Section 8.4 Closures of Relations

Definition: The closure of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P .

In terms of the digraph representation of R

- To find the reflexive closure - add loops.
- To find the symmetric closure - add arcs in the opposite direction.
- To find the transitive closure - if there is a path from a to b, add an arc from a to b.

Note: Reflexive and symmetric closures are easy. Transitive closures can be very complicated.

Definition: Let A be a set and let $\Delta=\{\langle x, x\rangle \mid x$ in $A\}$. Δ is called the diagonal relation on A (sometimes called the equality relation E).

Note that D is the smallest (has the fewest number of ordered pairs) relation which is reflexive on A.

Reflexive Closure

Theorem: Let R be a relation on A. The reflexive closure of R, denoted $\mathrm{r}(R)$, is $R \cup \Delta$.

- Add loops to all vertices on the digraph representation of R.
- Put 1's on the diagonal of the connection matrix of R.

Symmetric Closure

Definition: Let R be a relation on A. Then R^{-1} or the inverse of R is the relation $R^{-1}=\{\langle y, x\rangle \mid\langle x, y\rangle \in R\}$

Note: to get R^{-1}

- reverse all the arcs in the digraph representation of R
- take the transpose M^{T} of the connection matrix M of R.

Note: This relation is sometimes denoted as R^{T} or R^{c} and called the converse of R

The composition of the relation with its inverse does not necessarily produce the diagonal relation (recall that the composition of a bijective function with its inverse is the identity).

Theorem: Let R be a relation on A. The symmetric closure of R, denoted $\mathrm{s}(R)$, is the relation $R \cup R^{-1}$.

Examples:

R

$\mathrm{r}(R)$

$\mathrm{s}(R)$

Examples:

- If $A=Z$, then $r(\neq)=Z x Z$
- If $A=Z^{+}$, then $\mathrm{s}(<)=\neq$.

What is the (infinite) connection matrix of $s(<)$?

- If $A=Z$, then $\mathrm{s}(\leq)=$?

Theorem: Let R_{1} and R_{2} be relations from A to B. Then

- $\left(R^{-1}\right)^{-1}=R$
- $\left(R_{1} \cup R_{2}\right)^{-1}=R_{I}^{-1} \cup R_{2}^{-1}$
- $\left(R_{1} \cap R_{2}\right)^{-1}=R_{I}^{-1} \cap R_{2}^{-I}$
- $(A \times B)^{-1}=B \times A$
- $\varnothing^{-1}=\varnothing$
- $\bar{R}^{-1}=\overline{R^{-1}}$
- $\left(R_{1}-R_{2}\right)^{-1}=R_{1}^{-1}-R_{2}^{-1}$
- If $A=B$, then $\left(R_{1} R_{2}\right)^{-1}=R_{2}^{-1} R_{1}^{-1}$
- If $R_{I} \subseteq R_{2}$ then $R_{I}^{-1} \subseteq R_{2}^{-1}$

Theorem: R is symmetric iff $R=R^{-1}$

Paths

Definition: A path of length n in a digraph G is a sequence of edges $\left\langle x_{0}, x_{1}\right\rangle\left\langle x_{1}, x_{2}\right\rangle \ldots\left\langle x_{n-1}, x_{n}\right\rangle$.

The terminal vertex of the previous arc matches with the initial vertex of the following arc.

If $x_{0}=x_{n}$ the path is called a cycle or circuit. Similarly for relations.

Theorem: Let R be a relation on A . There is a path of length n from a to b iff $\langle a, b\rangle \in R^{n}$.

Proof: (by induction)

- Basis: An arc from a to b is a path of length 1 which is in $R^{l}=R$. Hence the assertion is true for $n=1$.
- Induction Hypothesis: Assume the assertion is true for n.

$$
\text { Show it must be true for } n+1 \text {. }
$$

There is a path of length $\mathrm{n}+1$ from a to b iff there is an x in A such that there is a path of length 1 from a to x and a path of length n from x to b.

From the Induction Hypothesis,

$$
\langle a, x\rangle \in R
$$

and since $\langle x, b>$ is a path of length n,

$$
\langle x, b\rangle \in R^{n}
$$

If

$$
\langle a, x\rangle \in R
$$

and

$$
\langle x, b\rangle \in R^{n},
$$

then

$$
\langle a, b\rangle \in R^{n} \circ R=R^{n+1}
$$

by the inductive definition of the powers of R.
Q. E. D.

Useful Results for Transitive Closure

Theorem:

$$
\text { If } A \subset B \text { and } C \subset B, \text { then } A \cup C \subset B
$$

Theorem:
If $R \subset S$ and $T \subset U$ then $R \circ T \subset S \circ U$.
Corollary:

$$
\text { If } R \subset S \text { then } R^{n} \subset S^{n}
$$

Theorem:

If R is transitive then so is R^{n}

Trick proof: Show $\left(R^{n}\right)^{2}=\left(R^{2}\right)^{n} \subset R^{n}$
Theorem: If $R^{k}=R^{j}$ for some $j>k$, then $R^{j+m}=R^{n}$ for some $n \leq j$.

We don't get any new relations beyond R^{j}.
As soon as you get a power of R that is the same as one you had before, STOP.

Transitive Closure

Recall that the transitive closure of a relation $R, t(R)$, is the smallest transitive relation containing R.

Also recall
R is transitive iff R^{n} is contained in R for all n
Hence, if there is a path from x to y then there must be an arc from x to y, or $\langle x, y\rangle$ is in R.

Example:

- If $A=Z$ and $R=\{\langle i, i+l>\}$ then $t(R)=<$
- Suppose R : is the following:

What is $t(R)$?

Definition: The connectivity relation or the star closure of the relation R, denoted R^{*}, is the set of ordered pairs $\langle a, b\rangle$ such that there is a path (in R) from a to b :

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n}
$$

Examples:

$$
\begin{aligned}
& \bullet \text { Let } A=Z \text { and } R=\{\langle i, i+l\rangle\} . R^{*}=<. \\
& \bullet \text { Let } A=\text { the set of people, } R=\{\langle x, y\rangle \mid \text { person } x \text { is } \\
& \text { a parent of person } y\} . R^{*}=\text { ? }
\end{aligned}
$$

Theorem: $t(R)=R^{*}$.
Proof:
Note: this is not the same proof as in the text.
We must show that R^{*}

1) is a transitive relation
2) contains R

3) is the smallest transitive relation which contains R

Proof:

Part 2):
Easy from the definition of R^{*}.
Part 1):
Suppose $\langle x, y\rangle$ and $\langle y, z\rangle$ are in R^{*}.
Show $\langle x, z\rangle$ is in R^{*}.
By definition of $R^{*},\langle x, y\rangle$ is in R^{m} for some m and $\langle y, z\rangle$ is in R^{n} for some n.

Then $\langle x, z\rangle$ is in $R^{n} R^{m}=R^{m+n}$ which is contained in R^{*}. Hence, R^{*} must be transitive.

Part 3):
Now suppose S is any transitive relation that contains R.

We must show S contains R^{*} to show R^{*} is the smallest such relation.
$R \subset S$ so $R^{2} \subset S^{2} \subset S$ since S is transitive

Therefore $R^{n} \subset S^{n} \subset S$ for all n. (why?)
Hence S must contain R^{*} since it must also contain the union of all the powers of R.
Q. E. D.

In fact, we need only consider paths of length n or less.

Theorem: If $|A|=n$, then any path of length > n must contain a cycle.

Proof:
If we write down a list of more than n vertices representing a path in R, some vertex must appear at least twice in the list (by the Pigeon Hole Principle).

Thus R^{k} for $k>n$ doesn't contain any arcs that don't already appear in the first n powers of R.

Corollary: If $|A|=n$, then $t(R)=R^{*}=R \cup R^{2} \cup \ldots \cup$ R^{n}

Corollary: We can find the connection matrix of $t(R)$ by computing the join of the first n powers of the connection matrix of R .

Powerful Algorithm!

Example:

Do the following in class:

R2:

R3:

R4:

R5:
-
\bullet
\bullet
$\mathrm{t}(\mathrm{R})=\mathrm{R} *:$

So that you don't get bored, here are some problems to discuss on your next blind date:

1) Do the closure operations commute?

- Does $\mathrm{st}(\mathrm{R})=\mathrm{ts}(\mathrm{R})$?
- Does $\mathrm{rt}(\mathrm{R})=\operatorname{tr}(\mathrm{R})$?
- Does $\mathrm{rs}(\mathrm{R})=\operatorname{sr}(\mathrm{R})$?

2) Do the closure operations distribute

- Over the set operations?
- Over inverse?
- Over complement?
- Over set inclusion?

Examples:

- Does $t(R 1-R 2)=t(R 1)-t(R 2)$?
- Does $r\left(R^{-1}\right)=[r(R)]^{-1}$?

