Section 8.4 Closures of Relations

Definition: The *closure* of a relation R with respect to property P is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P.

In terms of the digraph representation of R

• To find the reflexive closure - add loops.

• To find the symmetric closure - add arcs in the opposite direction.

• To find the transitive closure - if there is a path from *a* to *b*, add an arc from *a* to *b*.

Note: Reflexive and symmetric closures are easy. Transitive closures can be very complicated.

Definition: Let A be a set and let $= \{ \langle x, x \rangle | x \text{ in } A \}$. is called the *diagonal relation* on A (sometimes called the *equality* relation E). Note that D is the smallest (has the fewest number of ordered pairs) relation which is reflexive on A.

Reflexive Closure

Theorem: Let R be a relation on A. The *reflexive closure* of R, denoted r(R), is R.

• Add loops to all vertices on the digraph representation of *R*.

• Put 1's on the diagonal of the connection matrix of *R*.

Symmetric Closure

Definition: Let *R* be a relation on A. Then R^{-1} or the *inverse* of *R* is the relation $R^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \mid R \}$

Note: to get R^{-1}

• reverse all the arcs in the digraph representation of *R*

• take the transpose M^T of the connection matrix M of R.

Note: This relation is sometimes denoted as R^{T} or R^{c} and called the *converse* of R

The composition of the relation with its inverse does not necessarily produce the diagonal relation (recall that the composition of a bijective <u>function</u> with its inverse is the identity).

Theorem: Let *R* be a relation on A. The symmetric closure of *R*, denoted s(R), is the relation $R = R^{-1}$.

Examples:

Examples:

- If A = Z, then r() = Z x Z
- If $A = Z^+$, then s(<) = .

What is the (infinite) connection matrix of s(<)?

• If
$$A = Z$$
, then s() = ?

Theorem: Let R_1 and R_2 be relations from A to B. Then

Theorem: *R* is symmetric iff $R = R^{-1}$

Paths

Definition: A *path* of *length* n in a digraph G is a sequence of edges $\langle x_0, x_1 \rangle \langle x_1, x_2 \rangle \dots \langle x_{n-1}, x_n \rangle$.

The terminal vertex of the previous arc matches with the initial vertex of the following arc.

If $x_0 = x_n$ the path is called a *cycle* or *circuit*. Similarly for relations.

Theorem: Let R be a relation on A. There is a path of length *n* from *a* to *b* iff $\langle a, b \rangle = R^n$.

Proof: (by induction)

• *Basis*: An arc from *a* to *b* is a path of length 1 which is in $R^1 = R$. Hence the assertion is true for n = 1.

• *Induction Hypothesis*: Assume the assertion is true for *n*.

Show it must be true for n+1.

There is a path of length n+1 from a to b iff there is an x in A such that there is a path of length 1 from *a* to *x* and a path of length *n* from *x* to *b*.

From the Induction Hypothesis,

$$\langle a, x \rangle \quad R$$

and since $\langle x \rangle$, b> is a path of length n,

$$\langle x, b \rangle = R^n$$
.

If

$$\langle a, x \rangle \quad R$$

and

$$\langle x, b \rangle \quad R^n,$$

then

$$\langle a, b \rangle \quad R^n \circ R = R^{n+1}$$

by the inductive definition of the powers of R.

Q. E. D.

Useful Results for Transitive Closure

Theorem:

If A B and C B, then A C	It A	B and C	B, then A	C	B.
--------------------------	------	---------	-----------	---	----

Theorem:

If R = S and T = U then $R \circ T = S \circ U$.

Corollary:

If R = S then $R^n = S^n$

Theorem:

If *R* is transitive then so is R^n

Trick proof: Show $(R^n)^2 = (R^2)^n - R^n$

Theorem: If $R^k = R^j$ for some j > k, then $R^{j+m} = R^n$ for some n = j.

We don't get any new relations beyond R^{j} .

As soon as you get a power of *R* that is the same as one you had before, STOP.

Transitive Closure

Recall that the transitive closure of a relation R, t(R), is the smallest transitive relation containing R.

Also recall

R is transitive iff R^n is contained in *R* for all *n*

Hence, if there is a path from x to y then there must be an arc from x to y, or $\langle x, y \rangle$ is in R.

Example:

- If A = Z and $R = \{ < i, i+1 > \}$ then t(R) = <
- Suppose *R*: is the following:

Definition: The *connectivity* relation or the *star closure* of the relation R, denoted R^* , is the set of ordered pairs $\langle a, b \rangle$ such that there is a path (in R) from a to b:

$$R^* = \bigcup_{n=1}^{\infty} R^n$$

Examples:

• Let A = Z and $R = \{\langle i, i+1 \rangle\}$. $R^* = \langle .$

• Let A = the set of people, $R = \{ \langle x, y \rangle / \text{ person } x \text{ is a parent of person } y \}$. $R^* = ?$

Theorem: $t(R) = R^*$.

Proof:

Note: this is not the same proof as in the text.

We must show that R^*

1) is a transitive relation

2) contains *R*

3) is the smallest transitive relation which contains R

Proof:

Part 2):

Easy from the definition of R^* .

Part 1):

Suppose $\langle x, y \rangle$ and $\langle y, z \rangle$ are in R^* .

Show $\langle x, z \rangle$ is in R^* .

By definition of R^* , $\langle x, y \rangle$ is in R^m for some m and $\langle y, z \rangle$ is in R^n for some n.

Then $\langle x, z \rangle$ is in $\mathbb{R}^n \mathbb{R}^m = \mathbb{R}^{m+n}$ which is contained in \mathbb{R}^* . Hence, \mathbb{R}^* must be transitive.

Part 3):

Now suppose S is any transitive relation that contains R.

We must show *S* contains R^* to show R^* is the <u>smallest</u> such relation.

 $R \quad S \text{ so } R^2 \quad S^2 \quad S \text{ since } S \text{ is transitive}$

Therefore $R^n = S^n = S$ for all *n*. (why?)

Hence S must contain R^* since it must also contain the union of all the powers of R.

Q. E. D.

In fact, we need only consider paths of length n or less.

Theorem: If |A| = n, then any path of length > n must contain a cycle.

Proof:

If we write down a list of more than n vertices representing a path in R, some vertex must appear at least twice in the list (by the Pigeon Hole Principle). Thus R^k for k > n doesn't contain any arcs that don't already appear in the first n powers of R.

Corollary: If |A| = n, then $t(R) = R^* = R \quad R^2 \quad \dots \quad R^n$

Corollary: We can find the connection matrix of t(R) by computing the join of the first n powers of the connection matrix of R.

Powerful Algorithm!

Example:

Do the following in class:

R2:

R3:

R4: R5: • • t(R) = R*:

So that you don't get bored, here are some problems to discuss on your next blind date:

- 1) Do the closure operations commute?
 - Does st(R) = ts(R)?
 - Does rt(R) = tr(R)?
 - Does rs(R) = sr(R)?
- 2) Do the closure operations distribute
 - Over the set operations?
 - Over inverse?
 - Over complement?
 - Over set inclusion?

Examples:

- Does t(R1 R2) = t(R1) t(R2)?
- Does $r(R^{-1}) = [r(R)]^{-1}$?