Section 5.4
 Binomial Coefficients

Pascal's Identity:

$$
C(n+1, k)=C(n, k-1)+C(n, k)
$$

Proof:

We construct subsets of size k from a set with $n+1$ elements given the subsets of size k and $\mathrm{k}-1$ from a set with n elements.

The total will include

- all of the subsets from the set of size n which do not contain the new element

$$
\mathrm{C}(\mathrm{n}, \mathrm{k}),
$$

plus

- the subsets of size $\mathrm{k}-1$ with the new element added

$$
\mathrm{C}(\mathrm{n}, \mathrm{k}-1) .
$$

It produces

Pascal's triangle

1

$$
\mathrm{C}(0,0)
$$

A good way to evaluate $\mathrm{C}(\mathrm{n}, \mathrm{r})$ for large n and r (to avoid overflow).

Example:

How many bit strings of length 4 have exactly 2 ones (or exactly 2 zeros)?

Analysis:

We solve the problem by determining the positions of the two ones in the bit string.

- place the first one - 4 possibilities
- place the second one - 3 possibilities

Hence it appears that we have (4)(3)=12 possibilities.
We enumerate them to make sure:
0011, 0101, 1001, 0110, 1010, 1100.
There are actually only 6 possibilities. What is wrong?
The answer would be correct if we had two different objects to place in the string.

For example, if we were going to place an ' a ' and a ' b ' in the string we would have

00ab, 00ba, 0a0b, 0b0a, a00b, b00a,
and so forth for a total of 12 .
But......the objects (1 and 1) are the same so the order is not important!

Divide through by the number of orderings $=2!=2$.
Therefore the answer is $12 / 2=6$.

Example:

How many bit strings of length 4 have at least 2 ones?
Analysis:
Total the number of strings that have

- zero 1 's = 1
- one $1=4$

$$
\text { Total }=2^{4}-5=11
$$

If the universe is the bit strings of length 4 , what is the complement of the above set?

What is its cardinality?

