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Content of this Chapter

• Intro to stream ciphers

• Random number generators (RNGs)

• One-Time Pad (OTP)

• Linear feedback shift registers (LFSRs)

• Trivium: a modern stream cipher
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� Stream Ciphers in the Field of Cryptology

Cryptology

Cryptography Cryptanalysis

Symmetric Ciphers Asymmetric Ciphers Protocols 

Block Ciphers Stream Ciphers

Stream Ciphers were invented in 1917 by Gilbert Vernam
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� Stream Cipher vs. Block Cipher

• Stream Ciphers

• Encrypt bits individually

• Usually small and fast � common in embedded devices (e.g., A5/1 for 

GSM phones)

• Block Ciphers:

• Always encrypt a full block (several bits)

• Are common for Internet applications 
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� Encryption and Decryption with Stream Ciphers

• Encryption and decryption are simple additions modulo 2 (aka XOR)

• Encryption and decryption are the same functions

• Encryption:  yi = esi(xi ) = xi + si mod 2 xi , yi , si ∈ {0,1}

• Decryption:  xi = esi(yi ) = yi + si mod 2
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Plaintext xi, ciphertext yi and key stream si consist of individual bits
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� Synchronous vs. Asynchronous Stream Cipher

• Security of stream cipher depends entirely on the key stream si :

• Should be random , i.e.,  Pr(si = 0) = Pr(si = 1) = 0.5

• Must be reproducible by sender and receiver

• Synchronous Stream Cipher

• Key stream depend only on the key (and possibly an initialization vector IV)

• Asynchronous Stream Ciphers

• Key stream depends also on the ciphertext (dotted feedback enabled)
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� Why is Modulo 2 Addition a Good Encryption Function ?

• Modulo 2 addition is equivalent to XOR operation

• For perfectly random key stream si , each ciphertext output bit 

has a 50% chance to be 0 or 1 

� Good statistic property for ciphertext

• Inverting XOR is simple, since it is the same XOR operation
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x i s i yi

0 0 0

0 1 1

1 0 1

1 1 0

9/27



� Stream Cipher: Throughput

Performance comparison of symmetric ciphers (Pentium4):

Cipher Key length Mbit/s

DES 56 36.95

3DES 112 13.32

AES 128 51.19

RC4 (stream cipher) (choosable) 211.34
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Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005
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� Random number generators (RNGs)
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RNG

Cryptographically 
Secure RNGPseudorandom NGTrue RNG
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� True Random Number Generators (TRNGs)

• Based on physical random processes: coin flipping, dice rolling, semiconductor 

noise, radioactive decay, mouse movement, clock jitter of digital circuits

• Output stream si should have good statistical properties:

Pr(si = 0) = Pr(si = 1) = 50% (often achieved by post-processing)

• Output can neither be predicted nor be reproduced

Typically used for generation of keys, nonces (used only-once values) and for 

many other purposes
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� Pseudorandom Number Generator (PRNG)

• Generate sequences from initial seed value

• Typically, output stream has good statistical properties

• Output can be reproduced and can be predicted

Often computed in a recursive way:

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

),...,,( 11

0

tiiii sssfs

seeds

−−+ =
=

Example: rand() function in ANSI C:

31
1

0

2mod123451103515245

12345

+=

=

+ ii ss

s

Most PRNGs have bad cryptographic properties!
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� Cryptanalyzing a Simple PRNG

Assume 

• unknown A, B and S0 as key

• Size of A, B and Si to be 100 bit

• 300 bit of output are known, i.e. S1, S2 and S3

Solving

…directly reveals A and B. All Si can be computed easily!
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� Cryptographically Secure Pseudorandom Number 
Generator (CSPRNG)

• Special PRNG with additional property:

• Output must be unpredictable

More precisely: Given n consecutive bits of output si , the following output  bits sn+1

cannot be predicted (in polynomial time).

• Needed in cryptography, in particular for stream ciphers

• Remark: There are almost no other applications that need unpredictability, 

whereas many, many (technical) systems need PRNGs. 
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� One-Time Pad (OTP)

Unconditionally secure cryptosystem:

• A cryptosystem is unconditionally secure if it cannot be broken even with 

infinite computational resources

One-Time Pad

• A cryptosystem developed by Mauborgne  that is based on Vernam’s stream 

cipher:

• Properties:

Let the plaintext, ciphertext and key consist of individual bits

xi, yi, ki ∈ {0,1}.

Encryption: eki
(xi) = xi ⊕ ki.

Decryption: dki
(yi) = yi ⊕ ki

OTP is unconditionally secure if and only if the ke y ki. is used once! 
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� One-Time Pad (OTP)

Unconditionally secure cryptosystem:

y0 =  x0 ⊕ k0

y1 =  x1 ⊕ k1

:

Every equation is a linear equation with two unknowns

⇒ for every yi are  xi = 0 and xi = 1 equiprobable!

⇒This is true iff k0, k1, ... are independent, i.e., all ki have to be 

generated truly random

⇒ It can be shown that this systems can provably not be solved.

Disadvantage: For almost all applications the OTP is impractical 

since the key must be as long as the message! (Imagine you 

have to encrypt a 1GByte email attachment.)
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� Linear Feedback Shift Registers (LFSRs)

• Concatenated flip-flops (FF), i.e., a shift register together with a feedback path

• Feedback computes fresh input by XOR of certain state bits

• Degree m given by number of storage elements

• If pi = 1, the feedback connection is present (“closed switch), otherwise there is 

not feedback from this flip-flop (“open switch”)

• Output sequence repeats periodically

• Maximum output length:  2m-1
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� Linear Feedback Shift Registers (LFSRs):  Example w ith m=3

• LFSR output described by recursive equation:

• Maximum output length (of 23-1=7) achieved only for certain 

feedback configurations, .e.g., the one shown here.
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� Security of LFSRs

LFSRs typically described by polynomials:

• Single LFSRs generate highly predictable output

• If 2m output bits of an LFSR of degree m are known, the feedback 

coefficients pi of the LFSR can be found by solving a system of linear 

equations*

• Because of this many stream ciphers use combinations of LFSRs

*See Chapter 2 of Understanding Cryptography for further details.
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� A Modern Stream Cipher - Trivium

• Three nonlinear LFSRs (NLFSR) of length 93, 84, 111

• XOR-Sum of all three NLFSR outputs generates key stream si

• Small in Hardware:

• Total register count: 288

• Non-linearity: 3 AND-Gates

• 7 XOR-Gates (4 with three inputs)
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� Trivium

Initialization:

• Load 80-bit IV into A

• Load 80-bit key into B

• Set c109 , c110 , c111 =1, all other bits 0

Warm-Up:

• Clock cipher 4 x 288 = 1152 times without generating output

Encryption:

• XOR-Sum of all three NLFSR outputs generates key stream si

Design can be parallelized to produce up to 64 bits of output per clock cycle
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Register length Feedback bit Feedforward bit AND inputs

A 93 69 66 91, 92

B 84 78 69 82, 83

C 111 87 66 109, 110
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� Lessons Learned

• Stream ciphers are less popular than block ciphers in most domains such as Internet 

security. There are exceptions, for instance, the popular stream cipher RC4.

• Stream ciphers sometimes require fewer resources, e.g., code size or chip area, for 

implementation than block ciphers, and they are attractive for use in constrained 

environments such as cell phones.

• The requirements for a cryptographically secure pseudorandom number generator are far 

more demanding than the requirements for pseudorandom number generators used in other 

applications such as testing or simulation

• The One-Time Pad is a provable secure symmetric cipher. However, it is highly impractical 

for most applications because the key length has to equal the message length.

• Single LFSRs make poor stream ciphers despite their good statistical properties. However, 

careful combinations of several LFSR can yield strong ciphers.
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