Section 8.3
 Representing Relations

Connection Matrices

Let R be a relation from

$$
A=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

to

$$
B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\} .
$$

Definition: An $m \mathrm{x} n$ connection matrix M for R is defined by

$$
\begin{aligned}
M_{i j} & =1 \text { if }\left\langle a_{i}, b_{j}\right\rangle \text { is in } R, \\
& =0 \text { otherwise. }
\end{aligned}
$$

Example:
We assume the rows are labeled with the elements of A and the columns are labeled with the elements of B.

Let

$$
\begin{aligned}
& A=\{a, b, c\} \\
& B=\{e, f, g, h\} \\
& R=\{\langle a, e\rangle,\langle c, g\rangle\}
\end{aligned}
$$

Then the connection matrix M for R is

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Note: the order of the elements of A and B matters.

Theorem: Let R be a binary relation on a set A and let M be its connection matrix. Then

- R is reflexive iff $\mathrm{M}_{\mathrm{ii}}=1$ for all i .
- R is symmetric iff M is a symmetric matrix: $M=M^{T}$
- R is antisymetric if $\mathrm{M}_{\mathrm{ij}}=0$ or $\mathrm{M}_{\mathrm{ji}}=0$ for all $\mathrm{i} \neq \mathrm{j}$.

Combining Connection Matrices

Definition: the join of two matrices M_{1}, M_{2}, denoted $M_{1} \vee M_{2}$, is the component wise boolean 'or' of the two matrices.

Fact: If M_{1} is the connection matrix for R_{1} and M_{2} is the connection matrix for R_{2} then the join of M_{1} and M_{2}, $M_{1} \vee M_{2}$ is the connection matrix for $R_{1} \cup R_{2}$.

Definition: the meet of two matrices M_{1}, M_{2}, denoted $M_{1} \wedge M_{2}$ is the componentwise boolean 'and' of the two matrices.

Fact: If M_{1} is the connection matrix for R_{1} and M_{2} is the connection matrix for R_{2} then the meet of M_{1} and M_{2}, $M_{1} \wedge M_{2}$ is the connection matrix for $R_{1} \cap R_{2}$.

Obvious questions:
Given the connection matrix for two relations, how does one find the connection matrix for

- The complement?
- The relative complement?
- The symmetric difference?

The Composition

Definition: Let

M_{l} be the connection matrix for R_{l} and
M_{2} be the connection matrix for R_{2}.

The boolean product of two connection matrices M_{1} and M_{2}, denoted $M_{1} \otimes M_{2}$, is the connection matrix for the composition of R_{2} with $R_{1}, R_{2} \circ R_{1}$.

$$
\left(M_{1} \otimes M_{2}\right)_{i j}=\vee_{k=1}^{n}\left[\left(M_{1}\right)_{i k} \wedge\left(M_{2}\right)_{k j}\right]
$$

Why?
In order for there to be an $\operatorname{arc}\langle\mathrm{x}, \mathrm{z}\rangle$ in the composition then there must be and arc $\left\langle\mathrm{x}, \mathrm{y}>\right.$ in R_{l} and an $\operatorname{arc}\langle\mathrm{y}, \mathrm{z}\rangle$ in R_{2} for some y !

The Boolean product checkes all possible y's. If at least one such path exists, that is sufficient.

Note: the matrices M_{1} and M_{2} must be conformable: the number of columns of M_{1} must equal the number of rows of M_{2}.

If M_{1} is $m x n$ and M_{2} is nxp then $M_{1} \otimes M_{2}$ is mxp.

Example:

$$
\left.\begin{array}{c}
M_{1}=\begin{array}{lll}
{\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right.} & 0 \\
0 & 0 & 0
\end{array} 1 \\
0
\end{array} 1 \begin{array}{ll}
1 & 0
\end{array}\right] \mid
$$

$\left(M_{1} \otimes M_{2}\right)_{12}=\left[\left(M_{1}\right)_{11} \wedge\left(M_{2}\right)_{12}\right] \vee\left[\left(M_{1}\right)_{12} \wedge\left(M_{2}\right)_{22}\right]$ $\vee\left[\left(M_{1}\right)_{13} \wedge\left(M_{2}\right)_{32}\right] \vee\left[\left(M_{1}\right)_{14} \wedge\left(M_{2}\right)_{42}\right]$

$$
=[0 \wedge 0] \vee[1 \wedge 1] \vee[0 \wedge 0] \vee[0 \wedge 1]=1
$$

Note:

- there is an arc in R_{I} from node 1 in A to node 2 in B
- there is an arc in R_{2} from node 2 in B to node 2 in C.
- Hence there is an arc in $R_{2} \circ R_{1}$ from node 1 in A to node 2 in C .

A useful result:

$$
M_{R^{n}}=M_{R}^{n}
$$

Digraphs

(see section 8.1)
Given the digraphs for R_{1} and R_{2}, find the digraphs for

- $R_{2} \cup R_{1}$
- $R_{2} \cap R_{1}$
- $R_{2}-R_{1}$

- $R_{2} \oplus R_{1}$

- \bar{R}_{1}

