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� Problem: 

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and 

fields with parameters of more than 1000 bits.

� High computational effort on CPUs with 32-bit or 64-bit arithmetic

� Large parameter sizes critical for storage on small and embedded

� Motivation:

Smaller field sizes providing equivalent security are desirable

� Solution:

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic 

schemes with coefficient sizes of 160-256 bits, reducing significantly the computational

effort.

� Motivation
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� Computations on Elliptic Curves

• Elliptic curves are polynomials that define points 

based on the (simplified) Weierstraß equation:

y2 = x3 + ax + b 

for parameters a,b that specify the exact shape 

of the curve

• On the real numbers and with parameters 

a, b    R, an elliptic curve looks like this �

• Elliptic curves can not just be defined over the 

real numbers R but over many other types of 

finite fields.

Example : y2 = x3 −3x+3 over R

∈∈∈∈

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl7/24



Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Computations on Elliptic Curves (ctd.)

� In cryptography, we are interested in elliptic curves 

module a prime p:

� Note that Zp = {0,1,…, p -1} is a set of integers

with modulo p arithmetic

∈

Definition: Elliptic Curves over prime fields

The elliptic curve over Zp, p>3 is the set of all 

pairs (x,y)    Zp which fulfill

y2 = x3 + ax + b mod p

together with an imaginary point of infinity θ,

where a,b    Zp and the condition

4a3+27b2 ≠ 0 mod p.

∈

∈
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� Computations on Elliptic Curves (ctd.)

� Some special considerations are required to convert 

elliptic curves into a group of points 

� In any group, a special element is required to 

allow for the identity operation, i.e.,

given P   E: P + θ = P = θ + P

� This identity point (which is not on the curve) is 

additionally added to the group definition 

� This (infinite) identity point is denoted by θ

� Elliptic Curve are symmetric along the x-axis

� Up to two solutions y and -y exist for each 

quadratic residue x of the elliptic curve

� For each point P =(x,y), the inverse or negative 

point is defined as -P =(x,-y)

∈

∈

θ

P

-P

∈

point at 
infinity
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� Computations on Elliptic Curves (ctd.)

� Generating a group of points on elliptic curves 

based on point addition operation P+Q = R, i.e.,

(xP,yP)+(xQ,yQ) = (xR,yR)

� Geometric Interpretation of point addition operation

� Draw straight line through P and Q; if P=Q use

tangent line instead

� Mirror third intersection point of drawn line with 

the elliptic curve along the x-axis

� Elliptic Curve Point Addition and Doubling Formulas

Point Addition

Point Doubling
x3 = s2 −x1−x2 mod p  and y3 = s(x1 −x3)−y1 mod p

where

s = 
p

xx

yy
mod

12

12

−
−

p
y

ax
mod

2

3

1

2
1 +

; if P ≠ Q (point addition)

; if P = Q (point doubling)
=P+P
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� Computations on Elliptic Curves (ctd.)

� Example : Given E: y2 = x3+2x+2 mod 17 and point P=(5,1)

Goal: Compute 2P = P+P = (5,1)+(5,1)= (x3,y3)

s =            = (2 · 1)−1(3 · 52 + 2) = 2−1 · 9 ≡ 9 · 9 ≡ 13 mod 17

x3 = s2 − x1 − x2 = 132 − 5 − 5 = 159 ≡ 6 mod 17

y3 = s(x1−x3) − y1 = 13(5 − 6) − 1= −14 ≡ 3 mod 17

Finally 2P = (5,1) + (5,1) = (6,3)

1

2
1

2

3

y

ax +
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� Computations on Elliptic Curves (ctd.)

� The points on an elliptic curve and the point at infinity θ form cyclic subgroups

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)

3P = 2P+P = (10,6) 12P = (0,11)

4P = (3,1) 13P = (16,4)

5P = (9,16) 14P = (9,1)

6P = (16,13) 15P = (3,16)

7P = (0,6) 16P = (10,11)

8P = (13,7) 17P = (6,14)

9P = (7,6) 18P = (5,16)

10P = (7,11) 19P = θ

This elliptic curve has order #E = |E| = 19 since it contains 

19 points in its cyclic group.

P

θ
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� Number of Points on an Elliptic Curve

• How many points can be on an arbitrary elliptic curve?

• Consider previous example: E: y2 = x3+2x+2 mod 17 has 19 points

• However, determining the point count on elliptic curves in general is hard

• But Hasse‘s theorem bounds the number of points to a restricted interval

Definition: Hasse‘s Theorem:

Given an elliptic curve module p, the number of points 

on the curve is denoted by #E and is bounded by

p+1-2 ≤ #E ≤ p+1+2   

• Interpretation: The number of points is „close to“ the prime p

• Example: To generate a curve with about 2160 points, a prime with a length of about 

160 bits is required
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� Elliptic Curve Discrete Logarithm Problem

� Cryptosystems rely on the hardness of the Elliptic Curve Discrete

Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Probl em (ECDLP)

Given a primitive element P and another element T on an elliptic curve E.

The ECDL problem is finding the integer d, where 1 ≤ d ≤ #E such that

P + P +…+ P = dP = T.

d times

� Cryptosystems are based on the idea that d is large and kept secret and attackers 

cannot compute it easily

� If d is known, an efficient method to compute the point multiplication dP is required 

to create a reasonable cryptosystem

� Known Square-and-Multiply Method can be adapted to Elliptic Curves

� The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm
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� Double-and-Add Algorithm for Point Multiplication

� Double-and-Add Algorithm

Input : Elliptic curve E, an elliptic curve point P and a scalar d with bits di

Output : T = d P 

Initialization :

T = P

Algorithm :

FOR i = t −1 DOWNTO 0

T = T +T mod n

IF di = 1

T = T +P mod n

RETURN (T)
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Example : 26P = (110102)P = (d4d3d2d1d0)2 P.

Step
#0 P = 12P inital setting
#1a P+P = 2P = 102P DOUBLE (bit d3)
#1b 2P+P = 3P = 102 P+12P = 112P ADD (bit d3=1)
#2a 3P+3P = 6P = 2(112P) = 1102P DOUBLE (bit d2)
#2b no ADD (d2 = 0)
#3a 6P+6P = 12P = 2(1102P) = 11002P DOUBLE (bit d1)
#3b 12P+P = 13P = 11002P+12 P = 11012P ADD (bit d1=1)
#4a 13P+13P = 26P = 2(11012P) = 110102P DOUBLE (bit d0)
#4b no ADD (d0 = 0)
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� The Elliptic Curve Diffie-Hellman Key Exchange (ECD H)

� Given a prime p, a suitable elliptic curve E and a point P=(xP,yP)

� The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

� Joint secret between Alice and Bob: TAB = (xAB, yAB)

� Proof for correctness:
� Alice computes aB=a(bP)=abP

� Bob computes bA=b(aP)=abP since group is associative

� One of the coordinates of the point TAB (usually the x-coordinate) can be used as session key 

(often after applying a hash function)
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Alice

Choose kPrA= a     {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab

∈

Bob

Choose kPrB= b     {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab

A

B

∈
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� The Elliptic Curve Diffie-Hellman Key Exchange (ECD H) (ctd.)

� The ECDH is often used to derive session keys for (symmetric) encryption

� One of the coordinates of the point TAB (usually the x-coordinate) is taken as session key

� In some cases, a hash function (see next chapters) is used to derive the session key
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Alice

Choose kPrA= a     {2, 3,…, #E-1}
Compute kPubA= A = aP = (xA,yA)

Compute aB = Tab = (xT,yT)

Define key kAES = xT

Given a message m:
Encrypt c = AESkAES(m)

∈

Bob

Choose kPrB= b     {2, 3,…, #E-1}
Compute kPubB= B = bP = (xB,yB)

Compute bA = Tab= (xT,yT)

Define key kAES = xT

Received ciphertext c:
Decrypt m = AES-1

kAES(c)

A

B

∈
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� Security Aspects

� Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA 

(1024-3076 bit)?

� Attacks on groups of elliptic curves are weaker than available factoring algorithms or 

integer DL attacks

� Best known attacks on elliptic curves (chosen according to cryptographic criterions)

are the Baby-Step Giant-Step and Pollard-Rho method

� Complexity of these methods: on average, roughly steps are required before the 

ECDLP can be successfully solved

� Implications to practical parameter sizes for elliptic curves:

� An elliptic curve using a prime p with 160 bit (and roughly 2160 points) provides a 

security of 280 steps that required by an attacker (on average) 

� An elliptic curve using a prime p with 256 bit (roughly 2256 points) provides a security of 

2128 steps on average
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� Implementations in Hardware and Software

� Elliptic curve computations usually regarded as 

consisting of four layers: 

� Basic modular arithmetic operations are 

computationally most expensive

� Group operation implements point doubling

and point addition

� Point multiplication can be implemented 

using the Double-and-Add method

� Upper layer protocols like ECDH and 

ECDSA

� Most efforts should go in optimizations of the 

modular arithmetic operations, such as 

� Modular addition and subtraction

� Modular multiplication 

� Modular inversion
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Protocol
(ECDSA)

Point 
Multiplication 

(k�P)

Group Operation
P+Q, 2�P

Modular Arithmetic
( +, -, x , ÷  )
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� Implementations in Hardware and Software

� Software implementations

� Optimized 256-bit ECC implementation on 

3GHz 64-bit CPU requires about 2 ms per 

point multiplication

� Less powerful microprocessors (e.g, on 

SmartCards or cell phones) even take 

significantly longer (>10 ms)

� Hardware implementations 

� High-performance implementations with 

256-bit special primes can compute a point 

multiplication in a few hundred 

microseconds on reconfigurable hardware

� Dedicated chips for ECC can compute a 

point multiplication even in a few ten 

microseconds
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� Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. 

It requires, for instance, arithmetic modulo a prime.

� ECC can be used for key exchange, for digital signatures and for encryption.

� ECC provides the same level of security as RSA or discrete logarithm systems 

over Zp with considerably shorter operands (approximately 160–256 bit vs. 

1024–3072 bit), which results in shorter ciphertexts and signatures.

� In many cases ECC has performance advantages over other public-key 

algorithms.

� ECC is slowly gaining popularity in applications, compared to other public-key 

schemes, i.e., many new applications, especially on embedded platforms, 

make use of elliptic curve cryptography.
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