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Abstract  
Cyber-physical systems (CPS) have attracted various embedded technologies and researchers 
from low-level where the practitioners implement their systems using high-level programming 
languages where the multiple paradigms also overlap. As CPSs merge with numerous disciplines, 
heterogeneity emerges, and increasing complexity requires abstractions to program CPSs. 
Moreover, it is feasible to benefit from the suitable technologies that facilitate programming the 
physical parts of CPS. LEGO might prefer creating concrete use cases as composable technology, 
while embedded technology allows running the software to establish CPS. However, workflow, 
architecture, design alternatives, and abstraction should be defined to achieve this combination. 
Once low-level control is merged with agent-based programming, then this infrastructure can 
pave the way for applying intelligent-based solutions to tackle the high-level problems of CPS. This 
chapter introduces the architecture, a development workflow, and a set of agent-based CPSs to 
describe how LEGO technology-based CPS can be developed where software agents are 
integrated into the design, conforming to the provided architecture. 



 

 

 

 

9.1  Introduction 
The rise and advancement of networked systems have produced new paradigms and design 
challenges in embedded systems. The information processing and computation are merged with 
communication and control that creates Cyber-physical Systems (CPS) (Baheti and Hill, 2011). This 
evolution expands the capabilities of embedded technology interacting with the physical world 
through computation, networked communication, and control and paves the way for the cyber 
and physical future. During the interaction with the physical world, there is a phenomenon that 
has to be responded to by the system. The cyber part motivates the physical component of the 
system to change its state. Then, physical action creates a change in the environment, resulting in 
an event being maintained by the cyber part. This way, medical devices, vehicles, intelligent 
highways, robotic systems, and factory automation can be implemented, considering new 
capabilities achieved by CPS and integral paradigms using the multi-paradigm approach (Carreira 
et al., 2020).  
The component variety of the CPS makes the system heterogeneous. These components should 
be controlled to react to environmental changes. In this way, the system can sustain during run-
time, so software agents can be a way to program these complex systems. 
In this chapter, we contribute to constructing the CPSs by providing example agent-based CPS 
implementations using LEGO technology. The examples are both from mobile and stationary 
systems. This way, the CPS's cyber and physical sides are addressed based on a proposed 
architecture. In addition, we provide a detailed workflow and implementation steps to provide 
better insights for the practitioners and researchers. 
The rest of this chapter is organized as follows: Section 9.2 introduces multi-agent CPS and their 
relation. Section 9.3 gives a brief background of the BDI (Belief-Desire-Intention) agents, LEGO 
technology and involved hardware. Agent development frameworks which were used to 
implement the examples are presented in section 9.4. The architecture is proposed in section 9.5. 
Section 9.6 presents the development workflow of the examples. Concrete implementation for 
the agent-based CPS examples is given in section 9.7. Software excerpts related to the example 
agent-based CPS are shown and explained in section 9.8. The chapter is discussed, and technical 
notes are shared in section 9.9. 

9.2  Multi-Agent CPS 
Multi-agent paradigm implies autonomous software capable of acting dynamically, reactively and 
intelligently that alters its environment to create a state change based on defined behavioural 
features. Multi-Agent Systems (MAS) represent multiple autonomous agents collaborating to 
achieve individual tasks to reach a global goal. Agents collaborate to perform global tasks to 
enable solving problems in a joint effort that would be impossible to solve by a single agent. 
Software agents are deployed into the cyber part of the CPS. Generally, for a MAS, an information 
model of the physical world emerges from agents' mental states. Some studies in the literature 
propose to benefit from the multi-agent systems (Leitao et al., 2016; Sakurada et al., 2019; 
Karaduman et al., 2021; Karnouskos et al., 2020) as it is a suitable paradigm for providing 
smartness, decentralization, autonomy, and communication between subsystems and systems. 
They increase the effectiveness of a CPS by augmenting the target system with its functionalities. 
The software agents can (re)-configure the control parameters while monitoring the transition 
between tasks and observing human errors. They can enhance requirements such as product 
quality, in-time delivery, and efficient area exploration.  



 

 

 

When agents obtain control over the components of the CPS, the practitioners can focus on 
higher-level approaches. Therefore, an integration of MAS and CPS may facilitate the 
programming of CPS applications such as Wireless Sensor Networks (Arslan et al., 2017; Asici et 
al., 2019) and the Internet of Things (Türk and Challenger, 2018). However, its physical conditions 
do not always allow us to directly implement these high-level approaches, considering the 
operational systems and dangerous environment. Furthermore, creating a skeleton system of an 
actual CPS may be a burden. However, it should sustain its functions, processes, and goals. 
Therefore, the target system can be miniaturized using a composable solution such as LEGO. 

9.3  Background 
This section gives background information about BDI Agents, Embedded Technology, LEGO 
technology and related embedded boards. 
BDI Agents: The belief, desire and intention (BDI) model is a software reasoning approach that has 
been developed for programming intelligent agents. The BDI agents can balance the time spent in 
the deliberation phase by choosing what to do and executing the suitable plans as action(s). 
Beliefs are the information that belongs to the agent, other agents, and agents' surroundings. 
Desires represent all goals that can be potentially success-able states. Lastly, intentions are 
defined as any state of activities that were decided to realize.  
Embedded Technology: Embedded technology allows programming a microprocessor, which is 
computing hardware, using embedded software. An application can be developed for performing 
any dedicated task. Embedded hardware binds the cyber world with the physical world using I/O 
ports. 
LEGO Technology: Integrating MAS and CPS may enable high-level programming in various 
applications. Agents who control the CPS's physical components can help solve cyber problems 
using their reasoning mechanisms. However, it is not always possible to create an actual CPS 
because of cost, safety reasons, and the planned system's size. Therefore, the system should be 
scaled down while sustaining its functionality, accuracy, and goals. A compose-able and easy-to-
construct technology, such as LEGO, represented in Figure 9.1, may help to miniaturize the 
existing system. 

 



 

 

 

 
Figure. 9. 1: Sample LEGO components. 

 
EV3 Hardware: As represented by the left top side of Figure 9.2, EV3 hardware is the original 
board for programming LEGO-based applications. It has an ARM9 processor that runs a Linux-
based operating system. It has four output and four input ports. It is empowered with 16 MB of 
flash memory and 64 MB of RAM. It is also possible to increase the memory capacity up to 32 GB. 
As antenna hardware, it can communicate with Wi-Fi and Bluetooth dongles. 



 

 

 

 

                    Figure. 9. 2: LEGO Adapted Hardware. 

RaspberryPI 3: As represented by the right top side of Figure 9.2, the Raspberry Pi 3 is a credit 
card size low powered computer board with Ethernet and Wi-Fi connection. It has an HDMI video 
output, an audio output and an SD card slot. The RaspberryPi is beneficial hardware for high-end 
tasks.  
 BrickPI Hardware Interface: As represented by the bottom left side of Figure 9.2, the BrickPi is a 
hardware interface for RasbperryPi that allows controlling LEGO sensors and actuators. It is 
attached to the top of the Raspberry Pi via hardware pins to work with LEGO technology. It has 
four input and four output ports connecting LEGO sensors and actuators. It can work with 
RaspberryPI's Wi-Fi and Bluetooth. 
PiStorms-v2 Hardware Interface: As the right bottom side of Figure 9.2 shows, PiStorms-v2 is a 
LEGO-compatible interface for Raspberry Pi 3 (Yalcin et al., 2021). It enables to control of LEGO 
sensors and actuators when it is attached to a RaspberryPI 3 board. Similarly, it also has four input 
and four output ports for connecting LEGO sensors and actuators. It can work with RaspberryPI's 
Wi-Fi and Bluetooth. 
Agent Development Frameworks: In this section, agent development frameworks such as Jason, 
JADE and SPADE agent platforms used during the implementation of the agent-based CPSs were 
discussed briefly. 
Jason BDI Agents: Jason is a prolog-like logical programming language of Agentspeak and an 
extended interpreter version of the Java environment (Bordini and Hübner, 2005). Agentspeak 
language was established on the well-known Procedural Reasoning System (PRS) architecture 



 

 

 

which explicitly embodies the BDI model. In BDI, agents continuously observe their environment 
and react instantly to the changes in the environment. 
JADE Agents: JADE is an agent-programming framework that facilitates the development of multi-
agent systems. JADE is a distributed agent development framework with a flexible infrastructure 
that allows extensions based on Java. It has a run-time environment where JADE agents can be 
created and live within the given host and device. Developers can directly specialize these agents 
according to the requirements of their system needs.  
SPADE Agents: SPADE is an agent development platform that allows the creation of multi-agents 
using Python language (Palanca et al., 2020). It is built using a new communication framework, 
namely Jabber, which provides new capabilities to the communication layer. A SPADE agent can 
run multiple tasks simultaneously. Each SPADE agent can obtain more than one task.  

9.5  Architecture 
The proposed architecture aims to create a CPS using integrated hardware and a single 
programming platform that covers both cyber and physical parts. This architecture can be used as 
a reference as different architectures have also been proposed in the literature (Karaduman et al., 
2022). The architecture represented in Figure 9.3 is proposed considering the requirements of 
deploying agents onto an embedded system. There are six layers, and each of them is explained. 
The first three layers can be inspected under the physical side, and the last three can be grouped 
under the cyber side. At first, physical layers are mentioned. 



 

 

 

 
Figure. 9. 3: Proposed Architecture for implementing CPS. 
 
Layer 0: Physical Segments This layer includes all physical layers and components of a CPS. The 



 

 

 

segments can consist of many passive and physical type entities. They conform to physics laws. A 
set of passive components create a segment. Our study addressed this layer using LEGO 
technology and composable parts made of assembled plastic bricks. 

 Layer 1: Sensor and Actuator Layer The sensor and actuator layer describes the physical 
environment where the CPS was located. A CPS changes its environment using its physical 
capabilities. These changes create events via actuators around that environment; events created 
by the environment are perceived via sensors and actions. 

 Layer 2: Embedded Device layer contains a microcontroller development board where the 
sensors and actuators are connected and controlled. Sensors are used to gather data from the 
environment, while actuators are used to create motion and/or movement. However, the 
selected hardware should be capable of running the required software in the cyber layer. 
Furthermore, it should have network ports, especially wireless ones such as Wi-Fi and Bluetooth-
Low Energy (BLE).  

Layer 3: Hardware Interface is preferred to increase the capabilities of the embedded device. It 
can be an extension board, HAT, or expansion interface to adapt the embedded device to the 
system's requirements. It is an optional layer but essential in augmenting the hardware's 
capabilities. This hardware is not a computation device. They are meant to adapt the embedded 
hardware's peripheral interface for a particular hardware technology or domain. Cyber layers of 
the provided architecture are discussed in the following paragraphs.  

Layer 4: The API layer describes any device-specific software. This API should provide device 
functions to set, configure and control the sensors and actuators. It should also abstract away the 
hardware level programming details such as device registers, bit shifting, bit-wise operations and 
instruction-based operations.  

Layer 5: Multi-Agent Layer is a middleware where the agent framework runs. The MAS layer 
controls the device-specific functions. In this way, agents' perceptions are bound to the sensors 
and agents' actions are attached to the actuators of the embedded device. Agents can be reactive, 
cognitive or hybrid. Therefore, this layer contains behavioural definitions, plans, goals, and beliefs. 
Since an agent-based framework is independent of any embedded device, it should be merged 
with device API to be deployed into the embedded hardware. 

 Layer 6: Higher-Level Intelligence Layers represent where the higher-level intelligence is 
contained. This layer applies logic-based approaches, machine learning techniques and 
probabilistic approaches. Generally, these higher-level methodologies are computationally heavy 
and provide long-term results. 

9.6. Development Workflow 

In order to describe the process that has been conducted to construct all agent-based CPSs (which 
will be discussed later in the chapter), a workflow has been provided. Figure 9.4 illustrates three 
swim-lines: a cyber, a physical and a documentation column. The workflow begins with the 
documentation phase, where the UML/SysML diagrams are created. These diagrams are used to 
describe the system architecture at the model level. The system architecture can be represented 



 

 

 

by Block Diagrams (Challenger et al., 2011; Challenger et al., 2016). There should be at least one 
embedded device to create the cyber side of the system. The cyber side can be considered the 
abstract container for the software. 

In this way, software entities such as software agents can deploy. Agents can be modelled using 
activity diagrams considering the model elements which were created a step before. Each activity 
can represent the behaviour of an agent. The physical form of a CPS (plant) is shaped using a 
sensor, actuator, and passive physical components. The passive physical components are merged 
with actuators and/or each other to create the planned motion, rotation, and movement. For 
example, a conveyor system is designed using a lot of combined belts to be formed. A motor then 
creates the necessary rotational movement to move the conveyor system. We chose LEGO to 
provide the physical construction of the agent-based CPS. We prioritized the structure of the 
physical system because the software that will run on the cyber side should be developed 
according to the capabilities of the physical system. For example, in a production line system, the 
software should be shaped considering the process phases and quantities of the physical sensors 
actuators. Specifically, how many motors should be configured and controlled by the agents and 
which type of sensors will be used should be decided before finalizing the code. After building the 
plant, the base code is developed. This base code is the software that runs the low-level API code 
fragments encapsulated into the preferred language's functions. However, it might not be 
possible to achieve seamless control over the actuators and sensors at first. The requirements 
such as the speeds of the motors, operation angle of motors and prepossessing of the sensors 
should be calibrated as another activity. At the same time, the base code is used for controlling 
physical components. Once the calibration of the components is completed, the code can be 
deployed onto embedded hardware. Each component then should be tested to ensure it can 
realize the desired process(es). The code fragments tested and calibrated can be merged to 
establish low-level control. Once the low-level control definition is completed, the agents can be 
defined according to their roles. Agent behaviour should be defined for the planned task. Then, 
agent communication should be decided on which type of messages should be sent or broadcast 
to which agents. When the design is OK, the agents can be integrated with low-level functions. If 
the design is not OK, the low-level control should be checked and modified. Once agents are 
integrated with low-level functions, an integration test should be done. If the test fails, workflow 
should be followed again, starting from the update of the plant.  



 

 

 
 



 

 

 

Figure. 9. 4: Workflow for implementing the agent-based CPSs. 

 

9.7 Concrete Implementation for the Agent-based CPSs 
In this section, agent-based CPSs are described using the aforementioned technologies. The 
following platform comparison Table 1 is given to provide better insights. 

Table 9.1: Hardware comparison table. 

Features/ Board 
Name 

EV3 BrickPI 3 PiStorms-v2 

Requires 
RaspberryPI 

No Yes Yes 

OS Ev3Dev+ Ev3Dev+ Debian Ev3Dev+ 

AOP JADE Jason, JADE SPADE 

OOP Java Java Python 

Use Case ACC LF, PL Production Line 

Button 6 0 1 

Input Output 4+4 4+4 4+4 

Support for EV3 
Comp 

Yes Yes Yes 

Support for NXT 
Comp 

Yes Partial Partial 

Display Yes Addable Yes 

Has Interface Yes Yes No 

Battery Indicator V,I V V 

Three examples of agent-based CPS studies are given in the following subsections. The convoy 
system has two robots: the line follower robot and an adaptive cruise control robot. In the convoy 
system, a robot system that tracks each other to mimic the production transportation of a 
manufacturing factory was proposed. The production line system imitates a product life cycle. The 
production line system takes a LEGO brick as an input, and that brick goes through multiple 
phases. In the convoy robot system, the ACC robot has positioned some distance behind the LF 
robot, and the LF robot is placed on a black line which is supposed to be tracked by the LF robot. 
Once the LF robot starts following the line, the adaptive cruise control detects the movement and 
starts to follow the LF robot while adapting its speed to keep a fixed distance. Two robots are 
implemented using different hardware to provide a heterogeneous and complex system. The LF 
robot is constructed using a RaspberryPi, the ACC is equipped with EV3 Brick, and a production 
line system was implemented using both PiStorms-V2 and BrickPI boards. In the following 
subsections, the implementation details, which conform to the workflow represented by Figure 
9.4, were given based on the production line system. We preferred to select the production line 
system for brevity and size constraints of this chapter, but other examples also conform to the 
same workflow. 

Agent-based CPS Example 1: The Production Line system represents a stationary, multi-stage, 
complex system (Yalcin et al., 2021). Each agent has its goals to be achieved. Once a goal is 



 

 

 

achieved, an inform message is sent to the target agent. All agents behave to mimic a product life 
cycle. It can be inspected under cyber-physical production systems (CPPS). CPPS requires dynamic 
control to enhance product quality with artificial intelligence, machine learning methods, and 
agent-based techniques. This system was implemented using six software agents, using one-shot, 
cyclic and FSM behaviour types. Eight actuators and three sensors were used (Karaduman et al., 
2021). A demonstration video can be found on https://youtu.be/H1hbTqo0BBY. For brevity, the 
production line's push segment steps are addressed based on the workflow and the proposed 
architecture, but Figure 9.5 describes the final structure. Documentation activities mostly describe 
which components should be used according to the proposed architecture, and cyber and physical 
activities describe the conformance relations to the introduced layers. 

 
Figure. 9. 5: Production Line System. 

 

Documentation Activity: To model a CPS, suitable UML/SysML diagrams should be selected. For 
this case, the Block Definition Diagram was chosen for modelling the architectural hierarchy of the 
system, and the Activity Diagram was preferred for modelling the system's behaviour. The agents' 
communications were modelled using the Sequence Diagram. As the left side of Figure 9.6 
represents a block definition diagram to model the second layer's architecture of the production 
line system. It shows the composable hierarchy from top-to-bottom. 

 
Figure. 9. 6: Excerpts of the UML/SysML diagrams. 

 
The right side of Figure 9.6 describes an excerpt from the Activity Diagram. It shows the activity 
that the Push agent follows. According to the colour of a brick, it pushes that brick to the 
corresponding bucket. If the colour is red, the Build agent presses the red bricks. The agents 
update each other for contextual changes using communication. According to the content of the 
message, an agent can actuate a motor and/or start sensor sampling.  
Physical Activity: When the modelling steps are finished, the plant can be built based on the 
models provided for building the plant. At first, the plant should be built using the physical 

https://youtu.be/H1hbTqo0BBY


 

 

 

segments while combining these physical segments, which consist of composable components. At 
first, the motors and sensors should be selected according to the system's models and layer 1 of 
the proposed architecture. Then, chosen sensors and actuators should be merged with Physical 
Segments (level 0), which consist of passive LEGO components. The proposed architecture's layer 
0 includes all the physical layers. Therefore, it should be built first. For example, the left top side 
of Figure 9.7 illustrates the construction process of the Build segment of the production line 
system. The right top side of Figure 9.7 depicts the Shred section of the production line. It is 
another segment that constructs the plant. The bottom left of Figure 9.7 shows that these 
segments are merged to build the whole plant. If necessary, some updates, such as adding extra 
components or reducing the length of a part, can be applied.  
Cyber Activity: Once the plant's construction is finished, a base code planned to control the 
physical part can be implemented as a cyber activity. We used a RasperryPI 3 as an embedded 
device and BrickPI 3 as a hardware interface. The base code creates a substance for reading the 
data from the sensors and controlling a motor, including necessary configurations to use the API 
functions, which is the next required layer. However, they are the code fragments that influence 
these components and cannot be used to create process chains until correct calibration 
parameters are found. An extra step should be followed to find the exact operation parameters. 

 

Figure. 9. 7: Construction steps of a CPS using LEGO Technology. 

 
Moreover, API functions' parameters can also be inputs for setting speed, positioning degree, 
arranging sensor sampling rate etc. However, it may not be possible to find ideal calibration 
parameters simultaneously. Therefore, it requires an iterative trial and error approach and 
observance of the physical activity to develop a focus on the movement range. A physical system 
that creates motion, rotation or movement should have limits for the freedom of displacement. In 
other words, the motion created by a LEGO motor should be realized in the range of any points 
between the physical limitations of that component. For example, the push mechanism that 



 

 

 

pushes the buckets into the correct buckets requires a valid operation range and parameters. 
Therefore, the physical operation range can be found by applying the trial-and-error method. 
Specifically, the parameter values can be increased or decreased according to the achieved task. 
The right bottom side of Figure 9.7 illustrates the push mechanism and green brick. The figure 
shows that the green brick should stop in front of the middle bucket but could not be stopped at 
the correct location. Therefore, the rotation duration of the conveyor motor should be increased 
to stop the brick at a suitable spot. 

 

 
Figure. 9. 8: Calibration steps of the Production Line. 

The left top side of Figure 9.8 shows that the green brick was able to be stopped at the correct 
location. This action was achieved after multiple trial and error efforts, and the resulted function 
parameters were selected as the operation(calibrated) parameters. The right top side of Figure 
9.8 depicts the initial position of the push mechanism. It should return to its initial position after 
each pushing action. Therefore, the parameter for the initial position is 0 and is the reset 
parameter. At first, a rotation degree to the middle point was found to calibrate the push 
mechanism. Then rotation torque was calibrated. Because the displacement time is too much, 
then it is possible to throw the brick away instead of pushing it into the bucket. The left bottom 
side of Figure 9.8 illustrates that the push mechanism only moved to the middle of the conveyor 
belt. The solution can be increasing the torque and increasing the operation length. In this way, 
the pushing mechanism can touch the brick and pushes it. The right bottom side of Figure 9.8 
illustrates that the pushing mechanism moves a little bit further from the conveyor belt's middle 
point but fails to put the green brick into the bucket because of low torque. As a result, we 
decided to move the pushing mechanism until its mechanical limits with an intermediate-level 
torque. Eventually, we set the push mechanism to have the correct configuration and succeeded in 
pushing the green brick into the bucket.  

Cyber-Physical Activity: When all the components' calibration is completed, the embedded code 



 

 

 

which uses the operation parameters can be deployed onto the embedded hardware. Once the 
code is deployed, each segment's components should be tested to ensure they can work in a 
combinational manner. This way, components' functionalities and synchronization between them 
are also tested. In other words, the interplay and influential effect between cyber and physical 
entities are observed. 

 Cyber Activity: When the test phase is completed, cascade low-level operations can be merged. 
For example, at first, a motor can be assigned to a port, namely portB. It can then be actuated for 
200ms using a speed parameter of 200 units. After this, it is stopped for 100ms. Another function, 
namely "moderate operation", can use different parameters, stop/start operations and platform-
specific API functions. In listing 1.1, calibrated functions were given. These functions can be called 
in a sequential or combinational manner. In this way, the necessary movements of the 
components can be achieved. In addition, sensor reading timings can also be arranged. The sensor 
reading can be activated once a specific event is realized or based on a period. For example, when 
the button is pressed, the colour sensor can be activated to check whether a brick has arrived or 
not. As agent-oriented programming proposes higher-level abstraction to develop software, 
software agents were defined according to the individually quite complex sections. As the 
proposed architecture's layer 5 presents, the agents can be determined according to the sections 
to be controlled. The processes and events that should be handled on the cyber side can be 
defined using the agent's behaviours. The agents' communication should be specified on the 
cyber side. The sequence diagram can be used to model the communication between the agents. 
This way, when an event occurs or ends, the agents can inform each other to trigger other events. 
When this step is finished, the design should be checked. If the design is not OK, it should be re-
planned starting from the low-level control. Once the design is agreeable, the design can be 
implemented, and agents can be integrated with the low-level system functions via their 
behaviours and establish communication among them.  

Cyber-Physical Activity: The integration test should be applied when the integration is finished. 
Physical events should be created to realize the processes. Agents are expected to control the 
system by realizing the required actions and sensing the environment. If the test fails, the plant 
should be updated, and the previous steps should be re-checked. If the test succeeds, an agent-
controlled cyber-physical system is created. As a result, an autonomous agent-controlled CPS is 
established based on the workflow and the proposed architecture. Intelligence methods can be 
applied to this exemplar system to merge the higher layers.  

Agent-based CPS Example 2: Line Follower Robot: The Line follower is a robot that follows the 
black lines to track a pre-defined line. It has two agents, Motor and LineFollower (Schoofs et al., 
2021). It has a power button to be powered on or off. When it is initialized to be functional, it 
starts sensor reading and sends the data to the Motor Agent. According to the incoming data, the 
motor agent decides to turn left, right, stop or slow down. A decision is taken when the line 
follower robot encounters a turn. To make the turn, it slows down, turns and speeds up. While it 
realizes these actions, it sends the same action parameters to the Adaptive Cruise Control agent. 
Line Follower agent has three cyclic behaviours for establishing communication, controlling the 
motors and data sampling. We also benefited from SimpleBehaviour and TickerBehaviour. Four 
sensors and two motors were used to implement this system. SimpleBehaviour and 
TickerBehaviour were also utilized.    



 

 

 

 

Figure. 9. 9: Line Follower Robot. 

Agent-based CPS Example 3: Adaptive Cruise Control Robot: The Adaptive Cruise Control Robot 
(ACC) robot has an ultrasonic sensor to detect the distance between LF robot's (Schoofs et al., 
2021). When the LF robot is taking a turn, the ACC robot receives messages from the LF robot to 
adapt its motion to have the same turn. The ACC robot estimates the sharpness of the turn and 
tries to realize turning actions synchronously. It starts its operation when the power button is 
pressed. It then starts to receive messages and sample sensor data used for distance 
measurement, relative speed computation and arranging current speed. When a message is 
received, the ACC robots try to take a turn. This system was implemented using two motors and 
one sensor. Moreover, it benefited from two CyclicBehaviour, one SimpleBehaviour and one 
OneShot Behaviour. 

 



 

 

 

 
Figure. 9. 10: Adaptive Cruise Control Robot. 

 

9.8  Software Excerpts 
In this section, some code excerpts were given. During the implementation of this agent-based 
CPSs, singleton design pattern and static class definition approaches were selected. The singleton 
design pattern has been applied to encapsulate device-level functions into agents' behaviours. 
Because multiple object creations have been encountered within two different embedded 
hardware and agent programming platforms, the resource access problem had occurred 
considering that software agents are concurrent entities. Therefore, the problem was tackled by 
limiting object instantiation. Alternatively, static function definitions could also be used. Thus, this 
concludes that singleton design pattern or static function definitions may be required while 
integrating device functions with software agents. As Jason uses a prolog-like language and BDI 
structure, it does not require such an approach. 

Table 9:2 Code Excerpt from the examples. 

1+!checkButtonStatus  : dropButtonStatus ( false ) <− buttonPressed ; ! checkButtonStatus . 
    2+!checkButtonStatus  : dropButtonStatus (true) <−!checkProductStatus . 

3 public class Button { 

4     public static boolean isPressed () { 

5     EV3TouchSensor touchSensor = new EV3TouchSensor(SensorPort.S2); 

6      boolean touch = InitComp.touchSensor. isPressed () ; 

7      return touch;}} 

8  psm = PiStorms()  instance = None 
  9           @staticmethod def getInstance () : 



 

 

 

 10           if dev1. instance == None: dev1() return dev1.  instance 
 11 def  init ( self ) : if dev1.  instance != None: raise Exception(" Singleton class ") else : 
dev1. instance = self 

Table 9.1's lines 1 and 2 describe a plan excerpt, checkButtonStatus, from the Jason 
implementation. If button is pressed by the user, the dropButtonStatus(false) becomes 
dropButtonStatus(true). The first line works until the condition of the button is changed, and in 
each agent cycle, the state of the button is checked using the buttonPressed action. If the status 
becomes true, then checkProductStatus plan is triggered. The low-level implementation of the 
button control code is represented between lines 3 and 7. Using a CyclicBehaviour of the JADE, 
the state of the button is checked in each cycle. The singleton pattern used in the SPADE 
implementation is shown in lines 8 and 10. This pattern was used to constrain the object creation 
to only one because accessing two different objects caused inconsistency in controlling the low-
level API. 

9.9 Discussion & Technical Notes  

The adaptation of MAS to CPS is an open research domain. This book chapter presents concrete 
agent-based CPSs and their corresponding requirements to show how Agent-based frameworks 
can be deployed into various embedded hardware. As recently, embedded system programming 
interests have shifted to more abstract OOP-based languages such as microPython and C++. At the 
same time, it is still benefited from high-level languages such as C and Basic. We are motivated to 
show how software agents can be used to program CPSs as they have a higher abstraction 
compared to OOP and other high-level languages. 
Moreover, we are motivated to provide design choices, an integrated architecture, and concrete 
agent-based CPSs to put sheds for rapid prototyping of both the cyber and physical sides of CPS. 
As CPS can be enhanced with software agents, model-driven approaches can also be an integral 
paradigm to reduce complexity (Challenger et al., 2021; Challenger et al., 2020). In this regard, a 
casual language based on ABM and MAS should be implemented to represent the structure and 
behaviour of the target dynamic system. These elements should cover both design-time and run-
time elements. It is necessary to develop new solutions and adapt existing standards such as IoT, 
machine learning and fuzzy logic (Karaduman et al., 2021). 
Moreover, we would like to share some technical details that may be beneficial for practitioners 
and researchers. Switches can be used to limit the movement of dynamic parts. Once the moving 
part or platform touches the limit switch (i.e., utilizing a LEGO button), the system can detect the 
state change and stop the movement. While implementing the agent-based CPSs, we have seen 
that preferring one agent for each section or robot is more suitable for development time and 
code complexity. This way, the separation of concerns approach can be followed to avoid 
accidental complexity and mutual exclusion problem. A suitable power source should be selected 



 

 

 

according to the system type, such as mobile or stationary. For a stationary system, tunable 
power supplies can be used along with the parameters of 9.8 Volts and 3 Amps. These are the 
common parameters to feed all the hardware types because of LEGO EV3 motors and sensors' 
power requirements. Two Li-Po batteries (18650) can be used for a mobile system when the 
PiStorms-V2 is preferred. However, a stationary system can also use the same voltage and current 
levels (i.e., 9.8 Volts and 3 Amps). In our agent-based CPSs, we used 8xAA 2600mAh rechargeable 
batteries when the BrickPI had selected as programmable hardware. They provide enough energy 
for approximately 2 hours. In case of low battery, at first, motors stop working, but sensors may 
remain operational. This may confuse the developer, which can take time to find the source of the 
cause. Therefore, batteries should be checked first when the system is mobile. When the motors 
run for a long time at high speed, they may heat up, so cold spray or cold surface gels should be 
applied. The friction between moving parts can be reduced using oil. However, because of LEGO's 
material, too much machine oil sticks and does not dry for a long time. Therefore, a lightweight 
type of oil should be preferred. While working with the PiStorms-V2, the display did not work 
correctly, but it did not affect our implementation. 
Moreover, sometimes the power button was also disabled. We disabled the power source for a 
few seconds, and then it got operational. On the BrickPI side, we have seen that switching off 
BrickPI's onboard power switch caused batteries to get short-circuited. It created some smoke and 
damaged the batteries. Therefore, we stopped using the power switch and plugged out the 
battery jack when needed. The LEGO sensors may require additional configurations. For example, 
the colour sensor cannot recognize all tones of colour. Therefore, specific ones should be found. If 
a brick or part moves fast, the colour sensors' sampling time might not be enough to recognize it, 
or the wrong colour can result. 
Furthermore, the ultrasonic sensor's range might be too far. Therefore, the operation distance 
can be limited from the software part. Moreover, it can get the maximum integer value when the 
distance is infinitive. Thus, these arrangements should be detected in the Develop Base Code step 
and calibrated in the Calibrate Components phase using the trial-and-error method. Then 
calibrated parameters should be used to perform necessary physical actions. A mechanical system 
can be modelled according to parameters such as mass, length, the material of the components, 
and time. Some assumptions must be made to compare large and complex systems with their 
scaled-down representations. In addition, LEGO technology provides a physical abstraction by 
scaling down the systems, but it suffers from some parameters such as weight, friction, and 
durability. However, it creates an excellent form to mimic the processes, functionalities and 
behaviour considering steady-state conditions of an industrial system which can also be the 
asymptotic phase of most industrial systems. As mentioned, the trial-and-error method helps 
achieve the timings of industrial systems. Using LEGO technology, it may also be possible to 
implement actual operation timings or constant-based relative time periods on the miniaturized 
system. Then, the developed software can be integrated into the existing system by tuning the 
timing parameters. 
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