birth year in x
3. Set a = 2018 - x
4. Print a
5. End

Analyze the Problem:
Input: year
Output: age
Relation: 2018-year

27

Algorithms
Example 3: Write an algorithm to take your age and print
it in seconds.

1. Start
2. Read age in a
3. Set s = a ⨯ 365 ⨯ 24 ⨯ 60 ⨯ 60
4. Print s
5. End

28

Algorithms
Example 4: Write an algorithm to take the sides (length and
width) of a rectangle and calculate its perimeter and area

1. Start
2. Read width and length in w and l
3. Set a = w ⨯ l
4. Set p = 2 ⨯ (w + l)
5. Print “perimeter is p and area is a”
6. End

29

Algorithms
Example 5: A company pays 7500 TL for each of his developers.
Take the salary increment percentage and calculate how much
money yearly extra cost is needed for the promotion.

1. Start
2. Read increment percentage in p
3. Set c = 2 ⨯ 12 ⨯ 7500 ⨯ p / 100
4. Print c
5. End

30

Example: Write an algorithm to takes two numbers and swap their
values (w/o temp var)

Alg: Try Yourself!

31

Conditions in Algorithms

Most of the times we need to do different actions in
different cases.

If it is raining then take an umbrella
otherwise take sunglasses

32

Conditions in Algorithms
Example 6: Write an algorithm to take a number and prints if it is
odd or even.

1. Start
2. Read number in p
3. If p modulo 2 = 0 then
4. print even
5. Else
6. print odd
7. End

We write the commands inside
the if or else body with some
indent

33

Conditions in Algorithms
Example 7: Write an algorithm to take two numbers and print the
minimum and maximum number.

1. Start
2. Read numbers in x and y
3. If x > y then
4. print “maximum is x”
5. print “minimum is y”
6. Else
7. print “maximum is y”
8. print “minimum is x”
9. End

34

Conditions in Algorithms
Example 8: Write an algorithm to take the value for x and calculates
1/(x^2+x+3). Check the divide by zero.

1. Start
2. Read a number in x
3. Set divider = x^2+x+3
3. If divider = 0 then
4. print “Division is not possible”
5. Else
4. Set Calc = 1 / divider
4. print “The result is Calc”
7. End

35

Conditions in Algorithms
Example 9: Write an algorithm to take the required input of an
employee and calculates the net salary based on the following
rules: (Let min salary = 2000 TL)
1) Tax: for minimum salaries take 5% tax, for salaries upto three
times minimum salary take 7% tax and for salaries more than that
take 10% tax.
2) Insurance: take 14%
3) Additional: for each child add 100 TL

Analyze the
problem!

36

Conditions in Algorithms
1. Start
2. Read GrossSal and NumChild
3. If GrossSal = 2000
4. Set Tax = GrossSal * 5 / 100
5. If 2000 < GrossSal < 6000
6. Set Tax = GrossSal * 7 / 100
7. If GrossSal > 6000
8. Set Tax = GrossSal * 10 / 100
9. Set Ensur = GrossSal * 14 / 100
10. Set ChildExtra = NumChild * 100
11. Set Total = GrossSal - Tax - Ensur + ChildExtra
12. print “Net Salary is:” Total
13. End 37

Example 10: Write an algorithm to take three numbers and print the
maximum of them

Conditions in Algorithms

1. Start
2. Read x, y, z
3. If x >= y then
4. Set Max = x
5. Else
6. Set Max = y
7. If z >= Max
8. Set Max = z
9. print “The maximum number is Max”
10. End

Think about
more numbers -
need for an
iteration!!!

38

In many cases we need to repeat some actions for a
specific number of times or until a specific condition

- Conditions are important part of loops
- Loops may need a counter to control the number of

iterations

Iteration or Loops in Algorithms

39

Example 11: Write an algorithm to print integers 1 to N

Loops in Algorithms

1. Start
2. Read N
3. Count = 1
4. Print Count
3. If Count < N then
4. Count = Count + 1
5. Goto Line 4
10. End

40

● To find possible bugs in the algorithm we debug it
● One way to debug the algorithm is tracing it with some input
● Trace:

○ Follow the steps from the start to the end
○ Execute the steps with the given input
○ Keep the track of variables values
○ Check the results in each step until the end of the algorithm

Tracing an Algorithm

41

Example 12: Write an algorithm to take 15 integer numbers and
print the maximum of them (extended version of Example 10)

Loops in Algorithms
1. Start
2. Set Max = 0, Count = 1
3. Read N
3. If N > Max then
4. Set Max = N
5. If Count < 15 then
6. Count = Count + 1
7. Goto Line 3
9. print “The max number is Max”
10. End

Trace the algorithm for:
14, 3, 17, 4, 20, …
Max | Count | N (input) | output
0 1 14
14 2 3
 3 17
17 4 4
 5 20
20 6 ...

42

Example 13: Write an algorithm to take integer N print N!

Loops in Algorithms

1. Start
2. Read N
3. Set Fact = 1, Count = 1
4. Set Fact = Fact * Count
5. Set Count = Count + 1
6. If Count <= N then
7. Goto Line 4
8. print “The Factorial of N is Fact”
9. End

Trace the
algorithm for: 5

43

Example: Write an algorithm to takes an integer number and print
its reverse number and number of its digits
(e.g.: 263 => 362 and 3)

Loops: Try Yourself!

44

Example 14: Write an algorithm to print the multiplication table

Nested Loops in Algorithms

1. Start
2. Set row = 1, col = 1
3. Print row * col
4. If col < 10 then
5. Set col = col + 1
6. Goto Line 3
7. Else
8. Print newline

45

09. If row < 10 then
10. row = row + 1
11. col = 1
12. Goto Line 3
13. End

Example 14: Write an algorithm to take N and print e value using the
following series:

Nested Loops: Try Yourself!

46

Flow Charts

Graphically Representing Algorithms
47

Flow Chart Overview

● Graphical representation
○ each step is a shape (box, circle, …)
○ useful for conceptualizing an algorithm
○ easy to understand and visualize

● Used to document how an algorithm was designed

48

Input / Output

Process Data

Conditions

49

Start / End

➢ Indicates the start and end of an algorithm

➢ Represented by a rectangle with rounded
sides

➢ There are typically two:

• one to start the flowchart
• one to end the flowchart

50

Input / Output

➢ Indicates data being:
❖ inputted into the computer
❖ outputted to the user

➢ Represented by a parallelogram
➢ Flowcharts can have many of this shape

51

Processes

➢ Indicates data:
❖ being processed
❖ also called "calculations"

➢ Represented by a rectangle
➢ The most common shape in a flowchart

52

Decisions

● Indicates a conditional branch
○ describe a condition or a question
○ Has more than one outgoing branch, depending

on the outcomes to the condition/question
● Represented by a diamond

53

Additional Symbols

● Connectors
○ (to extend large flowcharts in different pages

● Print document
○ Kind of output

● Links
○ To link the symbols and show the control flow

Connector

54

Even More Symbols

55

Flow Chart Example
Example: Draw a flowchart to find the
average of two numbers.

1. Start
2. Read two numbers in x and y
3. Set w = x + y
4. Set z = w / 2
5. Print w
6. End

W=x+y
Z=W/2

56

Flow Charts
Example: Draw a flowchart to take your
birth year and print your age

1. Start
2. Read birth year in x
3. Set a = 2018 - x
4. Print a
5. End

57

Flow Charts
Example: Draw a flowchart to take the sides of
a rectangle and calculate its perimeter and
area.

1. Start
2. Read width and height in w and h
3. Set s = h ⨯ w
4. Set a = 2 ⨯ (h + w)
5. Print “surface is s and area is a”
6. End

58

Area is “s”
Perimeter is “a”

Flow Charts
Example: Draw a flowchart to take a
number and prints if it is odd or even.

1. Start
2. Read number in c
3. If c modulo 2 = 0 then
4. print even
5. Else
6. print odd
7. End

59

Flow Charts
Example: Draw a flowchart to take the value for x and
calculates 1/(x^2+x+3). Check the divide by zero.

1. Start
2. Read a number in x
3. Set divider = x^2+x+3
3. If divider = 0 then
4. print “Division is not possible”
5. Else
4. Set Calc = 1 / divider
4. print “The result is divider”
7. End

60

Example: Draw a flowchart to take three
numbers and print the maximum of them

Flow Charts
1. Start
2. Read x, y, z
3. If x >= y then
4. Set Max = x
5. Else
6. Set Max = y
7. If z >= Max
8. Set Max = z
9. print “The maximum number is Max”
10. End 61

Example: Draw a flowchart to print
integers 1 to N

Flow Charts
1. Start
2. Read N
3. Count = 1
4. Print Count
3. If Count < N then
4. Count = Count + 1
5. Goto Line 4
10. End

62

Example: Draw a flowchart to take integer N
print N!

Flow Charts
1. Start
2. Read N
3. Set Fact = 1, Count = 1
4. Set Fact = Fact * Count
5. Set Count = Count + 1
6. If Count <= N then
7. Goto Line 4
8. print “The Factorial of N is Fact”
9. End

63

Example:
Draw a flowchart to print the multiplication table

Flow Charts
1. Start
2. Set row = 1, col = 1
3. Print row * col
4. If col < 10 then
5. Set col = col + 1
6. Goto Line 3
7. Else
8. Print newline
9. If row < 10 then
10. row = row + 1
11. col = 1
12. Goto Line 3
13. End

64

Example: Draw a flowchart to take N and print e value using the
following series:

- Analysis
- Trace for 5

Try Yourself!

65

