
     Section 7.2
Solving Linear Recurrence Relations

If

ag(n ) = f (ag(0) ,ag(1),..., ag(n−1))

find a    closed form      or an    expression    for ag(n).

Recall:

• nth degree polynomials  have n roots:

an xn + an−1x n−1 + ... + a1x + a0 = 0

• If the coefficients are real then the roots are real or
occur in complex conjugate pairs.

___________________

Recall the quadratic formula: If

ax 2 + bx + c = 0 then

x = −b ± b2 − 4ac

2a

__________________

We assume you remember how to solve linear systems
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Ax = b.

where A is an n x n matrix.

_________________

Solving recurrence relations can be very difficult unless
the recurrence equation has a    special form    :

• g(n) = n (single variable)

• the equation is linear:

- sum of previous terms

- no transcendental functions of the ai's

- no products of the ai's

• constant coefficients: the coefficients in the sum of
the ai's are constants, independent of n.

• degree k: an is a function of only  the previous k
terms in the sequence

• homogeneous: If we put all the ai's on one side of
the equation and everything else on the right side, then the
right side is 0.

Otherwise inhomogeneous or nonhomogeneous.

_____________________
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Examples:

• an = (1.02)an−1

linear
constant coefficients
homogeneous
degree 1

• an = (1.02)an−1 + 2n−1

linear
constant coefficients
nonhomogeneous
degree 1

• an = an−1 + an−2 + an−3 + 2n−3

linear
constant coefficients
nonhomogeneous
degree 3

• an = can /m + b
g does not have the right form

• an = nan−1 + n2an− 2 + an−1an−2

nonlinear
coefficients are not constants
homogeneous
degree 2

Solution Procedure
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• linear
• constant coefficients
• homogeneous
• degree k

an = c1an−1 + c2an−2 +... +cn−kan− k

1. Put all ai's on the left side of the equation, everything
else on the right. If nonhomogeneous, stop (for now).

an − c1an−1 − c2an−2 −... −cn−kan−k = 0

2. Assume a solution of the form an = bn.

3. Substitute the solution into the equation, factor out the
lowest power of b and eliminate it.

bn − c1b
n−1 − c2b

n−2 −... −cn− kb
n−k = 0

bn−k[bk − c1b
k−1−... −cn− k ] = 0

4. The remaining polynomial of degree k,

bk − c1b
k−1 −... −cn−k

 is called the characteristic polynomial.

Find its k roots, r1, r2, . . . , rk.

5. If the roots are    distinct   , the general solution is

an = α1r1
n + α 2r2

n +... +α krk
n
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6. The coefficients α1,α 2 ,..., α k  are found by enforcing the
initial conditions.

Solve the resulting linear system of equations:

a0 = α1r1
0 + α 2r2

0 +... +α krk
0

a1 = α1r1
1 + α2r2

1 +... +αkrk
1

•
•
•

ak −1 = α1r1
k −1 + α 2r2

k −1 +... +α krk
k −1

_____________________________

Example:

an+2 = 3an+1, a0 = 4

• Bring subscripted variables to one side:

an+2-3an+1 = 0.

• Substitute an = bn and factor lowest power of b:

bn+1(b-3) = 0  or b-3 = 0

• Find the root of the characteristic polynomial:

r1 = 3

• Compute the general solution:

an = c3n

• Find the constants based on the initial conditions:
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a0 = c(30) or c = 4

• Produce the specific solution:

an = 4(3n)
____________________

Example:

an = 3an-2, a0 = a1 = 1

• an - 3an-2 = 0

Note: the an-1 term has a coefficient of 0.

•bn-2(b2 - 3) = 0 or b2 - 3 = 0

• r1 = 3,r2 = − 3

• an = α1 3
n + α2 (− 3)n

• Solve the linear system for α1,α 2 :

a0 = 1 = α1 3
0 + α 2 (− 3)0 = α1 + α 2

a1 = 1 = α1( 3)1 + α 2 (− 3)1 = α1 3 − α 2 3

Solve the first equation for the first variable and substitute
in the second equation:

α1 = 1− α 2

1= (1− α 2 ) 3 − α2 3 = 3 − α 2 2 3
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α2 = ( 3 −1) / 2 3
α1 = 1− ( 3 −1) / 2 3 = ( 3 +1) / 2 3

_____________________________

If a root  r1 has multiplicity p, then the solution is

an = α1r1
n + α 2nr1

n +... +α pn
p−1r1

n +...

____________________

Example:

an = 6an−1 − 9an−2 , a0 = a1 = 1

• Recurrence system:

an − 6an−1 + 9an−2 = 0

• Find roots of characteristic polynomial

b2 − 6b + 9 = 0

(b −3) 2 = 0

 
 
 

• Roots are equal:

b1 = b2 = 3

• General solutions is

an = α1 3n +α 2n3n
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• Solve for coefficients:

a0 = 1 = α1 + 0

a1 = 1 =1(31 ) +α 2 (1)(31 )

α 2 = −
2
3

 

 
  

 
 
 

You finish.

Nonhomogeneous Recurrence Relations

• linear
• constant coefficients
• degree k

an = c1an−1 + c2 an−2 + ... + cn−k an−k + f (n)

___________________

an = c1an−1 + c2 an−2 + ... + cn−k an−k

is the associated homogeneous recurrence equation

TELESCOPING

Note: we introduce the technique here because it will be
useful to solve recurrence systems associated with divide
and conquer algorithms later.
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For recurrences which are

• first degree

 an = αan−1 + f (n)

__________________________

Method:

• back substitute

• force the coefficient of an-k on the left side to agree
with the coefficient of an-k in the previous equation

• stop when we get to the initial condition on the right
side

• add the left sides of the equations and the right sides
of the equations and cancel like terms

• add the remaining terms together to get a formula
for an.

_________________

Example:

• an = 2an−1 +1,a0 = 3

• Write down the equation:

an = 2an−1 +1
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• Write the equation for an−1:

an−1 = 2an−2 +1

• Multiply by the constant which appears as a
coefficient of an−1  in the previous equation so the two will
cancel when we add both sides:

2an−1 = 22 an−2 + 2

• Write down the equation for an−2 and multiply both
sides by the coefficient of an−2  in the previous equation:

an−2 = 2an−3 +1

becomes

22 an−2 = 23 an−3 + 22

• Continue until the initial condition appears on the
right hand side:

a1 = 2a0 +1

becomes

2n−1a1 = 2n a0 + 2n−1

• Add both sides of the equations and cancel identical
terms:

an = (2an−1) +1

(2an−1) = [2 2 an−2 ]+ 2
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[22 an−2 ] = 23 an−3 + 22

•
•
•

2n−1a1 = 2n a0 + 2n−1

__________________________________

an = 2n a0 + 2i

i=0

n−1

∑

• Substitute a0 and simplify 2 i

i=0

n−1

∑  to get the solution:

an = 3(2n ) + 2n −1 = 2n+2 −1

Note: solution to nonhomogeneous case is sum of solution
to associated homogeneous recurrence system and a
particular solution to the nonhomogeneous case.

Theorem:

Let {an
P} be a particular solution to the nonhomogeneous

equation and let {an
H} be the solution to the associated

homogeneous recurrence system. Then every solution to
the nonhomogeneous equation is of the form

{a n
H +an

P}

__________________

Particular solution?
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Theorem:

Assume a linear nonhomogeneous recurrence equation
with constant coefficients with the nonlinear part f(n)  of
the form

f (n) = (bt n
t + bt−1nt−1 + ...+ b1n + b0 )s n

If s  is not a root of the characteristic equation of the
associated homogeneous recurrence equation, there is a
particular solution of the form

(ct n
t + ct−1n

t−1 + ...+ c1n + c0 )sn

If s is a root of multiplicity m , a particular solutions is of
the form

nm (ct n
t + ct−1n

t−1 + ... + c1n + c0 )sn

_________________________

Example:

From the previous example the associated homogeneous
recurrence equation is

an − 2an−1 = 0

and

f (n) = 1

The root of the characteristic polynomial is 2 so the
solution to the homogeneous part is
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an
H = α2 n

and a particular solution to the nonhomogeneous equation
is

{an
P} = c0 .

Substituting c0 into the nonhomogeneous equation we get

c0 - 2c0 = 1

or

co =  -1

Therefore the general solution is

α2n - 1

Using the initial condition we have

α20 - 1 = 3 or α = 4 = 22

Hence, the solution is

an  = 2n+2 - 1

which is the same solution we obtained by telescoping.

__________________
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