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Lecture Outline

• Shift and substitution ciphers.

• Attacks on shift and
substitution ciphers.

• Vigenere cipher.

• Attacks on Vigenere: Kasisky
Test and Index of Coincidence

• Cipher machines: Jefferson
Wheel and Enigma machine.
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Recommended Reading

• Chapter 1 from Stinson
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Ciphers

• Substitution ciphers: same alphabet used for
encryption/decryption, a fix permutation of that
alphabet defines the rule.

• Transposition ciphers: letters in the
ciphertext are the same letters, with the same
frequency as in the plaintext, but rearranged
(using matrices).

• Product ciphers: composition of several
ciphers, alternating between substitution and
transposition.
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Begin Math
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 Cartesian Product

Definition:
Given two sets A and B, the Cartesian product (or
direct product) of the two sets, written as A x B is the
set of all ordered pairs with the first element of each
pair selected from A and the second element
selected from B.

A x B = { (a,b) | a Œ A and b Œ B}

Example:
A = {1, 2}, B = {a, b, c}.
A x B = {(1, a), (2, a), (1, b), (2, b), (1, c), (2, c)}
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 Binary Operation

Definition:
Given a set A, a binary operation, *, defined on
A, is a function from the Cartesian product A x A
to B. If B = A, i.e. * takes values in the same set A,
it is said that the operation is closed on A .

Example:
For a, b   Z, define a * b = a + b.
For a, b   Z, define a * b = ab.
For a, b   Z, define a * b = min {a, b}.
For a, b   Z, define a * b = a/b.
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 Modulo Operation

nbnanba  mod  mod  mod =¤≡

rnqaqrna +¥=$¤=   s.t. ,  mod 

† 

where 0 £ r £ n -1

Definition:  

Example:
7 mod 3 = 1
-7 mod 3 = 2

Definition (Congruence):  
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 Groups

Definition:
A group (G, *) is a set G on which a binary operation is
defined which satisfies the following axioms:
  Closure:       For all a, b Œ G, a * b  Œ G.
  Associative: For all a, b, c Œ G, (a * b)* c = a * (b * c).
  Identity:       $ e ŒG s.t. for all a Œ G, a* e = a = e * a.
  Inverse:       For all a Œ G, $ a-1 Œ G s. t. a* a-1 = a-1 *a = e.

Example:
(Z, +)
(Zn , addition modulo) where Zn = {0, 1, ... , n - 1}
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 Groups

Definition:
A group (G, *) is called an abelian group if * is a
commutative operation:

Commutative:  For all a, b Œ G, a * b = b * a.

Example:
(R, +)
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End Math
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Shift Cipher

• defined over Z26 as follows:
A  B C D E  F G  H  I  J  K  L   M  N  O   P  Q  R   S   T  U  V  W  X  Y  Z

0   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22  23 24 25

• Convert each letter in the plaintext P to it's
corresponding number.

• Key K, 0 ≤ K ≤ 25.

• Let P = C = Z26

• ek(P) = (P + K) mod 26

• dk(C) = (C – K) mod 26
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Shift Cipher: An Example

A  B C D E  F G  H  I  J  K  L   M  N  O   P  Q  R   S   T  U  V  W  X  Y  Z
0   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22  23 24 25

P = CRYPTOGRAPHYISFUN
K = 11
C = NCJAVZRCLASJTDQFY

C Æ  2;     2+11 mod 26 = 13 Æ  N
R Æ 17;  17+11 mod 26 =   2 Æ  C
…
N Æ 13;  13+11 mod 26 = 24 Æ  Y
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Shift Cipher: Cryptanalysis

A B C D E F G H I J K  L  M  N O  P  Q  R   S   T  U  V  W X Y Z

0  1  2  3 4  5  6  7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• ek(P) = (P + K) mod 26

• Can an attacker find K? YES: exhaustive search,
key space is small (26 possible keys).

• Once K is found, very easy to decrypt

                    dk(C) = (C – K) mod 26

• History: K = 3, Caesar’s cipher
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Substitution Cipher

A B C D E F G H I J K  L  M  N O  P  Q  R   S   T  U  V  W X Y Z
p(A)  ...                                                                                      p(Z)

• Ciphertext, Plaintext, Œ Z26

• ep(Plaintext) = p (Plaintext)
• dp(Ciphertext) = p-1 (Ciphertext)

Example:
A B C D E F G H I J K  L  M  N O  P  Q  R   S   T  U  V  W X Y Z

p = BADCEFGHIJKLMNOPQRSTUVWXYZ

BECAUSE Æ  AEDBUSE
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Substitution Ciphers: Cryptanalysis

• Each language has certain
features: frequency of letters,
or of groups of two or more
letters.

• Substitution ciphers preserve
the language features.

• Substitution ciphers are
vulnerable to frequency
analysis attacks.
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Example: English Features

• The nine high-frequency letters E, T, A, O, N, I,
R, S, and H constitute 70% of plaintext.

• EN is the most common two-letter combination,
followed by RE, ER, and NT.

• Vowels, which constitute 40 % of plaintext, are
often separated by consonants.

• The letter A is often found in the beginning of a
word or second from last. The letter I is often
third from the end of a word.

• And more …
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Substitution Ciphers: Cryptanalysis

• The number of different

    ciphertext characters or

    combinations are counted

    to determine the frequency

    of usage.

• The cipher text is examined for patterns,
repeated series, and common combinations.

• Replace ciphertext characters with possible
plaintext equivalents using known language
characteristics.
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Vigenere Cipher

    Definition:
    Given m, a positive integer,  P = C = (Z26)m, and

K = (k1, k2, … , km) a key, we define:
    Encryption:
    ek(p1, p2… pm) = (p1+k1, p2+k2…pm+km) (mod 26)
    Decryption:
    dk(c1, c2… cm) = (c1-k1,  c2-k2 … cm- km) (mod 26)

    Example:
    Plaintext:    C R Y P T O G R A P H Y
     Key:            L U C K L U C  K L U C K
     Ciphertext:  N L A Z E  I   I  B L J  J  I
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Vigenere Cipher: Cryptanalysis

• Frequency analysis: for a
given language, map
frequency of letters to the
known frequencies in that
language.

• Substitution ciphers are
vulnerable to frequency
analysis because  they
preserve the features of
the language.

• What about Vigenere?
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Vigenere Cipher
• Vigenere masks the frequency with which a

character appears in a language: one
particular letter is mapped to more than one
letter. Makes the use of frequency analysis
more difficult.

     Plaintext:    C R Y P T O G R A P H Y
     Key:            L U C K L U C  K L U C K
     Ciphertext:  N L A Z E  I   I  B L J  J  I
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Vigenere Cipher: Cryptanalysis

• Any message encrypted
    by a Vigenere cipher is a
    collection of as many simple
    substitution ciphers as there
    are letters in the key. So…

– Find the length of the key.
– Divide the message into that

many simple substitution
encryptions.

– Use frequency analysis to solve
the resulting simple substitutions.
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How to Find the Key Length?

• For Vigenere, as the length of the keyword
increases, the letter frequency shows less
English-like characteristics and becomes
more random.

• Two methods to find the key

     length:

– Kasisky test

– Index of coincidence

    (Friedman)
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Kasisky Test

• Note: two identical segments of plaintext, will
be encrypted to the same ciphertext, if they
occur in the text at the distance D, (D≡0 (mod
m),  m is the key length).

• Algorithm:
– Search for pairs of identical

    segments of length at least 3

– Record distances between
    the two segments: D1, D2, …

– m divides gcd(D1, D2, …)
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Index of Coincidence (Friedman)

   Informally: Measures the probability that two
random elements of an n-letters string x are
identical.

    Definition:

    Suppose x = x1x2…xn is a string of n
alphabetic characters. Then Ic(x), the index of
coincidence is:

)()( jic xxPxI ==
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• Reminder: binomial coefficient

• Consider the plaintext x, and f0, f1, … f25

the frequencies with which A, B, … Z
appear in x and p0, p1, … p25 the
probabilities with which A, B, … Z appear in
x.

• We want to compute Ic(x).

Index of Coincidence (cont.)
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• We can choose  two elements out of the
string of size n in        ways

• For each i, there are         ways of choosing
the elements to be i

Index of Coincidence (cont.)
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Index of Coincidence of English
• For English,  S = 25 and pi can be estimated

† 

Ic (x) = pi
2

i= 0

25

Â = 0.065

.028U.067N.020G

.091T.024M.022F

.001Z.063S.040L.127E

.020Y.060R.008K.043D

.001X.001Q.002J.028C

.023W.019P.070I.015B

.010V.075O.061H.082A

   piLetter  piLetter  piLetter   piLetter
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Finding the Key Length

y = y1y2…yn,   , m is the key length

y1

y2

ym

…
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Guessing the Key Length

• If m is the key length, then the text ``looks like’’
English text

• If m is not the key length, the text ``looks like’’
random text and:

mi1   065.0)(
25

0

2 ££"=ª Â
=

=

i

i
iic pyI

† 

Ic ª ( 1
26

)2

i= 0

i= 25

Â = 26 ¥
1

262 =
1
26

= 0.038  
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Cipher Machines

• Used to encrypt/decrypt data

• Examples: Jefferson Cipher,
Enigma Machine, Purple
Machine
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Jefferson Wheel Cipher

• 15 x 4 cm
• slice about 5mm across
• Developed by Thomas Jefferson
• 25 wheels, each wheel had the letters of the alphabet on it in a

different random order, wheels were set on a common axle, in the
specified order

1790
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Jefferson Cipher

• Encode: rotate each wheel such the message
appears along one side of the cylinder, the
cylinder is then turned and another line is copied
out at random.

• Decode: use the cylinder to enter the ciphertext,
and then turn the cylinder examining each row
until the plaintext is seen.

• Same cylinder must be used for both encryption
and decryption.
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Enigma Machine

• Encryption machine used by
germans in the WWII, relies on
elctricity

• Plug board: allowed for pairs of
letters to be remapped before
the encryption process started
and after it ended.

• Light board
• Keyboard
• Set of rotors: user must select

three rotors from a set of rotors
to be used in the machine. A
rotor contains one-to-one
mappings of all the letters.

• Reflector (half rotor).
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How Does it Work?

• Current passes through:
– the plug board,
– the three rotors,
– the reflector which reverses the current,
– back through the three rotors,
– back through the plug board
– then the encrypted letter is lit on the display.

• For each letter, the rotors rotate. The rotors rotate
such as the right most rotor must complete one
revolution before the middle rotor rotated one
position and so on.
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Letters Remapped

• The whole encryption process for a single letter
contains a minimum of 7 remappings (the current
passes through the rotors twice) and a maximum of
9 remappings (if the letter has a connection in the
plug board).
– Plug board performs the first remapping, if the letter has a

connection in the plug board.
– Rotors remap letters. Each rotor contains one-to-one

mappings of letters but since the rotors rotate on each key
press, the mappings of the rotors change on every key
press.

– The reflector does one more remapping, the one-to-one
mappings are always the same.
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Decryption

• Need the encrypted message, and know
which rotors were used, the connections on
the plug board and the initial settings of the
rotors.

• Without the knowledge of the state of the
machine when the original message was
typed in, it is extremely difficult to decode a
message.
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Japanese Purple Machine

• Electromechanical
stepping switch machine
modelled after Enigma.

• Used telephone stepping
switches instead of rotors

• Pearl Harbor attack
preparations encoded in
Purple, decoded hours
before attack.
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Summary

• Shift ciphers are easy to break
using brute force attacks, they have
small key space.

• Substitution ciphers vulnerable to
frequency analysis attacks.

• Vigenere cipher is vulnerable:
once the key length is found, a
cryptanalyst can apply frequency
analysis.
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Coming Attractions …

• HW1 will be handed in class

• Perfect Secrecy

• Entropy

• Unicity Distance

• Recommended reading:

   Stinson Chapter 2.


