AN INTERACTIVE CRYPTANALYSIS
ALGORITHM FOR THE VIGENERE CIPHER

Mehmet E. Dalkilic and Cengiz Gungor
Ege University, Intl. Computer Inst.
Bornova 35100 Izmir, TURKEY
dalkilic@bornova.ege.edu.tr

Abstract

Though it dates back centuries, Vigenere Cipher is still a practical encryption method
that can be efficiently used for many applications. We have designed and implemented an
interactive cryptanalysis software based on the Kasiski test, and a novel use of the Index
of Coincidence (IC) concept. Our results show that cryptanalysis is possible for very short
text lengths where classical cryptanalysis methods fail. Furthermore, we have observed that
our software which is designed to work on English based ciphertexts, can be successfully
executed on ciphertexts based on other languages. Along the way, we also compute and
report the IC values for Turkish and some other languages under a different number of
enciphering alphabets.

1 Introduction

The use of cryptosystems for sensitive communications for military and diplomatic purposes
dates back to the time of ancient Egyptians as the story told by Kahn[l], the best known
reference to the history of the secret writing, or cryptography. Traditionally cryptography has
been exclusively used by governments and large corporations. However, with the widespread
use of computers and the high availability of sophisticated communication networks, now most
individuals and corporations need special protection of their private or business data' by
cryptosystems.

The conventional cryptosystems are formulated by C.E. Shannon in a landmark paper at
1949[3]. We can define a cryptosystem as a five-tuple [4] (P,K,C,E, D) where P is a finite set
of plaintext, K is a finite set of keys, C is a finite set of ciphertexts, and for each k € K, there
is an encryption rule £y € £ and its inverse (decryption) rule Dy, = E}_ eD.

An encryption rule is a one-to-one function that takes any plaintext message, p € P, and
transforms it to an unintelligible form called a ciphertext message with the intend to conceal

!Storing data can be seen as transmission of the data in the time domain [2]. Therefore, the term transmission
(or communication) refers to any situation where data are stored and/or transmitted.

P: plaintext
Opponent k: key

E: encryption
C: ciphertext

¢ D: decryption

Insecure
C P
Sender Transmission Receiver

Channel

Figure 1: A Simple Model of Conventional Cryptosystem

meaning. The decryption rule recovers the original plaintext from a given ciphertext. A simple
model of a crytosystem is illustrated in Figure 1.

In this paper, we have studied a well-known classical cipher, Vigenere. Dating back to 16th
century [5], Vigenere cipher is a polyalphabetic substitution cipher. With a random key equal
to the size of the plaintext Vigenere cipher becomes a one-time pad which is the only proven
unbreakable cipher in the history. We have developed an interactive computer program to
cryptanalyze the Vigenere cipher. Our program brings together classical methods such as
Kasiski Test and the Index of Coincidence with a new concept, Mutual Index of Coincidence

[6].

In the next section, we briefly describe the Vigenere cipher, and explain our approach to
determine the cipher period, and the keyword. Section 3 outlines our interactive cryptanalysis
algorithm follwed by the experimental results in section 4. Conclusions and further research
are outlined in the last section.

2 Cryptanalysis of the Vigenere Cipher

Suppose we have an n-character alphabet A = (ai,a9,...,a,), an m-character key, K =
(k1, k2, ..., k) and a t-character plaintext, M = (my,mg,...,m;). Then, we define a Vigenere
cipher Fx(a;) = (m; + k; mod n) and Dk (¢;) = (¢; — k; mod n).

The Vigenere cipher uses m shift ciphers where each k; determines which of the n mono-
alphabetic substitutions to be used.

The strength of the Vigenere cipher is that, as it can be seen from the above example, a
plaintext letter can be represented by up to m different ciphertext letters. Nevertheless, the
Vigenere cipher can not obscure the structure of the plaintext completely.

Suppose we have the following ciphertext that we believe it was encrypted using a Vigenere
cipher.

WERXEHJVYSOSPKMUVCOGSIXFUFLTHTVYCBTWPTMCLHTRGCMGQEAGRDVFEGTDJPFPWPGVLIASCS

GABHAFDIASEFBTVZGIITHDGIDDKAVYCCXQGJQPKMVIYCLTQIKPMWQEQDYHGEMCTPCKRAXTKVJS
PWVYJXMHNVCFNWRDCCMVQNCKXFVYCSTBIVPDYOEFBTVZGITIQXWPXAPTHWICSUMVYCTGSOPFPLA
CUCXMSUJCCMWCCRDUSCSJTMCEYYCZSVYCRKMRKMVKOJZABXHIJFBXGGVRLIEMKWLTXRDV

2.1 Determining the Cipher Period, m

Kasiski and the Index of Coincidence tests are commonly used to determine the key size.
Kasiski test is based on the observation that if two identical fragments of length three or
more appears in the ciphertext, it is likely? that they correspond to the same plaintext fragment.
The distance between the occurrences has to be a multiple of the period.

In our example, the segment VYC appears four times beginning at position 31, 103, 175, 211
and 253.

Starting Distance from

Position Previous Factors
103 72 2,3,4,6,8,9,12,18,24,36,72
175 72 2,3,4,6,8,9,12,18,24,36,72
211 36 2,3,4,6,9,12,18,36
253 42 2,3,6,7,14,21,42

Common factors 2, 3, and 6 are the key length candidates to be tested by the Index of Coin-
cidence (IC) defined below.

Def: Let x = {zjxz9...z,} be a string of n alphabetic characters. The index of coincidence of
x, IC(x), is the probability that randomly chosen two elements of string x are the same[4, 5].

When applied to a natural language, the index of coincidence is like a fingerprint of the standart
distribution. Therefore, the IC can be used to determine if ciphertext substrings’ frequency
distribution resemble standard distribution of the source language®. For a small sample the
match would not be exact, but a close correspondence is usually sufficient. We call this test
IC-substring test.

To try m = 6 we divide the ciphertext into 6 substrings so that each substring is encrypted
by the same key letter i.e., Sl = {01, Cr,C13, }, SQ = {02, Cg,C14, }, rerey Sﬁ = {05, C12,C18, }
If our guess about m is correct, each of these substrings will have an IC value close to IC
of the source language, in our example English. For instance, IC(S1) = 0,0714,1C(S3) =
0,0672,1C(S3) = 0,0771,IC(S4) = 0,0745,IC(S5) = 0,0585 and IC(Ss) = 0,0674. Consid-
ering, the IC of standard English is around 0,068, m = 6 is correct with very high probability.
If our guess is not correct, then the substrings will be more like random strings with much
smaller IC values. For instance, if we have tried m = 5 that is S1 = {c1,¢cs,c11,...},52 =
{02, c7,C12, }, ceeey S5 = {65,010, C15, } Then we would obtain IC(Sl) = 0,0448,10(52) =
0,0369, IC(S3) = 0,0484, IC(S4) = 0,0375 and IC(S5) = 0,0478.

2The likelihood of two three-letter sequences not being from the same plaintext fragment is 1/n3 =0,0000569
for n=26 [7].

3The I[C]values for Turkish are computed for three different letter frequency studies and it is shown in Table 1.

Table 1: Index of Coincidence values for Turkish

| | 1IC | ICt | First ten | First tent | Sample size]
Koltuksuz[8] || 0,0582 | 0,073083 | {a,e,in,r,l1,dkm} | {i,aen;rlus,dk} 5,321,885
Goksu[9] 0,0608 | 0,072213 | {a,einlrrkdt} | {i,a,enlrusk.d} 574,004
Dalkilic[10] || 0,0597 | 0,071455 | {aeimnrLukdm | | {LaemnrLuskd) | L115,919

t: Turkish text written in English Alphabet

Table 2: Cipher period vs. Index of Coincidence

| ||m:1|m:2|m:3|m:4|m:5|m:6|m:7|m:10|m:oo|

IC(Russian) || 0,0529 | 0,0431 | 0,0398 | 0,0382 | 0,0372 | 0,0365 | 0,0361 | 0,0352 | 0,0333
IC(Tr-Eng) 0,0715 | 0,0549 | 0,0494 | 0,0467 | 0,0450 | 0,0439 | 0,0431 | 0,0417 | 0,0384
IC(Tr-Engt) || 0,0720 | 0,0533 | 0,0475 | 0,0473 | 0,0450 | 0,0438 | 0,0418 - -
Tr-Eng: Turkish text written in English Alphabet

i: Empirical results

IC(Turkish) || 0,0597 | 0,0470 | 0,0428 | 0,0407 | 0,0395 | 0,0386 | 0,0380 | 0,0370 | 0,0344
IC(French) || 0,0778 | 0,0589 | 0,0526 | 0,0494 | 0,0475 | 0,0463 | 0,0454 | 0,0437 | 0,0400
IC(German) || 0,0762 | 0,0573 | 0,0510 | 0,0478 | 0,0460 | 0,0447 | 0,0438 | 0,0422 | 0,0384
IC(English) || 0,0667 | 0,0525 | 0,0478 | 0,0455 | 0,0441 | 0,0431 | 0,0424 | 0,0412 | 0,0384
(
(

Another use of the IC is that it can directly predict the period given that the amount of
ciphertext is sufficiently large and the original plaintext has a normal distribution. It is possible
to predict the expected IC value for a cipher of period m, and tabulate the results in a table
such as Table 2 for different m values using the formula [11, 5]:
Ezxpected(IC) = iS_7m(IC(SourceLanguage)) + m—_li(IC(RandomText))
m S —1 m S-—1

By comparing IC(C) obtained from the ciphertext at hand to the values given in Table 2, we
can get an estimate of m which may support the predictions of Kasiski test. For instance,
in the ongoing example IC(C) = 0,0429 and from Table 2 (using the IC(English) row) we
obtain the closest I1C value is under m = 6 that matches the prediction of the Kasiski test.
Nevertheless, IC is a good estimator of the cipher period only for small m, but its predictions
are less accurate for larger m values. We call this test IC-predict-m test.

2.2 Determining the Keyword

We employ a new technique suggested by Dan Velleman [6] which uses mutual index of coin-
cidence (MIC) in a very smart fashion.

The mutual index of coincidence of x and s, denoted MIC(x,s), is defined to be the probability
that two random elements, one from each, are identical. Let x is a string of standard source
language e.g. English. Let string x has length [and frequency distribution ry, 79, ..., r,, where

First ten letters with highest frequency are also listed and almost perfectly matches in all three study.

Shift| String1 String2 String3 String4 String 5 String 6
26 | 0,0314 0,0382 0,0344 00433 0,0356 0,0422
25 | 0,0358 0,0434 00315 0,044 00309 0,0385
24 | 0,0698 | 0,0429 00411 00461 00353 0,0317
23 [00419 00331 00266 00262 0,0344 0,0499
22 | 0038 00503 0,0364 00439 0,0498 0,0418
21| 0026 00463 00331 00335 00393 0,0409
20 | 00375 0,0389 0,278 00336 00487 0,026
19 | 0034 00358 00338 00285 0,04 0,0406
18 | 0,0409 0,0321 00416 00388 0,048 0,0394
17 | 0,0401 00265 0,0518 00377 0,0363 0,0307
16 | 0036 00402 00422 00431 0,0388 0,0369
15 | 0,0329 0,0392 00412 00467 00332 0,0415
14 | 0,0315 00344 00332 0,0349 0,04 0,0361
13 | 0,0491 0,043 0,039 00302 00303 _ 0,0293
12 | 0,0413 00337 00412 00444 0,0257 [0,0645
11 | 0,0399 00342 0,0399 0,0394 0,0469
10 | 0,0381 0,0449 00351 00364 00357 0,0303
9 0,053 0,0373 0,0334 0,0376 0,0239
0,0376 0,0353 0,0336 00263 _ 0,0375 0,0504
0,0285 0,0292 0,0319 0,0368 0,0402
0,0274 0,0444 0,048 0,0331 0,04 0,0336
0,0457 0,04 0,0374 00367 0,0364 0,0343
0,0368 0,0322 0,0322 00318 00313 0,0381
0,0319 0,0358 _ 0,0416 0,039 0,041 0,0241
0,0435 0,0369 00443 00336 0,0347
0,0315 0,0248 0,0376 0,0387 0,035 0,0543
c R Y P T o

Figure 2: Mutual Indices of Coincidences

x
()
<

N<XXS<CHOWIOUVOZErXc—IETMMUOT>

SN Wb oo N

n is the size of the alphabet e.g. 26. Clearly, for large [, probability distributions of n letters
r;/l will be similar to the standard probability distributions p; of the source language. Now,
let string y has length I’ and frequency distribution r{,75,...,7/,. Then,

n ol n .
21 Til | 2i=1 Pil

MIC(x,s) = 0 o~ T

Suppose s1,83,..,Sm be the m substrings of the ciphertext s. Each of these substrings are
obtained by shift encryption of the unknown plaintext. Though plaintext is unknown at
the moment, its probability distribution and therefore its IC is known. Consider, substring
5j(1 < j < m) is encrypted by unknown key k;. Suppose we shift s; by b (1 < b < n) and
obtain n different sg each of which corresponds to a decryption with a different key value. If
s; has frequency distribution 71,74, ..., 7 and length I”, then

n_ gl

MIC(:E,SI;) ~ Llllfl i=b

It is expected that MI1C(z, sg) ~ [C'(source language) if b is the additive inverse of the correct
key modulo n; otherwise we obtain a much smaller MIC value. For instance if n = 26, and
maximum MIC value for a substring is obtained when b = 5, then the probable key for that
substring is —5 mod 26 = 21. For the example ciphertext our prediction is m = 6. So, we
divide the ciphertext into 6 substrings, and we shift each substring by one, two, up to 26 and
compute the MIC values shown in Table 2. By simply selecting the maximum MIC value for
each substring we get a probable keyword, in our example it is crypto. To see whether the
keyword we have obtained is correct we decrypt the ciphertext, and we get* a passage from
Tanenbaum|[12].

*Spaces are added to ease the reading.

Table 3: The Kasiski Test Results

‘ No Prediction ‘ Correct Prediction ‘ Wrong Prediction ‘

10 40 2
19.23% 76.92% 3.84 %

Until the advent of computers one of the main constraints on cryptography
had been the ability of the code clerk to perform the necessary transform
ations often on a battlefield with little equipment. However the danger of
a code clerk being captured by the enemy has made it essential to be able
to change the cryptographic method instantly if need be.

3 Interactive Cryptanalysis Algorithm

Figure 3 outlines the basic algorithm used in our interactive cryptanalysis program. For a
given ciphertext, first apply the Kasiski test, and then run the IC-predict-m test. Then, using
the predictions about the key length, m, select a likely m value. Note that, the results of
the Kasiski test are sorted giving priority to those obtained from the occurrence of the largest
segment size. For instance, suppose possible m values 6, 9 obtained from a segment of size
three and 5, 11 obtained from a segment size of four. In that case, we give priority to 5, 11
values. Next, apply IC-substring test; If the results are promising, IC values of substrings are
close to the IC of standard plaintext distribution, then we continue with the Mutual Index of
Coincidence (MIC) test; otherwise, go back and select another m value.

After the MIC test, one gets a key string. If the key is correct then we have a perfect run;
that is, the cryptanalysis program found the key in a single shot. If the key is not correct
(i.e., the plaintext does not seem right) but there seems to be off by several positions (e.g.,
small segments of text are recognizable) then interactively modify the key with the help of the
substring key alternatives provided by the cryptanalysis program. For instance, in Figure 2 if
the key ”7C” were not the right one for substring Sp, then the second choice would be the key
"N” which has the second highest MIC value at 0,0491. Our program displays on the screen
the first six choices for each substring. If you reach the solution either after trying multiple
m values or test multiple key alternatives, that run is marked as success but not a perfect
run. However, if you think we are not getting any closer to a solution, then go back to select
another m. This process of trial and error continues until either a solution is found or all m
values are exhausted. If the ciphertext could not be broken within a preset time limit, mark
it as failure. Fortunately, as the following section demonstrates, most trials are either perfect
runs or leads to success in a few try.

[K asiski Test

IC-predict-m Test

-/

!
y

Pick an m?

Yes

[| C-substring Test

-/

/i
v

sresult

Yes

promising?

MIC Test

-/

Solution
Found?

Maybe

Modify the Key

MIC Test

-/

Maybe

;

Solution
Found?

No

N

Yes

Yes

Failure: Stop

Perfect Run: Stop

Success: Stop

Figure 3: The Basic Flowchart of the Program

4 Experimental Results

To test our interactive cryptanalysis program we have used the following procedure. Each
author prepared thirteen plaintext files of length 50, 75, 100, 125, 150, 200, 250, 300, 400, 500,
600, 800, 1000. We allowed up to 5% deviation on the size of the files. Then, each plaintext
file is encrypted with two different keys. Key lengths vary 2 to 11 characters. Thus, a total
of fifty-two different ciphertext files are attained. Then, the authors exchanged the ciphertext
files but no plaintext files or key information. Next, the cryptanalysis program run on each of
the ciphertext files. While runs on larger ciphertexts were almost always ended in perfect runs,
the smallest ciphertext files were harder to break; five of them could not be broken within half
an hour of time and left alone. Both authors have acquired similar success rates with their
share of the test cases.

Kasiski test (see Table 3) for about one fifth of the test cases could not produced any key length
(m) predictions. These cases happened to be the shortest ciphertext files where there were
no repeated patterns in the ciphertext. Interestingly, there were also two cases were repeated
patterns are accidental causing Kasiski test to output a wrong prediction. Nevertheless, the
Kasiski test demonstrated its strength by generating the correct key length for over 76% of the
cases where among more than half the time repeated patterns of length five discovered.

As it is shown in Table 4, the IC-predict-m test was on target less than one third of the
time. For the remaining cases, overestimates of the key length (21 cases) were higher than the
underestimates (16 cases). As expected, the IC-predict-m test is less reliable than the Kasiski
test. However, where the Kasiski test has no output the IC-predict-m test is useful to guide
the key search.

The overall results of our tests given in Table 5 show that half of the time our cryptanalysis
program had perfect runs while less than one tenth of the time it failed. For the remaining
two fifth of the cases, the key attained by interactively trying on the average 3.01 different
m values. It usually takes few minutes of wall clock time to get a result on a test case. For
the multiple-m trial cases when the correct key length is provided, the MIC test acquired the
exact key at 38% of the time. If we add to it the perfect runs, for about 70% of the time MIC
test produced perfect results. Again for the multiple-m trial cases with the right key length,
about 62% of the time the average difference between the key generated by MIC test and the
correct key was 0,6745 i.e., less than a single character.

In another test case we have fed plaintext files as ciphertext to the program to see if we can
fool it. However, IC-predict-m test has immediately detected that the IC of the input is close

Table 4: The IC-predict-m Test Results

No Correct | Wrong Prediction
Prediction | Prediction | under | over
0 16 15 21
0% 30.76% 28.84% | 40.38%

Table 5: Overall Test results for the Program

No Perfect Success
Result | Runs cases | m-trials | avg. difference
5 26 21 3.01 0.6745
9.62% 50% | 40.38% - -

to normal plaintext distribution and concluded that m=1; that is, either we have a plaintext
or a shift of a plaintext. The IC-substring test has determined that shift is 0 and returned our
artificial ciphertext as plaintext.

Our Vigenere cryptanalysis program assumes that the underlying plaintext is in English. We
wanted to see if the program will work if we feed it with ciphertexts where the source plaintexts
are in another language e.g., Turkish. The success rates achieved were close to that of English
based ciphertexts. Clearly, the Kasiski test finds repeated patterns and it is not in any way
affected by a source language change. The index of coincidence tests (IC-predict-m and MIC
test) are closely coupled with the letter distribution of the source language, and therefore
they will be effected. Interestingly, the index of coincidence value of a Turkish text written
in English alphabet, 0.0715 (see Table 2), is quite close to the IC value of standard English
texts, 0,0667. Therefore, the IC based tests in our program still were able to generate results
almost as good as those where the underlying text is English. Note that, from table 2, the IC
value of Turkish (written in Turkish alphabet) is 0,0597 highly distanced to the IC of English
at 0,0667. Therefore, it is plausible to assume that most natural languages written in English
alphabet will have their index of coincidence values to move closer to that of English. As a
consequence, our cryptanalysis program designed to work with English as its source language
will work, with small degradation, on ciphertexts based on other languages.

Classical textbooks [e.g., Pfleeger|[7]] state that the Kasiski test and IC-predict-m test works
if there is a large body of ciphertext. Nevertheless, our experience shows that even for cases
where under 100 characters available, satisfactory results can be attained with our approach.
The shortest ciphertext instance that the program cryptanalyzed successfully is consisted of
only 50 characters, and with a key length of 7 each substring had less than 8 characters to
work with.

5 Conclusions and Future Work

We have reported an interactive cryptanalysis program for the Vigenere cipher. In addition
to the classic cryptanalysis techniques such as Kasiski test and the IC-predict-m test, we have
explored a recently proposed test which is based on the tabulation of the IC values of the shifted
substrings for a possible key length. We have evaluated the performance of the individual tests
and the overall performance of our cryptanalysis program. The new use of the IC concept
proved to be exceptionally good leading to over 90% success rate of the program. In addition,
our results show that cryptanalysis is possible for short text lengths where classical cryptanalsis
approaches fail. We have also reported the index of coincidence values for Turkish and few

10

other languages under different number of enciphering alphabets.

Using the facts that (i) multi-round encryption greatly increases the strength of a cipher, and
(ii) a ciphertext running key is extremely difficult to cryptanalyze, we work on the design and
implementation of a a multi-round auto-cipher-key Vigenere cryptosystem . A formal strength
analysis of our multi-round cryptosystems is due.

References

[1]

2]
3]

[10]

[11]

[12]

D. Kahn, The Codebreakers: The story of Secret Writing. NewYork: Macmillan, 1967.
(abriged edition, NewYork: New American Library, 1974).

H. C. van Tilborg, An Introduction to Cryptology. Kluwer Academic Publishers, 1988.

C. Shannon, “Communication Theory and Secrecy Systems,” Bell System Technical Jour-
nal, vol. 28, pp. 656-715, Oct 1949.

D. R. Stinson, Cryptography: Theory and Practice. CRC Press, 1995.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC
Press, 1997.

D. R. Stinson, “A More Efficient Method of Breaking a Vigenere Cipher,” 1997. unpub-
lished manuscript.

C. P. Pfleeger, Security in Computing. Prentice-Hall, 1989.

A. H. Koltuksuz, Simetrik Kriptosistemler icin Turkiye Turkcesinin Kriptanalitik Olcut-
leri. PhD thesis, Ege University, 1996. (in Turkish).

T. Goksu and L. Ertaul, “Yer Degistirmeli, Aktarmali ve Dizi Sifreleyiciler Icin Turkce’nin
Yapisal Ozelliklerini Kullanan Bir Kriptoanaliz,” in Proc. of the 3rd Symposium on Com-
puter Networks, pp. 184-194, June 1998. (in Turkish).

M. E. Dalkilic and G. Dalkilic, “Language Statistics of Present-Day Turkish with Cryp-
tology Applications,” February 2000. (working paper).

J. Seberry and J. Pieprzyk, Cryptography: An Introduction to Computer Security. Prentice
Hall, 1989.

A. S. Tanenbaum, Computer Networks, 3rd Ed. Prentice Hall, 1996.

