
Section 7.3
Divide-and-Conquer Algorithms
     and Recurrence Relations

The form:
an = αan/m + f (n)

The sequence:

{a
m0 ,am1 ,am2 ,..., a

mk ,...}

__________________________

•  n = mk for some k.

- Division of the problem in half gives m =2

- Division into thirds gives m = 3

- etc.

Apply the telescoping technique described in Section 7.2.

_____________________

Example:

• m = 2,

an = 2an/2 +1,a1 = 3

n is a power of 2:

n = 2k  for some arbitrary k.
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Hence,
log(n) = k.

and
n/2k = 1

which is the value for the initial condition.

Using telescoping you are dividing the previous index by 2
each time vs. subtracting one from it.

an = (2an /2 ) +1

(2an /2 ) = [22 an /2 2 ] + 2

[22 an/ 22 ] = 23 an/2 3 + 22

•
•
•

2k−1a
n /2k −1 = 2k a

n /2 k + 2k −1

___________________________

an = na1 + 2 i

i= 0

k−1

∑ = 3n + n −1 = 4n −1∈O(n)

Divide and Conquer Algorithms

Note: most of the following algorithms are presented only
to show how to analyze them using recurrence relations.
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THEY DON’T NECESSARILY DO ANYTHING
USEFUL!

We assume we have list processing capability in the
pseudocode.

___________________

Example:

procedure DAC(list)

/* divide the list in half each time. Once the length of
the list is one, square the number and return it. Multiply
the two values returned from each half of the list. */

if Length(list) = 1
return (Listhead(list))• (Listhead(list))

a1 =one mult
else

c = DAC(first half of list)
an /2 mults

d = DAC(second half of list)
an /2 mults

return (c•d)
one mult

Count     multiplications   

• list length n = 2k.

• The initial condition:
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If n = 20 = 1 -  one multiplication is required so

a1 = 1.

• Multiplications required to compute c

 = an /2

plus

• Multiplications required to compute d

= an /2

plus

 • Multiplications required to compute a•b

1.

The recurrence equation becomes:

an = 2an/2 +1

with the initial condition a1 = 1.

____________________

The only difference between this one and the previous one
is the initial condition.

Hence, the solution is

an = 1(2k ) + 2 k −1 = 2k +1 −1 = 2n −1 ∈O(n)
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___________________________

Example:

      procedure TRIPLE(list)

if Length(list) = 1 then return (Listhead(list) +
(Listhead(list))

1 add
else

a = TRIPLE(first third of list)
an /3  adds

b = TRIPLE(last third of list)
an /3  adds

return (a + a + b)
2 adds

_________________

Note: we only process the first and last third of the list.

We count the number of additions required to process a list
of length n = 3k.  The recurrence relation becomes:

an = 2an/3 + 2,a1 = 1

Use the telescoping technique to get:

an = 2an/3 + 2

2an/3 = 22 a
n/32 + 22

•
•
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•

2k−1a
n /3 k −1 = 2k a

n /3k + 2k

______________________________

an = 1(2k ) + 2 i

i=1

k

∑

    which we must put in terms of       n       vs. k   .

But if n = 3k, then

log 3(n) = k

or

2k = 2 log3(n ) = nlog2 3 = n1.58

and so forth.

Merge-Sort

Merge-Sort is an asymptotically    optimal    worst case sorting
algorithm.

We sort a list of n = 2k elements by divide and conquer.

• Divide the list in two halves

•  Sort each half

• Merge the two lists to produce a sorted list

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 7.3

Prepared by: David F. McAllister TP 6 ©1999, 2007 McGraw-Hill



The length of the merged list is the sum of the lengths of
the two lists.

We will do the     worst case    analysis.

Count    comparisons    of list elements.

____________________

MERGE:

We put two sorted lists, list 1 and list 2 (in this case of
equal length) on separate stacks with the smallest element
of each list on the top of the stack.

• Compare the elements on the top of each stack.

• Pop the smallest one and put it in the new list.

• Continue until at least one stack is empty.

• If the other stack is not empty, pop the
remaining elements and put them in the new list.

Example:

list 1 list 2

1 2
2 4
5 6
6 8

• Pop list 1, new list = {1}
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list 1 list 2

2 2
5 4
6 6

8

• Pop either list since the top elements are equal.
Assume list 1, new list ={1, 2}

list 1 list 2

5 2
6 4

6
8

• Pop list 2, new list = {1, 2, 2}

list 1 list 2

5 4
6 6

8

• Pop list 2, new list = {1, 2, 2, 4}

list 1 list 2

5 6
6 8

• Pop list 1, new list = {1, 2, 2, 4, 5}

list 1 list 2
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6 6
8

• Pop list 1, new list = {1, 2, 2, 4, 5, 6}

List 1 is empty. Put remaining elements of list 2 on the
end of the sorted new list = {1, 2, 2, 4, 5, 6, 6, 8}.

Worst case merge: k elements in each list.

xx
x            x
x            x
•             •
•             •
•             •
x            x
x            x

list 1       list 2

Each line represents a comparison.

We pop an element off the opposite stack each time.

Maximum number of comparisons is defined by the
recurrence relation

ak = ak −1 + 2, a1 =1

Solution:

ak = 2k - 1   = O(k)  =  linear complexity.

____________________
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MERGESORT:

procedure MERGESORT(list)
/* a famous sorting algorithm */

if (Length (list) = 1) then return list

else

list 1 = MERGESORT(first half of list)
list 2 = MERGESORT(second half of list)

return MERGE(list 1, list 2)
______________________

The recurrence relation becomes

an = 2an/2 + n −1,a1 = 0

You show that

an  is O(n log 2 n)

______________________
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