UBI528 / UTI502 Network Security

Midterm Preparation Problems

(Problems 22 and 24 of Chp. 8 from Computer Networking, 6th ed. Kurose and Ross, 2013)

P22. The following True/False questions pertain to Figure 8.28.

- a. When a host in 172.16.1/24 sends a datagram to an Amazon.com server, the router R1 will encrypt the datagram using IPsec.
- b. When a host in 172.16.1/24 sends a datagram to a host in 172.16.2/24, the router R1 will change the source and destination address of the IP datagram.
- c. Suppose a host in 172.16.1/24 initiates a TCP connection to a Web server in 172.16.2/24. As part of this connection, all datagrams sent by R1 will have protocol number 50 in the left-most IPv4 header field.
- d. Consider sending a TCP segment from a host in 172.16.1/24 to a host in 172.16.2/24. Suppose the acknowledgment for this segment gets lost, so that TCP resends the segment. Because IPsec uses sequence numbers, R1 will not resend the TCP segment.

Figure 8.28 • Security Association (SA) from R1 to R2

P24. Consider the following pseudo-WEP protocol. The key is 4 bits and the IV is 2 bits. The IV is appended to the end of the key when generating the keystream. Suppose that the shared secret key is 1010. The keystreams for the four possible inputs are as follows:

 $\begin{array}{c} 101000;\ 00101011010101010010111010100100\ldots \\ 101001;\ 101001101101101010110100100101101\ldots \\ 101010;\ 00011010001111000101001010101111\ldots \\ 101011;\ 11111010100000001010101000010111\ldots \end{array}$

Suppose all messages are 8-bits long. Suppose the ICV (integrity check) is 4-bits long, and is calculated by XOR-ing the first 4 bits of data with the last 4 bits of data. Suppose the pseudo-WEP packet consists of three fields: first the IV field, then the message field, and last the ICV field, with some of these fields encrypted.

- a. We want to send the message m = 10100000 using the IV = 11 and using WEP. What will be the values in the three WEP fields?
- b. Show that when the receiver decrypts the WEP packet, it recovers the message and the ICV.
- c. Suppose Trudy intercepts a WEP packet (not necessarily with the IV = 11) and wants to modify it before forwarding it to the receiver. Suppose Trudy flips the first ICV bit. Assuming that Trudy does not know the keystreams for any of the IVs, what other bit(s) must Trudy also flip so that the received packet passes the ICV check?
- d. Justify your answer by modifying the bits in the WEP packet in part (a), decrypting the resulting packet, and verifying the integrity check.