Section 7.2
 Solving Linear Recurrence Relations

If

$$
a_{g(n)}=f\left(a_{g(0)}, a_{g(1)}, \ldots, a_{g(n-1)}\right)
$$

find a closed form or an expression for $a_{g(n)}$.

Recall:

- nth degree polynomials have n roots:

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0
$$

- If the coefficients are real then the roots are real or occur in complex conjugate pairs.

Recall the quadratic formula: If

$$
\begin{aligned}
& a x^{2}+b x+c=0 \text { then } \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

We assume you remember how to solve linear systems

$$
A x=b .
$$

where A is an n x n matrix.

Solving recurrence relations can be very difficult unless the recurrence equation has a special form:

- $g(n)=n($ single variable $)$
- the equation is linear:
- sum of previous terms
- no transcendental functions of the $a_{i} \mathrm{~s}$
- no products of the $a_{i}{ }^{\prime} \mathrm{s}$
- constant coefficients: the coefficients in the sum of the $a_{i}^{\prime} \mathrm{s}$ are constants, independent of n .
- degree k : a_{n} is a function of only the previous k terms in the sequence
- homogeneous: If we put all the a_{i} 's on one side of the equation and everything else on the right side, then the right side is 0 .

Otherwise inhomogeneous or nonhomogeneous.

Examples:

- $a_{n}=(1.02) a_{n-1}$
linear
constant coefficients
homogeneous
degree 1
- $a_{n}=(1.02) a_{n-1}+2^{n-1}$
linear
constant coefficients
nonhomogeneous
degree 1
- $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}+2^{n-3}$
linear
constant coefficients
nonhomogeneous
degree 3
- $a_{n}=c a_{n / m}+b$
g does not have the right form
- $a_{n}=n a_{n-1}+n^{2} a_{n-2}+a_{n-1} a_{n-2}$
nonlinear
coefficients are not constants
homogeneous
degree 2

Solution Procedure

- linear

- constant coefficients
- homogeneous
- degree k

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{n-k} a_{n-k}
$$

1. Put all $a_{i}^{\prime} s$ on the left side of the equation, everything else on the right. If nonhomogeneous, stop (for now).

$$
a_{n}-c_{1} a_{n-1}-c_{2} a_{n-2}-\ldots-c_{n-k} a_{n-k}=0
$$

2. Assume a solution of the form $a_{n}=b^{n}$.
3. Substitute the solution into the equation, factor out the lowest power of b and eliminate it.

$$
\begin{gathered}
b^{n}-c_{1} b^{n-1}-c_{2} b^{n-2}-\ldots-c_{n-k} b^{n-k}=0 \\
b^{n-k}\left[b^{k}-c_{1} b^{k-1}-\ldots-c_{n-k}\right]=0
\end{gathered}
$$

4. The remaining polynomial of degree k,

$$
b^{k}-c_{1} b^{k-1}-\ldots-c_{n-k}
$$

is called the characteristic polynomial.
Find its k roots, $r_{1}, r_{2}, \ldots, r_{k}$.
5. If the roots are distinct, the general solution is

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\ldots+\alpha_{k} r_{k}^{n}
$$

6. The coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are found by enforcing the initial conditions.

Solve the resulting linear system of equations:

$$
\begin{gathered}
a_{0}=\alpha_{1} r_{1}^{0}+\alpha_{2} r_{2}^{0}+\ldots+\alpha_{k} r_{k}^{0} \\
a_{1}=\alpha_{1} r_{1}^{1}+\alpha_{2} r_{2}^{1}+\ldots+\alpha_{k} r_{k}^{1} \\
\vdots \\
a_{k-1}=\alpha_{1} r_{1}^{k-1}+\dot{\alpha}_{2} r_{2}^{k-1}+\ldots+\alpha_{k} r_{k}^{k-1}
\end{gathered}
$$

Example:

$$
a_{n+2}=3 a_{n+1}, a_{0}=4
$$

- Bring subscripted variables to one side:

$$
a_{n+2}-3 a_{n+1}=0 .
$$

- Substitute $a_{n}=b^{n}$ and factor lowest power of b :

$$
b^{n+1}(b-3)=0 \text { or } b-3=0
$$

- Find the root of the characteristic polynomial:

$$
r_{1}=3
$$

- Compute the general solution:

$$
a_{n}=c 3^{n}
$$

- Find the constants based on the initial conditions:

$$
a_{0}=c(30) \text { or } c=4
$$

- Produce the specific solution:

$$
a_{n}=4\left(3^{n}\right)
$$

Example:

$$
a_{n}=3 a_{n-2}, a_{0}=a_{1}=1
$$

- $a_{n}-3 a_{n-2}=0$

Note: the a_{n-1} term has a coefficient of 0 .

- $b^{n-2}\left(b^{2}-3\right)=0$ or $b^{2}-3=0$
- $r_{1}=\sqrt{3}, r_{2}=-\sqrt{3}$
- $a_{n}=\alpha_{1} \sqrt{3}^{n}+\alpha_{2}(-\sqrt{3})^{n}$
- Solve the linear system for α_{1}, α_{2} :

$$
\begin{aligned}
& a_{0}=1=\alpha_{1} \sqrt{3}^{0}+\alpha_{2}(-\sqrt{3})^{0}=\alpha_{1}+\alpha_{2} \\
& a_{1}=1=\alpha_{1}(\sqrt{3})^{1}+\alpha_{2}(-\sqrt{3})^{1}=\alpha_{1} \sqrt{3}-\alpha_{2} \sqrt{3}
\end{aligned}
$$

Solve the first equation for the first variable and substitute in the second equation:

$$
\begin{aligned}
& \alpha_{1}=1-\alpha_{2} \\
& 1=\left(1-\alpha_{2}\right) \sqrt{3}-\alpha_{2} \sqrt{3}=\sqrt{3}-\alpha_{2} 2 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{2}=(\sqrt{3}-1) / 2 \sqrt{3} \\
& \alpha_{1}=1-(\sqrt{3}-1) / 2 \sqrt{3}=(\sqrt{3}+1) / 2 \sqrt{3}
\end{aligned}
$$

If a root r_{l} has multiplicity p , then the solution is

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} n r_{1}^{n}+\ldots+\alpha_{p} n^{p-1} r_{1}^{n}+\ldots
$$

Example:

$$
a_{n}=6 a_{n-1}-9 a_{n-2}, a_{0}=a_{1}=1
$$

- Recurrence system:

$$
a_{n}-6 a_{n-1}+9 a_{n-2}=0
$$

- Find roots of characteristic polynomial

$$
\left\{\begin{array}{l}
b^{2}-6 b+9=0 \\
(b-3)^{2}=0
\end{array}\right.
$$

- Roots are equal:

$$
b_{1}=b_{2}=3
$$

- General solutions is

$$
a_{n}=\alpha_{1} 3^{n}+\alpha_{2} n 3^{n}
$$

- Solve for coefficients:

$$
\left\{\begin{array}{l}
a_{0}=1=\alpha_{1}+0 \\
a_{1}=1=1\left(3^{1}\right)+\alpha_{2}(1)\left(3^{1}\right) \\
\alpha_{2}=-\frac{2}{3}
\end{array}\right.
$$

You finish.

Nonhomogeneous Recurrence Relations

- linear
- constant coefficients
- degree k

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{n-k} a_{n-k}+f(n)
$$

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{n-k} a_{n-k}
$$

is the associated homogeneous recurrence equation

TELESCOPING

Note: we introduce the technique here because it will be useful to solve recurrence systems associated with divide and conquer algorithms later.

For recurrences which are

- first degree

$$
a_{n}=\alpha a_{n-1}+f(n)
$$

Method:

- back substitute
- force the coefficient of a_{n-k} on the left side to agree with the coefficient of $a_{\mathrm{n}-\mathrm{k}}$ in the previous equation
- stop when we get to the initial condition on the right side
- add the left sides of the equations and the right sides of the equations and cancel like terms
- add the remaining terms together to get a formula for a_{n}.

Example:

$$
\text { - } a_{n}=2 a_{n-1}+1, a_{0}=3
$$

- Write down the equation:

$$
a_{n}=2 a_{n-1}+1
$$

- Write the equation for a_{n-1} :

$$
a_{n-1}=2 a_{n-2}+1
$$

- Multiply by the constant which appears as a coefficient of a_{n-1} in the previous equation so the two will cancel when we add both sides:

$$
2 a_{n-1}=2^{2} a_{n-2}+2
$$

- Write down the equation for a_{n-2} and multiply both sides by the coefficient of a_{n-2} in the previous equation:

$$
a_{n-2}=2 a_{n-3}+1
$$

becomes

$$
2^{2} a_{n-2}=2^{3} a_{n-3}+2^{2}
$$

- Continue until the initial condition appears on the right hand side:

$$
a_{1}=2 a_{0}+1
$$

becomes

$$
2^{n-1} a_{1}=2^{n} a_{0}+2^{n-1}
$$

- Add both sides of the equations and cancel identical terms:

$$
\begin{gathered}
a_{n}=\left(2 a_{n-1}\right)+1 \\
\left(2 a_{n-1}\right)=\left[2^{2} a_{n-2}\right]+2
\end{gathered}
$$

$$
\begin{gathered}
{\left[2^{2} a_{n-2}\right]=2^{3} a_{n-3}+2^{2}} \\
\bullet \\
\bullet \\
2^{n-1} a_{1}=2^{n} a_{0}+2^{n-1} \\
a_{n}=2^{n} a_{0}+\sum_{i=0}^{n-1} 2^{i}
\end{gathered}
$$

- Substitute a_{0} and simplify $\sum_{i=0}^{n-1} 2^{i}$ to get the solution:

$$
a_{n}=3\left(2^{n}\right)+2^{n}-1=2^{n+2}-1
$$

Note: solution to nonhomogeneous case is sum of solution to associated homogeneous recurrence system and a particular solution to the nonhomogeneous case.

Theorem:

Let $\left\{a_{n}^{P}\right\}$ be a particular solution to the nonhomogeneous equation and let $\left\{a_{n}^{H}\right\}$ be the solution to the associated homogeneous recurrence system. Then every solution to the nonhomogeneous equation is of the form

$$
\left\{a_{n}^{H}+a_{n}^{P}\right\}
$$

Particular solution?

Theorem:

Assume a linear nonhomogeneous recurrence equation with constant coefficients with the nonlinear part $f(n)$ of the form

$$
f(n)=\left(b_{t} n^{t}+b_{t-1} n^{t-1}+\ldots+b_{1} n+b_{0}\right) s^{n}
$$

If s is not a root of the characteristic equation of the associated homogeneous recurrence equation, there is a particular solution of the form

$$
\left(c_{t} n^{t}+c_{t-1} n^{t-1}+\ldots+c_{1} n+c_{0}\right) s^{n}
$$

If s is a root of multiplicity m, a particular solutions is of the form

$$
n^{m}\left(c_{t} n^{t}+c_{t-1} n^{t-1}+\ldots+c_{1} n+c_{0}\right) s^{n}
$$

Example:
From the previous example the associated homogeneous recurrence equation is

$$
\begin{aligned}
& a_{n}-2 a_{n-1}=0 \\
& \text { and } \\
& f(n)=1
\end{aligned}
$$

The root of the characteristic polynomial is 2 so the solution to the homogeneous part is

$$
a_{n}^{H}=\alpha 2^{n}
$$

and a particular solution to the nonhomogeneous equation is

$$
\left\{a_{n}^{P}\right\}=c_{0} .
$$

Substituting c_{0} into the nonhomogeneous equation we get

$$
\begin{gathered}
c_{0}-2 c_{0}=1 \\
\text { or } \\
c_{o}=-1
\end{gathered}
$$

Therefore the general solution is

$$
\alpha 2^{\mathrm{n}}-1
$$

Using the initial condition we have

$$
\alpha 2^{0}-1=3 \text { or } \alpha=4=2^{2}
$$

Hence, the solution is

$$
a_{n}=2^{n+2}-1
$$

which is the same solution we obtained by telescoping.

