

Accepted Manuscript

Agent-based cyber-physical system development with
SEA_ML++

Moharram Challenger, Baris Tekin Tezel, Vasco Amaral, Miguel
Goulao, Geylani Kardas

DOI: 10.1016/B978-0-12-819105-7.00013-1

To appear in: Multi-Paradigm Modelling Approaches for
Cyber-Physical Systems (1st Edition)

Published online: 15 December 2020

Please cite this article as: Moharram Challenger, Baris Tekin Tezel, Vasco Amaral, Miguel Goulao,
Geylani Kardas, Agent-based cyber-physical system development with SEA_ML++, Multi-
Paradigm Modelling Approaches for Cyber-Physical Systems (1st Edition), Tekinerdogan et al.
(Eds.), doi: 10.1016/B978-0-12-819105-7.00013-1

This is a PDF file of an unedited manuscript that has been accepted for publication. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the book pertain.

https://doi.org/10.1016/B978-0-12-819105-7.00013-1
https://doi.org/10.1016/B978-0-12-819105-7.00013-1

ACCEPTED MANUSCRIPT

Agent-based Cyber-physical System Development with

SEA ML++

Moharram Challengera,b,∗, Baris Tekin Tezelb,c, Vasco Amarald,

Miguel Goulaod, Geylani Kardasb

aUniversity of Antwerp and Flanders Make, Belgium

bInternational Computer Institute, Ege University, Izmir, Turkey
cDepartment of Computer Science, Dokuz Eylul University, Izmir, Turkey

dSoftware Systems Group, NOVA LINCS, Universidade NOVA de Lisboa, Portugal

Abstract

Intelligent agents are software components that can work autonomously and

proactively to solve the problems collaboratively. To this end, they can behave

in a cooperative manner and collaborate with other agents constituting systems

called Multi-agent Systems (MAS). These systems have different perspectives

such as the internal structure, plan, interaction, organization, role, environment

and so on. By having these views, MASs can consider the structure, behaviour,

interaction, and environment of the complex systems such as Cyber-physical

Systems (CPS). Therefore, intelligent software agents and MASs can be used in

the modeling and development of CPSs.

There are different Domain-specific Modeling Languages (DSMLs) to build

MASs with a focus on various MAS aspects. One of the generative MAS DSMLs

is SEA ML++ which presents a thorough Model-driven Engineering practice

with including the abstract syntax, graphical concrete syntax, model to model

transformations and model to code transformations with the support of Platform

Independent and Platform Specific levels of MAS modeling. In this chapter, we

discuss how SEA ML++ is used for the design and implementation of agent-

based CPSs. An MDE methodology is introduced in which SEA ML++ can be

used to design agent-based CPS and implement these systems on various agent

execution platforms. As the evaluating case study, the development of a multi-

agent garbage collection CPS is taken into consideration. The conducted study

demonstrates how this CPS can be designed according to the various viewpoints

of SEA ML++ and then implemented on JASON agent execution platform.

Keywords:

Multi-agent System, Intelligent Agent, Cyber-physical Systems, SEA ML++

∗Corresponding author: Moharram Challenger (m.challenger@gmail.com,+32 3 265 1731)

Email addresses: moharram.challenger@uantwerpen.be (Moharram Challenger),

baris.tezel@deu.edu.tr (Baris Tekin Tezel), vasco.amaral@fct.unl.pt (Vasco Amaral),

mgoul@fct.unl.pt (Miguel Goulao), geylani.kardas@ege.edu.tr (Geylani Kardas)

mailto:moharram.challenger@uantwerpen.be
mailto:baris.tezel@deu.edu.tr
mailto:vasco.amaral@fct.unl.pt
mailto:mgoul@fct.unl.pt
mailto:geylani.kardas@ege.edu.tr

2

1. Introduction

According to Russell and Norvig [1], an agent is anything that can be con-

sidered to be able to perceive its environment through sensors and act on this

environment through actuators. Moreover, the agents are located in a certain

environment and are capable of flexible autonomous actions within this envi-

ronment in order to meet its design objectives [2]. These autonomous, reactive,

and proactive agents also have social ability and can interact with other agents

and humans in order to solve their own problems. They may also behave in

a cooperative manner and collaborate with other agents for solving common

problems.

In order to perform their tasks and interact with each other, intelligent agents

constitute systems called Multi-agent Systems (MASs). A MAS is a loosely

coupled network of problem-solving entities (agents) that work together to find

answers to problems that are beyond the individual capabilities or knowledge

of each entity (agent).

Agents and MASs with their capabilities such as mobility, intelligence, dis-

tributedness, autonomy and dynamicity, can be utilized in very different appli-

cations, ranging from software intensive applications such as e-bartering [3, 4]

and the stock exchange system [5], to the system level applications such as

smart waste collection [6]. MASs can also be used along with other paradigms

such as Model-based System Engineering (MBSE) to target the challenges of

Cyber-physical Systems (CPS) including resource limitation, uncertainty, and

distributedness. Hence, the fundamental components of CPS for various busi-

ness domains can be designed and built as autonomous agents interacting with

each other. MBSE is here applied to leverage the abstraction level to minimize

the system complexity and facilitate the agent design. Finally, it provides a con-

venient way to implement and execute these systems for various MAS execution

platforms [7, 8, 9].

This chapter discusses how agents and MAS can be used in both the mod-

elling and the development of CPS. To this end, we demonstrate how using a

Domain-specific Modeling Language (DSML), called SEA ML++ enables the

model-driven engineering of agents, their planning mechanisms and agent col-

laborations which leads to the construction of the desired CPS. SEA ML++

can represent different aspects of MASs such as environment, interaction, agent

internal, organization, plan, and role [10]. In this way, it can specify various

aspects of a complex and dynamic system such as CPS. To demonstrate the

proposed development methodology, a case study called multi-agent garbage

collection is designed and implemented based on SEA ML++.

This chapter is organized as follows: Section 2 and 3 discuss the background

and related work respectively. In Section 4, SEA ML++ is introduced. The

methodology for modeling and development of agent-based CPS is discussed

in Section 5. A multi-agent garbage collection system is designed and devel-

oped using SEA ML++ in Section 6 to demonstrate the proposed methodology.

Finally, the chapter is concluded in Section 7.

3

2. Background

Cyber-Physical Systems (CPS) consist of tightly integrated and coordinated

computational and physical elements [11]. They represent an evolution of em-

bedded systems to a higher level of complexity by focusing on the interac-

tion with highly uncertain environments (such as human interaction or wear &

tear of devices). In these systems, embedded computers and networks moni-

tor (through sensors) and control (through actuators) the physical processes,

usually with feedback loops where physical processes and computations affect

each other. The computational part of these systems plays a key role and needs

to be developed in a way that can handle (mostly in real-time) the uncertain

situations with the limited resources (including computational resource, mem-

ory resource, communication resource, and so on) [12]. However, considering

both the heterogeneity of the components and the variety of system behaviour

interacting with physical environment, the design and the development of these

systems are complex, time-consuming and costly tasks.

Generally, one of the approaches to address the complexity of engineering

systems is to exclude the extra details and have an abstract model/representation

of the system where we can do some tasks (e.g. analyze, comprehend, develop,

and so on) which are difficult or sometimes impossible to do on the original sys-

tem [13]. Modelling a system represents the properties of interest in that system

which can be used for various purposes. There can be different models (with

specific paradigms or formalisms) for a complex system such as a CPS in which

each of the models represents one aspect of the system. This approach is called

multi-paradigm modeling [14]. The modelling approach can be used for differ-

ent purposes, such as model-driven engineering which is a software and systems

development paradigm that emphasizes the application of modeling principles

and best practices throughout the System Development Life Cycle (SDLC).

Within an MDE approach, a Domain-specific Modelling Language (DSML)

uses the notations and constructs tailored towards a particular application do-

main (e.g. Multi-agent Systems or Concurrent Programs[15]). The end-users of

DSMLs have knowledge from the observed problem domain, but they usually

have little programming experience. DSMLs raise the abstraction level, expres-

siveness, and ease of use. The main artifacts of DSML are models instead of

software codes and they are usually specified in a visual manner. A DSML’s

graphical syntax offers benefits, like easier design, when modeling within certain

domains (e.g. IoT domain [16]).

The development of DSML is usually driven by language model definition.

That is, concepts and abstractions from the domain which need to be defined

in order to reflect the target domain (language model). Then, relations be-

tween the language concepts need to be defined. Both of them constitute an

abstract syntax of a modeling language. Usually, a language model is defined

with a metamodel. The additional parts of a language model are constraints

that define those semantics which cannot be defined using only the metamodel.

Domain abstractions and relations need to be presented within a concrete syn-

tax and serve as a modeling block within the end-users modeling environment.

4

This modeling environment can be generated automatically if dedicated soft-

ware is used, otherwise, modeling editor must be provided manually. Then, the

model transformations need to be defined in order to call the domain framework,

which is a platform that provides the functions for implementing the semantics

of DSMLs within a specific environment. Usually, the semantics is given by

translational semantics.

3. Related Work

This section discusses the related work considering both the MAS DSMLs

and Agent-based CPS development studies.

Agent-DSL [17] is used for modelling agent features, like knowledge, interac-

tion, and autonomy by presenting a metamodel. The agent modelling languages

introduced e.g. in [18, 19] consider the syntax definitions rather than operational

language semantics. Studies like [20, 21] also discuss MDE of agent systems by

introducing a series of transformations on MAS metamodels in different ab-

stractions. Although those transformations may guide to construct some sort

of semantics, related studies describe MAS development methodologies instead

of specifying a complete DSML. In addition, there exist MAS metamodel pro-

posals (e.g. [22, 23, 24]) from which abstract syntaxes of MAS DSMLs can

originate. In [25], a DSML is provided for MASs based on EMF1. The language

supports modelling of agents according to one of the specific MAS methodolo-

gies called Prometheus. Likewise, SEA L [26] and JADEL [27] are two agent

DSLs both providing textual syntaxes based on Xtext specifications. Srede-

jovic et al. [28] introduce another agent DSL, called ALAS, to allow software

developers to create intelligent agents having reasoning systems based on non-

axiomatic logic. The work conducted in [18] aims at creating a UML-based

agent modeling language, called MAS-ML, which is able to graphically model

various types of agent internal architectures. However, the current version of

the language does not support any code generation, which prevents the exe-

cution of modeled agent systems. DSML4BDI [9] is another DSML proposed

for creating agents conforming to Belief-Desire-Intention (BDI) architecture. In

addition to modeling the internal structure of agents, their beliefs, goals, events

and knowledgebase, DSML4BDI specifically allows modeling the difficult logical

expressions, which might be used in any agent plan or rule. In addition to pro-

viding an abstract syntax based on a metamodel, SEA ML++ [10, 29] offers a

full-fledged modelling language including all syntax and semantics constructs re-

quired for the MDE of agents according to well-known BDI and re-active agents

principles. SEA ML++ supports the execution of modelled agents over a series

of model-to-model and model-to-code transformations enabling the construction

of interactions between agents.

In Road2CPS EU support Action2, a roadmap and recommendations for

1Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
2http://www.road2cps.eu/

http://www.eclipse.org/modeling/emf/
http://www.road2cps.eu/
http://www.road2cps.eu/

5

future deployment of CPS are proposed [30]. Similarly, in CPSoS EU Support

Action3, the challenges posed by engineering and operation of CPSoS are defined

[31, 32] and a research and innovation agenda on CPSoS are presented. In

[33], the authors report recent software engineering studies for CPSs. Also,

in [34] and [35], the authors address multi-paradigm modelling aspect of cyber-

physical systems. Finally, in [36], the authors present a DSL for designing CPSs.

However, non of these studies address the construction of these systems using

agents and multi-agent systems, e.g. to provide autonomy, reactivity and/or

proactivity.

The study in [37] addresses the modeling methodology and tool for au-

tonomous objects in CPS. The authors propose a framework called CPS-Agent

to model objects with consideration of temporal-spatial traits and interaction

with the physical environment. They present a role-based strategy formulation

to make work patterns of CPS-Agents more clear. In terms of network com-

munication among CPS-Agents, a set of communicative primitives is tailored

based on the FIPA-ACL specification.

In [38], the authors discuss the development of an agent-based CPS for Smart

Parking Systems. They believe that the inclusion of multi-agent systems, com-

bined under the scope of CPS, ensure flexibility, modularity, adaptability and

the decentralization of intelligence through autonomous, cooperative and proac-

tive entities. They also mention that the smart parking systems can be adapted

to other types of vehicles to be parked and scalable in terms of the number

of parking spots and drivers/vehicles. The authors focus on how the software

agents are interconnected with the physical asset controllers using proper tech-

nologies.

The authors of [39] address the challenges of MAS for CPS. They state

that CPS application domains include three major characteristics (intelligence,

autonomy and real-time behavior) and MAS can be used to implement such sys-

tems. They believe that MAS address the first two characteristics, but miss to

comply with strict timing constraints. The main reasons for this lack of real-time

satisfiability in MAS originate from current theories, standards, and technolog-

ical implementations. In particular, internal agent schedulers, communication

middlewares, and negotiation protocols have been identified as co-factors in-

hibiting the real-time compliance.

Recently in [40, 41], a group of researchers (in the scope of a European

research project4) have studied the application of agents to deal with the prob-

lems in Cyber-physical Production Systems. They focused on quality control in

manufacturing by proposing an agent architecture (which presents a distributed

intelligence) for distributed analysis of the CPS and tackling the defects in multi-

stage manufacturing.

Although all of the abovementioned studies present noteworthy applications

of agent paradigm in CPS, they do not address the MDE of these systems in

3https://www.cpsos.eu/
4http://go0dman-project.eu/

http://www.cpsos.eu/
http://go0dman-project.eu/

6

the way of both increasing the abstraction level needed during CPS design and

facilitating CPS construction with agent features. The enrichment of CPS im-

plementations with the agent capabilities improves the execution of such systems

which may also lead to the widespread use of CPS in various application domains

e.g. ranging from smart manufacturing to self-adaptive systems. However, de-

sign and implementation of CPS with agent capabilities naturally become more

difficult in comparison with the conventional way of CPS development since the

developers may face new challenges originating especially from the autonomous

and the proactive behavior of the agents built in the new CPS in addition to

the already existing CPS development challenges such as the complexity and the

interoperability of CPS components. MDE of agent-based CPS may contribute

to minimize these challenges and hence provide a more convenient way of de-

velopment. Within this context, this chapter investigates the use of a DSML

enabling the MDE of CPS which is missing in the existing agent-based CPS

development approaches.

4. SEA ML++

This section elaborates the SEA ML++ language and its components, in-

cluding its abstract syntax, graphical concrete syntax, and transformations.

SEA ML++ is an extended version of SEA ML [42] and SEA L [43, 26]

languages by the systematic evaluation [7, 29] of agent modeling components

and applying the physics of notation principles [44] to improve the graphical

syntax [10] used during MAS modeling. The initial idea for creating such a

DSML is first introduced in [45] and its metamodel and concrete syntax in [22].

4.1. Abstract Syntax

The abstract syntax of the SEA ML++ is constituted by the metamodel

which is divided into different viewpoints each describing a different aspect of

MAS. The important viewpoints are MAS/Organization, Agent Internal, Plan,

Role, Interaction, Environment, and Ontology. They were previously defined by

the partial metamodels in the abstract syntax of the SEA ML [42]. However,

all these partial metamodels were improved and combined into the metamodel

of the SEA ML++.

The SEA ML++ covers the main agent entities and their relationship which

are mostly agreed by the agent research community. In addition, more specific

aspects of the domain, such as Plan, Role, and Environment, are also supported

in the syntax of the SEA ML++ in detail. The general overview and relations

between the viewpoints of the SEA ML++ is given in the Figure 1.

7

Figure 1: The general overview of the viewpoints of the SEA ML++

All viewpoints of the SEA ML++ are briefly discussed in the following:

MAS Viewpoint

The MAS viewpoint of the SEA ML++ is related to the creation of a

MAS as an overall aspect of the metamodel. It contains the main blocks

that form the complex system as an organization.

Agent Internal Viewpoint

This viewpoint focuses on the internal structure of each agent in a MAS

organization. The abstract syntax of the SEA ML++ supports both re-

active and BDI agents via this viewpoint. While meta-entities such as

Belief, Plan and Goal support the BDI agents, Behavior meta-entity and

its nested structure support the reactive agents.

Plan Viewpoint

The Plan viewpoint defines the internal structure of an agent’s plans.

When an agent implements a Plan, it executes its Tasks that consist of Ac-

tions which are atomic elements. Send and Receive entities are extended

from Action. These types of actions are linked to a Message entity.

Role Viewpoint

Agents can play some roles, and use ontologies, and infer about the en-

vironment based on the known facts within the system. The content of

roles is defined in the Role viewpoint.

Interaction Viewpoint

This viewpoint focuses on communications and interactions between agents

in a MAS, and identifies entities and relationships, such as Interaction,

Message, MessageSequence.

8

Environment Viewpoint

The environmental viewpoint focuses on the relationships between agents

and to what they access. The Environment in which the agents are lo-

cated includes all non-agent entities too such as Resources (for example,

a database, a network device), Facts and Services.

Ontology Viewpoint

A MAS Organization can use ontologies for their reasoning. An ontology

represents a source of information gathering and reasoning for all MAS

members. All ontology sets and ontological concepts are brought together

via the ontology viewpoint.

4.2. Graphical Concrete Syntax

A screenshot from the Sirius-based IDE of SEA ML++ is given in Fig-

ure 2. Developers can visually create models of agent systems conforming to

SEA ML++ specifications by simply drag-and-dropping the required items from

the palette residing at the right side of the modelling environment.

9

Figure 2: SEA ML++’s IDE

10

4.3. Transformations

It is not enough to present a DSML simply by defining concepts and repre-

sentations [15, 9]. The exact definition entails the semantic of the language. The

semantic of the SEA ML++ is given as a transitional semantic that is matching

the concepts of the language in terms of the other concepts already established

to realize MAS. Model-to-model transformations in SEA ML++ are provided

for MAS, Agent and Interaction models, to various MAS programming lan-

guages and their implementation platforms such as JADEX5, JACK6, JADE7,

and Jason8. These agent programming languages were chosen as the target

agent platform since they are among the well-known and frequently used agent

platforms in MAS research and development [46]. Also, JADEX, JACK and

Jason support to develop BDI agents. In this study, ATL translation language

was used to provide model-to-model transformations between SEA ML++ and

above target platforms.

After the generation of platform-specific models through model transforma-

tions, a series of model-to-text transformations should be applied to generate

executable software code for the modelled MAS. For this purpose, SEA ML++

includes model-to-text transformation rules written in Acceleo to auto-generate

MAS code from SEA ML++ models.

5. Agent-based CPS Modelling and Development using SEA ML++

In this section, a model-based methodology is proposed for the design and

implementation of agent-based CPSs. To this end, the proposed methodology

covers the use of the MAS DSML, SEA ML++. In this way, a complex system

such as CPS is modelled using MAS components at a higher level of abstraction.

As a result, the system can be analyzed, and the required elements can be de-

signed using the terms and notations of agent and MASs. These domain-specific

elements and their relations to each other create the domain-specific instance

models which pave the way to implement the system. As these models are per-

sisted in a structural and formal way, they can be transformed to other proper

paradigms, such as mathematical logics. In this way, they can be analyzed and

validated based on formal methods, e.g. Satisfiability (SAT) solvers can be used

to find counter-examples violating the agent model constraints (see [47] for a

more extensive discussion). Furthermore, these models can be used to automat-

ically generate the architectural code for agents and artifacts of the CPS which

can end up with less syntactical errors and speed up the development proce-

dure. Faster development also brings cost reduction in the projects. Moreover,

less syntactic and semantic errors mean less iterations in the MAS development

phase and short testing phase which also reduce the development cost and the

5https://sourceforge.net/projects/jadex/
6https://aosgrp.com/products/jack/
7https://jade.tilab.com/
8http://jason.sourceforge.net/wp/

http://jason.sourceforge.net/wp/

11

effort. So, the MAS-to-be-implemented can be checked, and the errors can be

partially found in the early phases of development, namely analysis and design

phases, instead of finding them in the implementation and testing phases.

In this chapter, SEA ML++ is used as a DSML for the modeling and devel-

opment of agent-based CPSs. SEA ML++ enables the developers to model the

agent systems in a platform independent level and then automatically achieve

code and related documents required for the execution of the modeled MAS on

target MAS implementation platforms. In order to support CPS experts during

MAS programming, SEA ML++ covers all aspects of an agent system from the

internal view of a single agent to the complex MAS organization. In addition

to these capabilities, SEA ML++ also supports the model-driven design and

implementation of autonomous agents who can work on CPS elements.

Based on SEA ML++, the analysis and the modelling/design of CPS can

be realized using the application domains terms and notations. This helps the

end users to work at a higher level of abstraction (independent of target plat-

form) and close to the expert domain. Also, generative features of SEA ML++

pave the way to produce the configured templates from the designed models for

the software system in the underlying languages and technologies. Currently,

SEA ML++ can generate architectural code for several agent programming lan-

guages using model to model transformations of the designed platform indepen-

dent instance models to the instance models of the target MAS languages. Then,

these platform specific models are transformed to the platform specific codes by

model to code transformations. This generation capability of SEA ML++ can

increase the development performance of the software system considerably. Fi-

nally, by constraints checking provided in SEA ML++, the instance models are

controlled considering domain-specific syntactic and semantic rules. These rules

are applied in the abstract and the concrete syntaxes of the language. This fea-

ture helps to reduce the number of errors during the analysis and design of the

software system and avoid postponing them to the development and the testing

phases.

Although the new development methodology, introduced here, considers the

adoption of SEA ML++, it differentiates from the previous development ap-

proaches [42, 4] brought for SEA ML as being a complete development method-

ology for agent-based CPSs covering the analysis, design and implementation.

Analysis and design phases include two types of iterations. Also another iter-

ation loop is considered for the implementation and maintenance of the CPS.

In addition to the modification of models, the methodology also supports the

changes in auto-generated codes if required. The proposed SEA ML++ based

CPS development methodology includes several steps following each other (see

Figure 3): MAS based Analysis, MAS based Modeling, Model-to-Model (M2M)

and Model-to-Code (M2C) (or Model-to-Text (M2T)) Transformations, and fi-

nally code completion for exact agent-based CPS implementation.

12

Figure 3: Agent-based CPS modeling and development using SEA ML++

13

Based on the proposed methodology, the development of an agent-based

CPS starts with the analysis of the system by considering the MAS viewpoint

of SEA ML++ (see Figure 3). This viewpoint includes MAS elements such as

organizations, environments, agents and their roles. This viewpoint provides the

eagle-view of the system and shapes the high-level structure of the system. The

result is a partial platform independent instance model of the system covering

the analysis phase of the development and providing a preliminary sketch of the

system.

In the system modeling step the CPS developer can use the fully func-

tional graphical editors of SEA ML++ to elaborate the design of the agents

and MAS for the CPS under development, which can include 7 viewpoints of

the SEA ML++s syntax, in addition to the MAS viewpoint used in the anal-

ysis phase. These viewpoints cover all aspects of a MAS. Each viewpoint has

its own palette which provides various controls leading the designers to pro-

vide more accurate models. By designing each of these models for viewpoints,

additional details are added to the initial system model provided in the analy-

sis phase. These modifications immediately are updated in the diagrams of all

other viewpoints. As the other viewpoints may have some constraint checks to

control some properties related to the newly added element, the developer will

be directed to complete those other viewpoints to cover the errors and warnings

(coming from the constraint checks). This can lead to several iterations in the

design phase. The result of this phase is the development of a complete and

accurate platform-independent model for the designed MAS.

The next step in the agent-based CPS development methodology using

SEA ML++ is the automatic model transformations. The models created in

the previous step need to be transformed from platform-independent level into

the platform-specific level, e.g. to the JASON models as in the case study of

this chapter. These transformations are called M2M transformations.

According to OMG’s well-known Model-driven Architecture (MDA)9, SEA ML++

metamodel can be considered as a Platform Independent Metamodel (PIMM)

and JASON metamodel can be considered as a Platform-specific Metamodel

(PSMM). The model transformations between this PIMM and PSMM lead to

the implementation of of the agent-based CPSs on JASON agent execution plat-

form. These transformations are implemented using ATL Language to produce

the intermediate models which enable the generation of the architectural code

for the agents and their artifacts. A CPS developer does not need to know both

the details of these transformations written in ATL and the underlying model

transformation mechanism. Following the creation of models in the previous

modeling steps, the only action requested from a developer is to initiate the

execution of these transformations via the interface provided by SEA ML++’s

Graphical User Interface (GUI).

Upon completion of model transformations, the developers have two options

at this stage: 1) They may directly continue the development process with

9https://www.omg.org/mda/

http://www.omg.org/mda/

14

code generation for the achieved platform-independent MAS models or 2) if

they need, they can visually modify the achieved target models (e.g. JASON

models) to elaborate or customize them, which can lead to gain more complete

software codes in the next step, code generation. In either case, the outputs of

this step are several system models each specific to a MAS execution platform

(e.g. JASON platform).

The next step in the proposed methodology is the code generation for the

MAS implementing the CPS. To this end, the developers’ platform-specific

models (conforming to PSMMs) are transformed into the code in the target

languages. The M2T transformation rules are automatically executed on the

target models and the codes are obtained for the implementation of the MAS. In

SEA ML++, it is possible to generate code for BDI agent languages such as JA-

SON from SEA ML++ models. Based on the initial models of the developer,

the generated files and codes are also interlinked during the transformations

where they are required. To support the interpretation of SEA ML++ models,

the M2T transformation rules are written in Acceleo. Acceleo is a language to

convert models into text files and uses metamodel definitions (Ecore files) and

instance files (in XMI format) as its inputs. More details on how mappings and

model transformation rules between SEA ML++ and the target PSMMs are

realized as well as how codes are generated from PSMs can be found in [4].

As the last step, the developer needs to add his/her complementary codes,

aka delta codes, to the generated architectural code to have fully functional

system. However, some agent development languages, such as JACK, have their

graphical editor in which the developer can edit the structure of MAS code. The

generated codes achieved from the previous step can be edited and customized

to add more platform specific details which helps to reach more detailed agents

and artifacts. Then the delta code can be added to gain the final code.

It is important to note that, although all above mentioned steps are sup-

ported by SEA ML++ to be done automatically, at any stage the developer

may intervene in this development process if he/she wishes to elaborate or cus-

tomize the generated agents and artifacts.

6. Development of a multi-agent garbage collection CPS

In this section, the design and implementation of a multi-agent garbage

collection system, as an agent-based CPS is taken into consideration. The CPS

will be executed on the JASON agent platform. JASON provides a platform for

the development of BDI agents and MASs. It is a Java-based interpreter for an

extended version of a Prolog-like logic programming language for BDI agents,

called AgentSpeak.

The following subsections elaborate how the required CPS is designed and

implemented according to the MDE process introduced in Sect. 5 and then

demonstrate the execution of the modeled multi-agent garbage collection CPS.

15

6.1. System Design

In this subsection, we discuss the design of the multi-agent garbage collection

CPS. System design is carried out by providing MAS models from different

viewpoints of the system using SEA ML++ language.

The agent-based garbage collection CPS consists of different types and num-

bers of agents, which cooperate with each other to collect garbage from the

environment. The system design phase is performed by considering different

viewpoints of SEA ML++ language. MAS and Organization viewpoint pro-

vides an overview of the system which is shown in Figure 4. Considering the

general structure of the system, the garbage collection CPS constitutes of two

organizations, one covering the other, called MAS Organization which include

GarbageFinder and GarbageBurner agents, and CollectorOrganization where

GabageCollector agents reside. It should be noted that the entities given in this

overview can be regarded as stereotypes and there may be many instances of

these entities in the real system implementation. For example, there may be

many agents of the type GarbageCollector running on this system, and in fact

they are expected to be more than one in a real implementation.

In this multi-agent CPS, a GarbageFinder agent handles the interaction be-

tween GarbageCollectors. This agent is responsible for finding available garbages

in the environment and assigning proper GarbageCollector agents to collect

them. GarbageFinder agent interacts with all candidate GarbageCollector agents

to assign collecting garbage mission, and inform GarbageBurner agent about

this assignment.

Garbage Collector agents represent the main entities of the designed CPS.

This agents receive garbage locations and carry these pieces of garbage to the

GarbageBurner agent to get rid of them.

The GarbageBurner agent is responsible for removing the garbage, which is

brought to him.

16

Figure 4: Overview of Multi-agent Garbage Collection CPS designed in SEA ML++ Editor

Figure 5 shows an instance model of SEA ML++’s Agent Internal View-

point, which demonstrates the general internal process of the GarbaceCollector

agent for collecting garbage.

A GarbageCollector agent has only one Goal called (“CollectTheGarbarges”).

To accomplish this goal, the agent has two different Beliefs and four different

Plans. Considering the Beliefs, the agent uses them to know the position of the

garbage that it has to collect and the position of GarbageBurner agent, which is

responsible for destroying the garbage. Thanks to the four different plans that

agent uses to achieve the Goal, it can go to the garbage that it knows, and pick

and bring it to the GarbageBurner agent to eliminate it. While carrying out

these plans, it plays 3 different roles.

17

Figure 5: Agent Internal Diagram of the Garbage Collector Agent

As discussed in Sect. 5, the models provided for the design of the CPS

are used in the implementation phase. To this end, the conceptual mappings

between SEA ML++ and JASON platform elements, shown in Table 1, are

used. Hence, it will be possible to transform SEA ML++ model instances to

JASON platform models and then execute them inside JASON agent execution

platform via a series of M2M and M2T transformations discussed in Sect. 5.

It is worth indicating that these mappings and transformations are all built-

in SEA ML++ and they are used and executed behind the scene without any

human intervention, e.g. CPS developers do not need to deal with them. The

implementation is discussed in detail in the next subsection.

Table 1: The conceptual mappings between some of the SEA ML++ and JASON elements

SEA ML++ concepts JASON Concepts

MAS/Organisation

Agent

Plan

Behaviour

agent state

agent type

Goal

Role

Belief

Fact

Environment

MAS

Agent

Plan

Actions

Belief Base

Agent Class

Goal

Goal

Belief

Literal

Environment

18

6.2. System Development

In this study, the proposed multi-agent garbage collection CPS is imple-

mented using the JASON platform . JASON is selected as it is one of the widely

accepted Java-based BDI MAS development platform with ongoing support.

Based on the proposed methodology, M2M transformations are applied for

transforming the models designed in SEA ML++ as platform independent mod-

els and JACK BDI agent as platform-specific models. Then, the M2T rules are

applied on platform-specific models (JASON models) for the generation of ASL

files, which include JASON BDI agent codes. As an example of the generated

code, (“garbageCollector.asl”) file is shown in Figure 6. This file consists of

Prolog-like agent codes. Although the codes generated for MAS can be exe-

cuted directly in the Java-based interpreter of JASON environment, some of

the business logics which are case specific are missing. Therefore, additional

codes are added to these generated codes, called delta codes, to have a fully

functional system.

The source codes generated using SEA ML++ models include architectural

codes. The generated mechanism uses the syntactically correct templates. Also,

the models are controlled by the language during the semantic control stage.

This prevents many semantic errors in the code when compared with a manual

development. So, it is assumed that the codes do not have any syntactic errors

at this level. However, the delta codes must be added manually to create be-

havioral logic and they may include some syntactic or semantic errors. Manual

completion of this code is required for both the MAS and CPS (Environment)

parts of the system. Interested readers may find an extensive discussion on

the evaluation of SEA ML++’s code generation performance and the degree of

manual code completion in [7] and [4]. As can be seen in these empirical studies,

it is possible to generate more than 80% of a MAS software just by modeling in

SEA ML++.

In Figure 6, the codes given in lines 24-35 were generated and delta codes

were added. They create the behavioral logic of the takeNextCleaningMission

agent plan. When we examine the relevant code snippet, we see that the garbage

collector agent searches the location of the garbage on its own belief base and

then runs the plan to go to the location of the garbage. Then, garbage collector

agent will execute the relevant plans respectively to pick the garbage and carry

it to the garbage burner agent. Similarly, the other agent plans are generated

and some delta codes are added to give the fully functional behavioral logic.

As another example, the codes in lines 12-19 of Figure 7 were generated

and delta codes added, too. These codes form the behavioral logic of the

nextGarbage plan. Here, the position of a randomly generated garbage in the

environment is sent both to the GarbageBurner agent and to all GarbageCol-

lector agents in the environment.

6.3. Demonstration

To demonstrate the implemented system, this section shows the system exe-

cution consisting GarbageColector, GarbageBurner and GarbageFinder agents.

19

Figure 6: The Garbage Collector ASL File

In Figure 8, the user interface of the system when the system is started to

run, is shown. In this interface, the user just can see the graphical representation

of the agents and the garbage on a grid model.

As soon as the system executes inside the JASON platform, the GarbageFinder

agent finds the garbage and sends its position to all other agents. In this way,

GarbageCollector agents contact with the GarbageFinder agent to be assigned

to the relevant garbage collection task. Then one of them, which is not busy by

any other task, is assigned by GarbageFinder to collect the relevant garbage.

The GarbageCollector agent, who takes the task, picks the garbage and car-

ries it to the GarbageBurner agent. Thus, GarbageBurner agent destroys the

garbage. After completing the task, the GarbageCollector agent returns to its

pre-task position to wait for a new task. The process described above is shown

in the screenshots taken from the GUI of the execution environment given in

Figure 9, Figure 10 and Figure 11.

An excerpt from the console output of the whole execution of the system is

given in Figure 12. As can be seen, all agents of the garbage collection CPS,

which are modeled with SEA ML++, were initialized inside JASON platform

20

Figure 7: The Garbage Finder ASL File

and their plans were successfully executed to provide the required agent inter-

actions.

Figure 8: A screenshot of the user interface of the system

21

Figure 9: A garbage is found in the environment by the Garbage Finder Agent and one of the

garbage collector agents goes to pick it up

Figure 10: The Garbage Collector Agent 1 picks the garbage up

22

Figure 11: Garbage Collector Agent 1 brings picked garbage to the Garbage Burner Agent

23

Figure 12: Screenshot of the console output showing the initialization & interaction of agents

7. Conclusion

In this chapter, we discussed the modeling and development of CPS using

agents and MAS. To this end, a generative agent modeling language, called

SEA ML++ was employed. This DSML can support the CPS designer to model

different aspects using various viewpoints such as MAS/Organization, Agent

Internal, Plan, Interaction, Environment and so on.

In addition, we introduced an MDE methodology in which SEA ML++ can

be used to design agent-based CPS and implement these systems on various

agent execution platforms. To give some flavor of using this methodology, the

development of a multi-agent garbage collection CPS was taken into consid-

eration. The conducted study demonstrated how this CPS can be designed

24

according to the various viewpoints of SEA ML++ and then implemented on

JASON BDI agent platform.

Use of SEA ML++ improved the way of both design and implementation of

the agent-based CPS. Based on the conducted case study, one can deduce that

a graphical syntax of a MAS DSML facilitates the design of a CPS which is

composed of various interacting agents. It is possible to model the structure of

an agent-based CPS according to different viewpoints before implementing and

deploying the system. A developer can also benefit from the visual modeling

environment to check the modeled system at the early phases of the design

which may pave to minimize the errors during the implementation. We also

showed that the translational semantics of SEA ML++ language lead the auto-

generation of the source codes required to execute the agent-based CPS. Hence,

the system development process can be shortened with the application of the

MDE methodology introduced in this chapter.

In the future, the platform support of SEA ML++ can be extended with new

agent execution environments in addition to JASON. Hence, SEA ML++ mod-

els can be used to implement agent-based CPS on various platforms. However,

just creating new transformations to these platforms will not be enough for this

purpose. Probably both the syntax and semantics definitions of the language

will also need to be updated and extended when the diversity of main CPS com-

ponents including sensors, actuators, networks and other physical components

are taken into consideration.

Acknowledgement

This study was funded as a bilateral project by the Scientific and Technological

Research Council of Turkey (TUBITAK) under grant 115E591 and the Por-

tuguese Foundation for Science and Technology (FCT) under grants FCT/MCTES

TUBITAK/0008/2014 and FCT/MCTES PEst UID/ CEC/04516/2013. The

authors would also like thank the European Cooperation in Science & Tech-

nology (COST) Action networking mechanisms and support of COST Action

IC1404: Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS).

COST is supported by the EU Framework Programme Horizon 2020.

References

[1] R. Stuart, N. Peter, Artificial intelligence-a modern approach 3rd ed (2016).

[2] M. Wooldridge, N. R. Jennings, Intelligent agents: Theory and practice,

The knowledge engineering review 10 (2) (1995) 115–152.

[3] S. Demirkol, S. Getir, M. Challenger, G. Kardas, Development of an agent

based e-barter system, in: 2011 International Symposium on Innovations

in Intelligent Systems and Applications, IEEE, 2011, pp. 193–198.

25

[4] M. Challenger, B. T. Tezel, O. F. Alaca, B. Tekinerdogan, G. Kardas, De-

velopment of semantic web-enabled bdi multi-agent systems using sea ml:

An electronic bartering case study, Applied Sciences 8 (5) (2018) 688.

[5] G. Kardas, M. Challenger, S. Yildirim, A. Yamuc, Design and implemen-

tation of a multiagent stock trading system, Software: Practice and Expe-

rience 42 (10) (2012) 1247–1273.

[6] E. D. Likotiko, D. Nyambo, J. Mwangoka, Multi-agent based iot

smart waste monitoring and collection architecture, arXiv preprint

arXiv:1711.03966.

[7] M. Challenger, G. Kardas, B. Tekinerdogan, A systematic approach to

evaluating domain-specific modeling language environments for multi-agent

systems, Software Quality Journal 24 (3) (2016) 755–795.

[8] V. Mascardi, D. Weyns, A. Ricci, C. B. Earle, A. Casals, M. Challenger,

A. Chopra, A. Ciortea, L. A. Dennis, Á . F. Dı́az, et al., Engineering multi-

agent systems: State of affairs and the road ahead, ACM SIGSOFT Soft-

ware Engineering Notes 44 (1) (2019) 18–28.

[9] G. Kardas, B. T. Tezel, M. Challenger, Domain-specific modelling language

for belief–desire–intention software agents, IET Software 12 (4) (2018) 356–

364.

[10] T. Miranda, M. Challenger, B. T. Tezel, O. F. Alaca, A. Barǐsíc, V. Amaral,

M. Goulao, G. Kardas, Improving the usability of a mas dsml, in: Inter-

national Workshop on Engineering Multi-Agent Systems, Lecture Notes in

Artificial Intelligence, Vol. 11375, Springer, Cham, 2019, pp. 55–75.

[11] J. M. Bradley, E. M. Atkins, Optimization and control of cyber-physical

vehicle systems, Sensors 15 (9) (2015) 23020–23049.

[12] R. Fujimoto, C. Bock, W. Chen, E. Page, J. H. Panchal, Research

challenges in modeling and simulation for engineering complex systems,

Springer, 2017.

[13] M. Brambilla, J. Cabot, M. Wimmer, Model-driven software engineering

in practice, Qc Morgan & Claypool Publishers, 2017.

[14] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe, A. Wort-

mann, Towards a formal specification of multi-paradigm modelling, in:

2019 ACM/IEEE 22nd International Conference on Model Driven Engi-

neering Languages and Systems Companion (MODELS-C), IEEE, 2019,

pp. 419–424.

[15] E. Azadi Marand, E. Azadi Marand, M. Challenger, Dsml4cp: a domain-

specific modeling language for concurrent programming, Computer Lan-

guages, Systems & Structures 44 (2015) 319–341.

26

[16] C. Durmaz, M. Challenger, O. Dagdeviren, G. Kardas, Modelling contiki-

based iot systems, in: OASIcs-OpenAccess Series in Informatics, Vol. 56,

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017, pp. 5:1–5:13.

[17] U. Kulesza, A. Garcia, C. Lucena, P. Alencar, A generative approach for

multi-agent system development, in: International Workshop on Software

Engineering for Large-Scale Multi-agent Systems, 2004, pp. 52–69.

[18] E. J. T. Gonçalves, M. I. Cortés, G. A. L. Campos, Y. S. Lopes, E. S.

Freire, V. T. da Silva, K. S. F. de Oliveira, M. A. de Oliveira, Mas-ml

2.0: Supporting the modelling of multi-agent systems with different agent

architectures, Journal of Systems and Software 108 (2015) 77–109.

[19] B. T. Tezel, M. Challenger, G. Kardas, A metamodel for jason bdi

agents, in: 5th Symposium on Languages, Applications and Technologies

(SLATE’16), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, pp.

1–9.

[20] C. Hahn, C. Madrigal-Mora, K. Fischer, A platform-independent meta-

model for multiagent systems, Autonomous Agents and Multi-Agent Sys-

tems 18 (2) (2009) 239–266.

[21] G. Kardas, A. Goknil, O. Dikenelli, N. Y. Topaloglu, Model driven develop-

ment of semantic web enabled multi-agent systems, International Journal

of Cooperative Information Systems 18 (02) (2009) 261–308.

[22] M. Challenger, S. Getir, S. Demirkol, G. Kardas, A domain specific meta-

model for semantic web enabled multi-agent systems, in: International Con-

ference on Advanced Information Systems Engineering, Springer, Berlin,

Heidelberg, 2011, pp. 177–186.

[23] I. Garcia-Magarino, Towards the integration of the agent-oriented mod-

eling diversity with a powertype-based language, Computer Standards &

Interfaces 36 (6) (2014) 941–952.

[24] G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J. J. Gomez-

Sanz, J. Pavon, C. Gonzalez-Perez, Faml: a generic metamodel for mas

development, IEEE Transactions on Software Engineering 35 (6) (2009)

841–863.

[25] J. M. Gascueña, E. Navarro, A. Fernández-Caballero, Model-driven engi-

neering techniques for the development of multi-agent systems, Engineering

Applications of Artificial Intelligence 25 (1) (2012) 159–173.

[26] S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, M. Mernik, A

dsl for the development of software agents working within a semantic web

environment, Computer Science and Information Systems 10 (4) (2013)

1525–1556.

27

[27] F. Bergenti, E. Iotti, S. Monica, A. Poggi, Agent-oriented model-driven de-

velopment for jade with the jadel programming language, Computer Lan-

guages, Systems & Structures 50 (2017) 142–158.

[28] D. Sredojević, M. Vidaković, M. Ivanović, Alas: agent-oriented domain-

specific language for the development of intelligent distributed non-

axiomatic reasoning agents, Enterprise Information Systems 12 (8-9) (2018)

1058–1082.

[29] J. Silva, A. Barǐsic, V. Amaral, M. Goulão, B. T. Tezel, O. F. Alaca,

M. Challenger, G. Kardas, Comparing the usability of two multi-agents

systems dsls: Sea ml++ and dsml4mas study design, in: 3rd Interna-

tional Workshop on Human Factors in Modeling (HuFaMo 18) hold under

ACM/IEEE 21st International Conference on Model Driven Engineering

Languages and Systems (MODELS), 2018, pp. 1–8.

[30] M. Reimann, C. Ruckriegel, S. Mortimer, S. Bageritz, M. Henshaw, C. E.

Siemieniuch, M. A. Sinclair, P. J. Palmer, J. Fitzgerald, C. Ingram, et al.,

Road2CPS priorities and recommendations for research and innovation in

cyber-physical systems, Qc Steinbeis-edition, 2017.

[31] S. Engell, R. Paulen, M. A. Reniers, C. Sonntag, H. Thompson, Core re-

search and innovation areas in cyber-physical systems of systems, in: Inter-

national Workshop on Design, Modeling, and Evaluation of Cyber Physical

Systems, Springer, 2015, pp. 40–55.

[32] H. Thompson, R. Paulen, M. Reniers, C. Sonntag, S. Engell, Analysis of the

state-of-the-art and future challenges in cyber-physical systems of systems,

EC FP7 project 611115.

[33] T. Bures, D. Weyns, B. Schmerl, J. Fitzgerald, A. Aniculaesei, C. Berger,

J. Cambeiro, J. Carlson, S. A. Chowdhury, M. Daun, et al., Software en-

gineering for smart cyber-physical systems (sescps 2018)-workshop report,

ACM SIGSOFT Software Engineering Notes 44 (4) (2019) 11–13.

[34] H. Vangheluwe, Multi-paradigm modelling of cyber-physical systems, in:

SEsCPS@ ICSE, 2018, p. 1.

[35] D. Morozov, M. Lezoche, H. Panetto, Multi-paradigm modelling of cyber-

physical systems, IFAC-PapersOnLine 51 (11) (2018) 1385–1390.

[36] F. van den Berg, V. Garousi, B. Tekinerdogan, B. R. Haverkort, Designing

cyber-physical systems with adsl: A domain-specific language and tool sup-

port, in: 2018 13th Annual Conference on System of Systems Engineering

(SoSE), IEEE, 2018, pp. 225–232.

[37] Y. Hu, X. Zhou, Cps-agent oriented construction and implementation for

cyber physical systems, IEEE Access 6 (2018) 57631–57642.

28

[38] L. Sakurada, J. Barbosa, P. Leitão, G. Alves, A. P. Borges, P. Botelho,

Development of agent-based cps for smart parking systems, in: IECON

2019-45th Annual Conference of the IEEE Industrial Electronics Society,

Vol. 1, IEEE, 2019, pp. 2964–2969.

[39] D. Calvaresi, M. Marinoni, A. Sturm, M. Schumacher, G. Buttazzo, The

challenge of real-time multi-agent systems for enabling IoT and CPS, in:

International conference on web intelligence, 2017, pp. 356–364.

[40] Jonas Queiroz. and Paulo Leito. and Jos Barbosa. and Eugnio Oliveira.,

Distributing Intelligence among Cloud, Fog and Edge in Industrial Cyber-

physical Systems, in: Proceedings of the 16th International Conference on

Informatics in Control, Automation and Robotics - Volume 1: ICINCO,,

INSTICC, SciTePress, 2019, pp. 447–454.

[41] J. Queiroz, P. Leitão, J. Barbosa, E. Oliveira, Agent-based approach for

decentralized data analysis in industrial cyber-physical systems, in: Inter-

national Conference on Industrial Applications of Holonic and Multi-Agent

Systems, Springer, 2019, pp. 130–144.

[42] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, T. Kosar,

On the use of a domain-specific modeling language in the development of

multiagent systems, Engineering Applications of Artificial Intelligence 28

(2014) 111–141.

[43] S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, M. Mernik,

Sea l: a domain-specific language for semantic web enabled multi-agent

systems, in: 2012 Federated Conference on Computer Science and Infor-

mation Systems (FedCSIS), IEEE, 2012, pp. 1373–1380.

[44] D. Moody, The physics of notations: toward a scientific basis for construct-

ing visual notations in software engineering, IEEE Transactions on software

engineering 35 (6) (2009) 756–779.

[45] G. Kardas, Z. Demirezen, M. Challenger, Towards a dsml for semantic web

enabled multi-agent systems, in: Proceedings of the International Work-

shop on Formalization of Modeling Languages, 2010, pp. 1–5.

[46] K. Kravari, N. Bassiliades, A survey of agent platforms, Journal of Artificial

Societies and Social Simulation 18 (1) (2015) 1–18.

[47] S. Getir, M. Challenger, G. Kardas, The formal semantics of a domain-

specific modeling language for semantic web enabled multi-agent systems,

International Journal of Cooperative Information Systems 23 (3) (2014)

1–53.

