SHANNON’'S THEORY

Shannon's theory of Communication has been
the cornerstone in laying the foundations for
the design of secure ciphers. It consists of
three important parameters:

1. Diffusion

2. Confusion

3. Unconditional Security

In the sequel we explain in more detail these
three principles.



ITERATION OF CIPHERS (DIFFUSION)

An iteration of a fixed transformation may ini-
tially display convincingly good encryption qual-
ities, but may fail in the end to be a good en-
cryption. This we discuss in the sequel with
an example.

Consider the unit square S = {(z,y) : 0 < x,y <
1} with toroidal wrap-around and the transfor-
mation T'(z,y) = (y,z’) such that

;) xt+y—1 ifz4+y>1
x4y ifo<z4+y<l1

T he affine distortion of the picture is given by

the matrix
01
1 1

Notice that if f,, is n-th Fibonacci number then

(o 1)": fne1 fn
11 In fn—|—1



Observe that

8
01\° [(1321) (10 4 7
(1 1)‘(21 34)‘(0 1>+3<7 11)

01\° (610 987\ (1 0 Lo1( 29 47
1 1 1987 1597 ) (0 1 47 76
This gives fixed points for the transformation

T, i.e., points (z,y) such that T'(z,y) = (z,vy).
E.g., the last equation implies

(o 1 >16<z’/21 )_ (z'/21 >+< 29z’—|—47j>
11 i1 | =\ /21 47i + 76k

which gives 400 fixed points for the transfor-
mation 716, with coordinates (i/21,3/21), 0 <
7,7 < 21. (Note that the toroidal property im-
plies that both coordinates of the rightmost
vector are 0.)
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The Priciple of Confusion

Shannon posed the following question: Sup-
pose we want to transmit messages across a
channel (where symbols may be distorted). What
is the maximum rate of transmission s.t. the
receiver may recover the original message with-
out errors?

If V is the set of symbols to be transmit-
ted let us define the graph G = (V, E), where
E(a,b) & symbol a may be confused with sym-
bol b.




All five symbols could be used for transmission.
But since we want to avoid errors we can send
at most 2: either a,c or a,d or b,d or b,e or ¢, d.

I.e., an independent set of vertices, and the
information rate is 1 = log 2.

The graph G thus defined is also called con-
fusion graph of the symbols.

We can improve the information rate by trans-
mitting n symbols at a time, forn =1,2,3,...

How can the pair xy be confused with the pair
z'y'? If one of the following holds:

x =2’ and y # ¢’ can be confused
y =1’ and z # 2’ can be confused
x # x' can be confused and y #% ¢’ can be confused



This amounts to taking the product of a graph
with itself, i.e. G, G2 =G x G,G3 =G x G x
G, ...

We call G™ the confusion graph for strings of
length n.

For a graph G let a(G) be the size of the largest
independent set.

The information rate for strings of length n is
defined by

l0go a(G™) _ 1095 ((a(G™))1/™)

Easy to see that a(G") > (a(G))™.

Shannon defined the zero-error capacity of G
by ©(G) = sup,(a(G®))I/". Thus for the 5-
cycle Cs, a(Cs) = 2 and the information rate
is 1.



Can we compute ©(Cs)? Here is the graph
C5 X 05.

a aa
a b C d e
The set aa, be, ce, db, ed is independent. So a(CsXx
Cs) = 5. It follows that ©(Cs) > /5 and hence
the information rate per two symbols is at least

log 5

~1.16 >1

It is non-trivial to show that in fact ©(Cs) =
V5! A famous open problem is to compute
©(C7) and more generally ©(Cy), when n is
odd!



PRODUCT CIPHERS (Creating Confusion)

For simplicity consider cryptosystems such that
P=/C.

Given two cryprosystems 51, 5S> with respective
keyspaces K4, Ko we define the product cryp-
tosystem 57 x So to have keyspace Ki x Ko,
encryption rule

By k) (@) = Ep, (B, (z))
and decryption rule

D, k2)(¥) = Dj; (Dp, ()

Example: Define the multiplicative cipher M
by the encryption rule Eq(x) = ax mod 26,
where gcd(a,26) = 1. If S is the shift cipher
then it is easy to show that Sx M = M x S
(i.e., S and M commute) is the affine cipher.

The product operation x on ciphers is asso-
Ciative but not commutative.



We can also iterate the product operation to
define new ciphers. Given a cipher S define

52 =9 xS
gntl —gnw g

If S2 = S then the cipher is called idempotent.
Similarly, we can look for the smallest integer
n such that S™ = S (if any).

Example: The Shift, Substitution, Affine, Hill,
Vigenere, and Permutation ciphers are all idem-
potent.

It makes no sense to iterate idempotent ci-
phers. But even if it is not idempotent there
is no guarantee that (repeated) iteration will
lead to a good cipher (see next example).

The idea of product ciphers and iterations are
used to build DES-like ciphers.
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DIFFUSION AND CONFUSION

Shannon introduced the concepts of Diffusion
and Confusion in order to capture the two
building blocks of any cryptosystem.

Ciphers are constructed as “products” of these
two basic operations. In ideal ciphers an appro-
priate composition of these operations should
lead to statistics such that the ciphertext is
independent of the key.

In Diffusion the statistical structure of the
plaintext is dissipated. This is achieved by
having each ciphertext character be affected
by many plaintext characters, e.g., “adding” k
successive plaintext letters to get a ciphertext
letter (for k sufficient large).

In Confusion the relationship between the statis-
tics of the ciphertext and encryption key are
made as complex as possible. For this we use
complex substitution algorithms, e.g., permu-
tations).

11



Unconditional Security
We will develop a theory of unconditional secu-

rity using the framework of probability theory.
Given random variables X,Y we define:

p(x) = Pr[X = z],p(y) = Pr[Y = y].

joint prob.: p(x,y) = Pr[X =z,Y = y].
conditional prob.: p(z|y) = Pr[X = z|Y = y].
independence: p(z,y) = p(z)p(y).

Formula: p(z,y) = p(z|y)p(y) = p(y)p(y, ).

Bayes’ Theorem: p(z|y) = p(ngy(§’|x), assum-
ing p(y) > 0.

X,Y independent < p(xly) = p(x) © p(y|lz) =

p(y) , for all z,y.
12



DISTRIBUTIONS IN CRYPTOSYSTEMS

We assume that a given key is used for only
one encryption.

Probability distributions are given on the plain-
text space P and key space K: pp(z),pr (k).

It is reasonable to assume that they are inde-
pendent, because the key is chosen in advance
without knowledge of what the plaintext will
be.

T hese two distributions induce a distribution
on the cipherspace C: pc(y), which we now
estimate.

Let C(k) = {Ei(x) : x € P} be the set of possi-
ble ciphertexts which are encrypted by the key
k.

13



T he following calculations can be made by any-
one who knows the probability distributions of
the plaintext and keyspace.

For a given ciphertext y € C we have:

pc(w) = >  px(k)pp(Dir(y))
{k:yeC(k)}

We can compute easily the conditional prob-
ability that y € C' is the ciphertext given that
x € P is the plaintext:

pc(y|z) = > pr(k)

{k:x=Dy(y)}

Hence, using Bayes' formula we can also com-
pute the conditional probability that x is the
plaintext given that y is the ciphertext:

PP(2) X k:z=D, (1)} PK (k)
Z{k:yEC(k)} pi (k)pp(Dr(y))

pc(zly) =

A cryptosystem has perfect secrecy if pp(z|y) =
p(x), for all z € P and y € C.

14



Example

Let P = {a,b}, K = {k1,kp,k3}, with pp(a) =

1/4,pp(b) = 3/4, px(k1) = 1/2, and pi (ko) =
prc(k3) = 1/4. Let C = {1,2,3,4).

Encryption E;:

a b
k1|1 2
ko2 3
k3|3 4

Probability Distribution of p.:

pc(l) =1/8

pc(2) =3/8+1/16 =7/16
pc(3) =3/16+1/16=1/4
pc(4) =3/16

Conditional Probability Distributions:

pp(all) =1

pp(b

pp(al2) = 1/7 pp(d
pp(a|3) =1/4 pp(d

pp(al4) =0

pp(b

1) =0
2) = 6/7
3) =3/4
4) =1

15



Shift Cipher has Perfect Secrecy

Assume that the 26 keys have equal probability
1/26. po is computed as follows:

pe@) = X pr®pp(Dyp)) = 3 LPU=R

k<25 k<25 26

Since {y — k : y € C} is a permutation of the
26 ciphercharacters we must have

pP(y - k) 1 Z
> = — pp(y) =
k<as 26 26 .35

1
26

For every x,y there is a unique k& (namely, k =
y — x) such that Ep(z) = y. Hence po(y|lz) =
prg(y —x) = 1/26. Using Bayes' formula we
have:

pp(z)pc(ylz) _ pp(x)/26

pe(y) 126 PP

pp(zly) =

Hence, the shift cipher is unbreakable provided
that a new random key is used to encrypt every
plaintext character.

16



Perfect Secrecy

W.l.0.g. we may assume po(y) > 0, Vy € C (if
not, then y is never used and can be omitted).

Assume the cryptosystem has perfect secrecy.

By Bayes' theorem: pp(z|y) = pp(x),Vz € P,y €
C < po(ylz) =pc(y),Vr e Pyl

Fix ¢ € P. For each y € C we have po(y|zr) =
> {k:e=D,.(y)} PK (k) = pc(y) > 0.

Hence, for each y € C there is at least one key
k € K such that E.(x) = y.

It follows that |K| > |C]|. In any cryptosystem
we must always have |C| > |P|. Hence,

K| 2> [C] > |P|

What happens in the boundary case
K| =|C|=|P|?

17



Continued

(Shannon’s Theorem) Suppose the cryptosys-
tem (P,C,K, FE,D) satisfies |K| = |C| = |P|.
Then it has perfect secrecy < (a) every key
is used with equal probability 1/|K| and (b)
Ve € Pk € K(Ep(x) =y).

(=) Assume the cryptosystem provides perfect
secrecy, i.e., pp(x|ly) = pp(x),Vx € P,y € C. By
the previous observation, for each =z € P, and
y € C' there is at least one key k € K such that

Ep(x) = y.

Hence, |C| = {FL(x) : k € K}| < |K|. By as-
sumption |C| = |K|. Hence also |K| = |{E(x) :
k € K}|. It follows there do not exist keys
k1 7 ko such that Ey, () = Ep,(x) = v.

This proves part (b): Vox € P3lk € K(E(x) =
y) of the implication.

18



Continued

Now we prove part (a). Fix y € C. Put
n = |K| and let P = {z1,xp,...,zn} and K
{k1,k2,...,kn} in such a way that Ej (z1)
Ep,(z2) == Ey (zn) =y

The perfect secrecy condition and Bayes' the-
orem imply:

— pcWlz;)pp(=;)
pc(y)
— pr(ki)pp(x;)
pc(y)

pp(x;) = pp(x;ly)

This implies pg(k;) = pc(y), foralli =1,2,...,n
and completes the proof of part (b).

The converse, i.e. that parts (a) and (b) imply
perfect secrecy is the same as the proof of
the perfect secrecy of the shift cipher proved
earlier.

19



(Vernam) One-time Pad

Shannon's Theorem offers a rigorous proof of
the perfect secrecy of Vernam’s cipher, first
proposed by Vernam in 1917. The cryptosys-
tem can be described as follows. |P| = |C| =
K| = (Z2)™.

The key k& = (kg,k1,...,k,_1) iS @ random se-
quence of bits generated by some ‘“good ran-
dom generator’.

A plaintext z = (xq,...,x,_1) iS encrypted by
Ek(m) = (:BO—|—]€0 mod 2,...,x,_1+k,_1 Mmod 2)

A ciphertext v = (yg,...,y,_1) iS derypted by
Dy(y) = (yo+ko mod 2,...,y,_1+k,_1 mod 2)

Unfortunately, it is vulnerable to known plain-
text attack: k can be computed from z and

Ey(x).

Also, the fact that |K| > |P| means that the
“amount” of keys to be communicated is as
big as the “"amount” of plaintext.

20



ENTROPY

We considered the case when a key is used for
only one encryption. What happens when the
same key is used on more than one plaintext?
The basic tool is the entropy which also mea-
sures the uncertainty of a system.

Consider a random variable X which takes on a
finite set of values with probability distribution
p(X) : Pr[X = x].

Question: What is the information gained by
an event that takes place with probability dis-
tribution p(X)?

Equivalent Question: If the event has not
taken place what is the uncertainty about the
outcome?

We call this quantity entropy of X and denote
by H(X).
21



We are interested in quantifying “information”
in the sense of probability theory.

This is not the same as information in everyday
language.

The concept has nothing to do with “mean-
ing" . Instead it is related more to “surprise’.

1. There was snow in Ottawa in July.

2. I will have dinner tomorrow.

3. JQQS QRVQ UQAT QQAB

The first sentence is most surprising, the sec-
ond has meaning but no surprise, and the third
IS garbage!

22



Given an experiment with n equiprobable out-
comes Fq, FEo,...,Ey how much information is
conveyed on the average by a message M telling
us which of the outcomes has actually occurred?

It seems reasonable to take as measure of this
information the average length of the message
provided M is written in an “economical” way.

For example, suppose we use “binary code”
of length ¢, a sequence b1by---b; of bits. ODb-
viously there are 2! such sequences of length
t. To identify uniquely all the events we must
choose t s.t. n < 2t. Hence, t = logn would
be a reasonable definition of the amount of
information in the message.

Let the events Eq, E», ..., E, have probabilities
p1,p2,...,Pn, respectively. Now perform an ex-
periment N times and send a message M con-
veying the result of the whole series of M trials.
An experiment is a sequence FE;. , E; B

112 1y " * iN
with E; the outcome of the k-th trial.

23



If N is the number of occurrences of the event
E, then p. = % by the law of large numbers;
hence Np = Npp and N = Ny + No + -+ Np.
It follows, the total number of outcomes is
N

N Ny, (1)
This suggests the average number t of bits
needed to encode the message M should sat-
isfy t = ”‘% Using (1) and Stirling's approxi-
mation

V2T NNNe—N

\/QWNlN{Vle_Nl e \/mNgne_Nn

It follows that

Insp, ~NInNN — Zgzl Ni In(Npg)
~ NINN — ;" NpIn(Npg)
=NInN -V _ NppInN — >N _ NpjInpy
= —NY>7_;pInpg

Hence,

Sp &

N

= — Pk 1N g,
k—1

N sy,
N

t =

24



Example 1: Let X denote the toss of a fair
coin with Pr[X = heads] = Pr[X = tails] =
1/2. The information or entropy of a coin toss
is 1 bit, because it takes one bit to encode
heads or tails. Similarly the entropy of n inde-
pendent coin tosses is n.

Example 2: Let X denote a random vari-
able that takes on the values zi,x2,x3 with
Pri X =z1] = 1/2,Pr[X = z3] = Pr[X = z3] =
1/4. The “most efficient” encoding of the
three events is to encode X = x1 with 0, and
X = x9, X = x3 with 01,11, respectively. The
average number of bits in this encoding is

1 1 1 3
> 1T 21y 2

The examples suggest that the number of bits
required to encode an event X = x might be
approximately —log Pr[X = x], which gives rise
to the following definition.

25



The entropy of the random variable X is de-
fined to be

H(X)=—) Pr[X =z]log Pr[X = z]

For a cryptosystem, we are interested in the
entropies H(K),H(P), H(C) of the random vari-
ables of K, P,C.

Remark: If Pr[X = z] = 0, we define Pr[X =
z]logPr[X = x] = 0. (Iim;_tlogt =0.)

Let the r.v. X take on values zq,,...,xn.
If Pr[X = z;] = 1/n, Vi, then

H(X)=— i Pr[X = x;] log Pr[X = z;] = logn

1=1

Also, itiseasy toseethat H(X) = 0 & Ji(Pr[X =
xz] = 1&\V/j # i(PI’[X = CB]] = O))

26



(Previous) Example

Let P = {a,b}, K = {kq,ko,k3} with corre-
sponding distributions

pp(-) =
a |1/4
b |3/4
- | pr() =
ky | 1/2
ko 1/4
k3| 1l/4
Let C' = {1,2,3,4}. The distribution pg is:
pc(l) =1/8

pC(Q) =3/8—|—1/16=7/16
pc(3) =3/16+1/16=1/4
pc(4) =3/16

We can easily calculate the entropies
H(P)

H(K)
H(C)

1 1_3 3
—%Iog%—ziog Zl ~ 0.81
~ 1.85
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HUFFMAN ENCODINGS

Let X be a r.v. which takes on a finite set
of values. An encoding of X is a function f :
X — {0,1}*. We can extend f to a function
f: X* — {0,1}* in the obvious way. Given a
finite string xz1,...,xn Of events we define

f(w].)"')xN) — f(ml)H ||f($n)a

where || is string concatenation. If a string
x1---Tp IS produced by a memoryless source
according to a probability distribution on X
then the probability of the string x1---xpn IS

equal to p(z1) - - p(zn).

Example: Let X = {a,b,c,d} and consider the
following three encodings.

f(a) =1 f(b) =10 f(c) =100 f(d) = 1000
gla) =0 ¢g(b) =10 g(c) =110 g(d) =111
h(a) =0 h(b) =01 h(c) =10 h(d) =11
Note that both f,g are injective but h is not
because h(ac) = h(ba) = 010.

28



HUFFMAN ENCODINGS AND ENTROPY
For any enconding of X and probability dis-

tribution on X we define the efficiency of the
encoding

L(f)= ) p@)|f(2)

reX
Question: How do we minimize L(f)?

Theorem: There is an algorithm (known as
Huffman algorithm) that computes a “mini-
mal” encoding. Moreover, the encoding pro-
duced by the algorithm satisfies

H(X) <L(f) <H(X)+1

The algorithm is as follows: Begin with the
probability distribution of X and assign code
@ to each element. In each iteration two el-
ements with lowest probability are combined
into one element with probability the sum of
the two probabilities. The smaller of the two
is assigned “0” and the larger “1". When only
one element remains then the coding for each
x € X can be constructed by following the se-
quence of elements “backwards’ .

29



Example: Let X = {a,b,c,d, e} have the prob-
ability distribution p(a) = .05,p(b) = .1,p(c) =
12, p(d) = .13,p(e) = .6 Huffman’'s algorithm
works as follows

a b C d e
.05 .10 12 .13 .60
0 1
15 12 .13 .60
0 1
.15 .25 .60
0 1
40 60
0 1
1.0

Which gives the encoding

symbol a b C d e
f(symbol) 000 001 010 011 1

We see easily that L(f) = 1.8 and H(X) =
1.7402.

30



The Huffman Tree
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The conditional entropy measures the aver-
age amount of information about X that is
revealed by Y. For X,Y r.v. we define the
conditional entropy by

H(X|y) — >z p(z|y) log p(z|y)
HX|Y) =->,p(y) H(X|y)

PROPERTIES OF ENTROPY

Let the r.v. X take on values x1,,...,zm and
let p, = Pr[X = x;]. Let the r.v. Y take on
values y1,,...,yn and let ¢; = Pr[Y = y;].

1. H(X) < logm, with equality & Vi(p; =
1/m).

2. H(X,Y) < H(X)+ H(Y), with equality <
X,Y are independent.

3. H(X,Y) = H(Y) + H(X|Y).

4. H(X|Y) < H(X), with equality & X,Y are
independent.
32



We need Jensen’s inequality: If f is continuous
and strictly concave on the interval I (exam-
ple: logz) and a; > 0,Vi, a1+ -+ am = 1
then

i azf(xz) </f (Z azxz) ,

1=1
with equality 1 = - =zm =1/m.
Proof of 1.

H(X) = — > p; 109 p;

=> p; log(1/p;)
<log> ™ 1 pi(1/p;)
= log m,

with equality < p1 = - =pm = 1/m.

Proof of 2. Denote by r; ; = Pr[X = z;,Y =
y;] and observe that

Z Tig> d5 — Z T4,

33



H(X)+ HEY) =-3"pilogp; —>7_4 q;109 g;
—Ziﬁl Z] 174,79 log p;
_Z:’; 12 ’I“z]|qu]

— = Z?Ln—l Z] 174,79 |Og<pZQJ)

and
H(X,Y)=—> r;;jlogr; ;= er g-—
i,J ]

It follows from (??) and Jensen S inequality

that
H(ny)_H(X)—H(Y) :Zijrz |ngzq]
Y 7/']

Pi44
S |Og ZZ)] rZ).] ’I“sz

=1093%.; jpig; = O,
with equality if and only if r;;/pia; = ¢, Vi, ],
for some constant ¢. We conclude that ¢ =1
using the equation

1=> r,;=c-> pigij=c- (Zm) (Z%’) =c
ij i i ]

1

Proofs of 3 & 4: are easy.
34



ENTROPY AND CRYPTOSYSTEMS
Key equivocation: H(K|C).

Theorem: For any cryptosystem H(K|C) =
H(K)+ H(P)—-H(C).

Observe that by property 3,

H(K,P,C) = H(K,P)+ H(C|K,P)
H(K,P,C) = H(K,C)+ H(P|K,C)
Since the key and plaintext determine uniquely
the ciphertext, i.e., y = Er(x), we have that
H(C|K,P) = 0. Hence, we have H(K,P,C) =
H(K,P). Similarly, key and ciphertext deter-
mine uniquely plaintext, i.e. z = D.(y). Hence,

H(P|K,C) =0 and H(K,P,C) = H(K,C).

Since K, P are independent H(K,P) = H(K)+
H(P).

Hence, H(K,P,C) = H(K,P) = H(K)+ H(P).

H(K|C) = H(K,C) — H(C) = H(K,P,C) —
H(C)=H(K)+ H(P) - H(CO).
35



(Previous) Example

Let P = {a, b}, K = {kl,kg,k:a,}, with pp(a)

1/4,pp(b) = 3/4, pr(k1) = 1/2, pr(k2)
pK(k3) = 1/4. Let ' = {1,2,3,4}.

H(P) =—zlogz—32log3 ~0.81
H(K) = -3logsd—2%logz =15
H(C) = ~ 1.85

T he equivocation of this cryptosystem is given
by the formula

H(K|C) = H(K)+ H(P) — H(C)
=15+40.81-1.85
— 0.46

This is the amount of information about the
key which is revealed by the ciphertext.
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SPURIOUS KEYS

Suppose we are looking at ciphertext only at-
tacks in a given cryptosystem. Let us assume
that a plaintext ¢ = x1---xn from a natural
language, say english, is enciphered as cipher-
text y =y1 - Yn.

In general, it may be possible to rule out cer-
tain keys, but many “possible” keys remain,
only one of which is the correct one. The re-
maining possible but incorrect keys are called
spurious.

Example: Consider the ciphertext WNAIW
which was encrypted using the shift cipher. By
analyzing the ciphertext it is easy to see that
there are only two meaningful texts: river and
arena. Of the two keys one is correct (with
shift 5) and the other is spurious (with shift
22).

Question: Is there a bound on the (expected)
number of spurious keys?

37



ENTROPY AND REDUNDANCY

Let P™ be the random variable which has as
probability distribution all n-grams of plaintext
in a (natural) language.

For a given natural language L, the entropy
of L is defined by

. H(P")
HL = |im ,
n—oo n
and is the average amount of information per
letter in @ meaningful string of plaintext. (Note
that a random string of letters would have en-
tropy 10926 ~ 4.76.) The redundancy of L is

given by

Hy,
~ log|P|
A random language has entropy log|P| (and
redundancy 0) and so Ry, measures the fraction
of “excess’ characters which are thought of as
redundant.

Ry =1

39



Example: For the english language tabula-
tions have been made of H(P") yielding

H(P) =4.19
H(P?) =~3.90
By performing experiments in computing tri-
grams, etc., in the limit we obtain that 1.0 <
H; <1.5,i.e. the average information content
in English is about 1.5 bits per letter. Substi-
tuting
Hyp, Ry,
1.00|1—-1.00/log26 =0.79
1.25|1—-1.25/1og26 = 0.74
1.50|1—-1.50/log26 = 0.69
So redundancy in the English language ranges
from 69% to 79%, i.e. if Ry = 1.25 we can
find a Huffnan encoding of n-grams (for n suf-
ficiently large) that will compress english to
about a quarter its original length.
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Theorem: Consider a cryptosystem with |P| =
|C'|, keys are chosen equiprobably, and Ry, is the
redundancy of the underlying language. For
n sufficiently large, the expected number (de-
noted by s,) of spurious keys of a given string
of ciphertext of length n satisfies
L
— |p|nRL

Proof: Consider the set of “possible” keys
given that y € C™" is the ciphertext, i.e.,

K(y) ={k € K : 3z € P"(Ey(z) = y&pp(z) > 0)}

Since exactly one of the “possible” keys is cor-
rect we have that |K(y)| — 1 is the number of
spurious keys.

The expected (average) number of spurious
keys is given by

sn = Yyecn P(Y)([K(y)| — 1)
= > yecn PIKW)| — Xyecn p(y)
=14+ >yeccnp(W|K(y)
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By the previous theorem we have H(K|C™) =
H(K)+ H(P™) - H(C").

For n sufficiently large we have H(P"™) ~ nHj =
n(1l — Ry)log|P| and clearly, H(C™) < nlog|C]|.
Since, |C| = |P| we have that

H(K|C") > H(K) —nRylog|P|.  (2)

However, we have

H(K|C™) =Y ,ccnp(y)H(K|y)
= ZyEC"p(y) log [K (y)| (3)
< Yyecn (Y| K (y)|
= log(sn + 1)

Combining inequalities (2), (3) we obtain the
inequality
l0og(sn + 1) > H(K) —nRplog|P|.

When keys are equiprobable, H(K) = log |K]|
and the theorem follows.
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UNICITY DISTANCE

T he unicity distance of a cryptosystem is the
value of n at which the expected number of
spurious keys becomes zero, i.e., the average
amount of ciphertext required for an opponent
to be able to uniquely compute the key given
enough computing time. If we set s, = 0 and
solve for n we obtain the formula

_ log|K|
" Ry log |P|

Example 1: In the substitution cipher |P| =
26 and |K| = 26!. If we take R; = 0.75 we
obtain as unicity distance the value

log(26!)
n ~ ~ 25,
0.7510g 26
which means given a cipher of at least 25 char-
acters a unique decryption is possible.

Example 2: In the shift cipher |P| = |K| = 26
and the unicity distance is approximately 1.33.
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