

Accepted Manuscript

Development of autonomous cyber-physical systems
using intelligent agents and Lego technology

Burak Karaduman, Geylani Kardas, Moharram Challenger

DOI: 10.1201/9781003262527-11

To appear in: Cyber-Physical Systems for Industrial
Transformation: Fundamentals, Standards, and Protocols
(1st Edition)

Published online: 5 April 2023

Please cite this article as: Burak Karaduman, Geylani Kardas, Moharram Challenger, Development
of autonomous cyber-physical systems using intelligent agents and Lego technology, Cyber-
Physical Systems for Industrial Transformation: Fundamentals, Standards, and Protocols (1st
Edition), Manogaran et al. (Eds.), doi: 10.1201/9781003262527-11

This is a PDF file of an unedited manuscript that has been accepted for publication. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the book pertain.

https://doi.org/10.1201/9781003262527-11
https://doi.org/10.1201/9781003262527-11

ACCEPTED MANUSCRIPT

Development of Autonomous Cyber-physical

Systems using Intelligent Agents and LEGO

Technology

Burak Karaduman (Department of Computer Science, University of Antwerp, and Flanders Make,
Belgium, burak.karaduman@uantwerpen.be) (0000−0002−7262−992X)

Geylani Kardas (International Computer Institute, Ege University, Izmir, Turkey.
geylani.kardas@ege.edu.tr) (0000−0001−6975−305X)

Moharram Challenger (Department of Computer Science, University of Antwerp, and Flanders
Make, Belgium, moharram.challenger@uantwerpen.be) (0000−0002−5436−607

Abstract
Cyber-physical systems (CPS) have attracted various embedded technologies and researchers
from low-level where the practitioners implement their systems using high-level programming
languages where the multiple paradigms also overlap. As CPSs merge with numerous disciplines,
heterogeneity emerges, and increasing complexity requires abstractions to program CPSs.
Moreover, it is feasible to benefit from the suitable technologies that facilitate programming the
physical parts of CPS. LEGO might prefer creating concrete use cases as composable technology,
while embedded technology allows running the software to establish CPS. However, workflow,
architecture, design alternatives, and abstraction should be defined to achieve this combination.
Once low-level control is merged with agent-based programming, then this infrastructure can
pave the way for applying intelligent-based solutions to tackle the high-level problems of CPS. This
chapter introduces the architecture, a development workflow, and a set of agent-based CPSs to
describe how LEGO technology-based CPS can be developed where software agents are
integrated into the design, conforming to the provided architecture.

9.1 Introduction
The rise and advancement of networked systems have produced new paradigms and design
challenges in embedded systems. The information processing and computation are merged with
communication and control that creates Cyber-physical Systems (CPS) (Baheti and Hill, 2011). This
evolution expands the capabilities of embedded technology interacting with the physical world
through computation, networked communication, and control and paves the way for the cyber
and physical future. During the interaction with the physical world, there is a phenomenon that
has to be responded to by the system. The cyber part motivates the physical component of the
system to change its state. Then, physical action creates a change in the environment, resulting in
an event being maintained by the cyber part. This way, medical devices, vehicles, intelligent
highways, robotic systems, and factory automation can be implemented, considering new
capabilities achieved by CPS and integral paradigms using the multi-paradigm approach (Carreira
et al., 2020).
The component variety of the CPS makes the system heterogeneous. These components should
be controlled to react to environmental changes. In this way, the system can sustain during run-
time, so software agents can be a way to program these complex systems.
In this chapter, we contribute to constructing the CPSs by providing example agent-based CPS
implementations using LEGO technology. The examples are both from mobile and stationary
systems. This way, the CPS's cyber and physical sides are addressed based on a proposed
architecture. In addition, we provide a detailed workflow and implementation steps to provide
better insights for the practitioners and researchers.
The rest of this chapter is organized as follows: Section 9.2 introduces multi-agent CPS and their
relation. Section 9.3 gives a brief background of the BDI (Belief-Desire-Intention) agents, LEGO
technology and involved hardware. Agent development frameworks which were used to
implement the examples are presented in section 9.4. The architecture is proposed in section 9.5.
Section 9.6 presents the development workflow of the examples. Concrete implementation for
the agent-based CPS examples is given in section 9.7. Software excerpts related to the example
agent-based CPS are shown and explained in section 9.8. The chapter is discussed, and technical
notes are shared in section 9.9.

9.2 Multi-Agent CPS
Multi-agent paradigm implies autonomous software capable of acting dynamically, reactively and
intelligently that alters its environment to create a state change based on defined behavioural
features. Multi-Agent Systems (MAS) represent multiple autonomous agents collaborating to
achieve individual tasks to reach a global goal. Agents collaborate to perform global tasks to
enable solving problems in a joint effort that would be impossible to solve by a single agent.
Software agents are deployed into the cyber part of the CPS. Generally, for a MAS, an information
model of the physical world emerges from agents' mental states. Some studies in the literature
propose to benefit from the multi-agent systems (Leitao et al., 2016; Sakurada et al., 2019;
Karaduman et al., 2021; Karnouskos et al., 2020) as it is a suitable paradigm for providing
smartness, decentralization, autonomy, and communication between subsystems and systems.
They increase the effectiveness of a CPS by augmenting the target system with its functionalities.
The software agents can (re)-configure the control parameters while monitoring the transition
between tasks and observing human errors. They can enhance requirements such as product
quality, in-time delivery, and efficient area exploration.

When agents obtain control over the components of the CPS, the practitioners can focus on
higher-level approaches. Therefore, an integration of MAS and CPS may facilitate the
programming of CPS applications such as Wireless Sensor Networks (Arslan et al., 2017; Asici et
al., 2019) and the Internet of Things (Türk and Challenger, 2018). However, its physical conditions
do not always allow us to directly implement these high-level approaches, considering the
operational systems and dangerous environment. Furthermore, creating a skeleton system of an
actual CPS may be a burden. However, it should sustain its functions, processes, and goals.
Therefore, the target system can be miniaturized using a composable solution such as LEGO.

9.3 Background
This section gives background information about BDI Agents, Embedded Technology, LEGO
technology and related embedded boards.
BDI Agents: The belief, desire and intention (BDI) model is a software reasoning approach that has
been developed for programming intelligent agents. The BDI agents can balance the time spent in
the deliberation phase by choosing what to do and executing the suitable plans as action(s).
Beliefs are the information that belongs to the agent, other agents, and agents' surroundings.
Desires represent all goals that can be potentially success-able states. Lastly, intentions are
defined as any state of activities that were decided to realize.
Embedded Technology: Embedded technology allows programming a microprocessor, which is
computing hardware, using embedded software. An application can be developed for performing
any dedicated task. Embedded hardware binds the cyber world with the physical world using I/O
ports.
LEGO Technology: Integrating MAS and CPS may enable high-level programming in various
applications. Agents who control the CPS's physical components can help solve cyber problems
using their reasoning mechanisms. However, it is not always possible to create an actual CPS
because of cost, safety reasons, and the planned system's size. Therefore, the system should be
scaled down while sustaining its functionality, accuracy, and goals. A compose-able and easy-to-
construct technology, such as LEGO, represented in Figure 9.1, may help to miniaturize the
existing system.

Figure. 9. 1: Sample LEGO components.

EV3 Hardware: As represented by the left top side of Figure 9.2, EV3 hardware is the original
board for programming LEGO-based applications. It has an ARM9 processor that runs a Linux-
based operating system. It has four output and four input ports. It is empowered with 16 MB of
flash memory and 64 MB of RAM. It is also possible to increase the memory capacity up to 32 GB.
As antenna hardware, it can communicate with Wi-Fi and Bluetooth dongles.

 Figure. 9. 2: LEGO Adapted Hardware.

RaspberryPI 3: As represented by the right top side of Figure 9.2, the Raspberry Pi 3 is a credit
card size low powered computer board with Ethernet and Wi-Fi connection. It has an HDMI video
output, an audio output and an SD card slot. The RaspberryPi is beneficial hardware for high-end
tasks.
 BrickPI Hardware Interface: As represented by the bottom left side of Figure 9.2, the BrickPi is a
hardware interface for RasbperryPi that allows controlling LEGO sensors and actuators. It is
attached to the top of the Raspberry Pi via hardware pins to work with LEGO technology. It has
four input and four output ports connecting LEGO sensors and actuators. It can work with
RaspberryPI's Wi-Fi and Bluetooth.
PiStorms-v2 Hardware Interface: As the right bottom side of Figure 9.2 shows, PiStorms-v2 is a
LEGO-compatible interface for Raspberry Pi 3 (Yalcin et al., 2021). It enables to control of LEGO
sensors and actuators when it is attached to a RaspberryPI 3 board. Similarly, it also has four input
and four output ports for connecting LEGO sensors and actuators. It can work with RaspberryPI's
Wi-Fi and Bluetooth.
Agent Development Frameworks: In this section, agent development frameworks such as Jason,
JADE and SPADE agent platforms used during the implementation of the agent-based CPSs were
discussed briefly.
Jason BDI Agents: Jason is a prolog-like logical programming language of Agentspeak and an
extended interpreter version of the Java environment (Bordini and Hübner, 2005). Agentspeak
language was established on the well-known Procedural Reasoning System (PRS) architecture

which explicitly embodies the BDI model. In BDI, agents continuously observe their environment
and react instantly to the changes in the environment.
JADE Agents: JADE is an agent-programming framework that facilitates the development of multi-
agent systems. JADE is a distributed agent development framework with a flexible infrastructure
that allows extensions based on Java. It has a run-time environment where JADE agents can be
created and live within the given host and device. Developers can directly specialize these agents
according to the requirements of their system needs.
SPADE Agents: SPADE is an agent development platform that allows the creation of multi-agents
using Python language (Palanca et al., 2020). It is built using a new communication framework,
namely Jabber, which provides new capabilities to the communication layer. A SPADE agent can
run multiple tasks simultaneously. Each SPADE agent can obtain more than one task.

9.5 Architecture
The proposed architecture aims to create a CPS using integrated hardware and a single
programming platform that covers both cyber and physical parts. This architecture can be used as
a reference as different architectures have also been proposed in the literature (Karaduman et al.,
2022). The architecture represented in Figure 9.3 is proposed considering the requirements of
deploying agents onto an embedded system. There are six layers, and each of them is explained.
The first three layers can be inspected under the physical side, and the last three can be grouped
under the cyber side. At first, physical layers are mentioned.

Figure. 9. 3: Proposed Architecture for implementing CPS.

Layer 0: Physical Segments This layer includes all physical layers and components of a CPS. The

segments can consist of many passive and physical type entities. They conform to physics laws. A
set of passive components create a segment. Our study addressed this layer using LEGO
technology and composable parts made of assembled plastic bricks.

 Layer 1: Sensor and Actuator Layer The sensor and actuator layer describes the physical
environment where the CPS was located. A CPS changes its environment using its physical
capabilities. These changes create events via actuators around that environment; events created
by the environment are perceived via sensors and actions.

 Layer 2: Embedded Device layer contains a microcontroller development board where the
sensors and actuators are connected and controlled. Sensors are used to gather data from the
environment, while actuators are used to create motion and/or movement. However, the
selected hardware should be capable of running the required software in the cyber layer.
Furthermore, it should have network ports, especially wireless ones such as Wi-Fi and Bluetooth-
Low Energy (BLE).

Layer 3: Hardware Interface is preferred to increase the capabilities of the embedded device. It
can be an extension board, HAT, or expansion interface to adapt the embedded device to the
system's requirements. It is an optional layer but essential in augmenting the hardware's
capabilities. This hardware is not a computation device. They are meant to adapt the embedded
hardware's peripheral interface for a particular hardware technology or domain. Cyber layers of
the provided architecture are discussed in the following paragraphs.

Layer 4: The API layer describes any device-specific software. This API should provide device
functions to set, configure and control the sensors and actuators. It should also abstract away the
hardware level programming details such as device registers, bit shifting, bit-wise operations and
instruction-based operations.

Layer 5: Multi-Agent Layer is a middleware where the agent framework runs. The MAS layer
controls the device-specific functions. In this way, agents' perceptions are bound to the sensors
and agents' actions are attached to the actuators of the embedded device. Agents can be reactive,
cognitive or hybrid. Therefore, this layer contains behavioural definitions, plans, goals, and beliefs.
Since an agent-based framework is independent of any embedded device, it should be merged
with device API to be deployed into the embedded hardware.

 Layer 6: Higher-Level Intelligence Layers represent where the higher-level intelligence is
contained. This layer applies logic-based approaches, machine learning techniques and
probabilistic approaches. Generally, these higher-level methodologies are computationally heavy
and provide long-term results.

9.6. Development Workflow

In order to describe the process that has been conducted to construct all agent-based CPSs (which
will be discussed later in the chapter), a workflow has been provided. Figure 9.4 illustrates three
swim-lines: a cyber, a physical and a documentation column. The workflow begins with the
documentation phase, where the UML/SysML diagrams are created. These diagrams are used to
describe the system architecture at the model level. The system architecture can be represented

by Block Diagrams (Challenger et al., 2011; Challenger et al., 2016). There should be at least one
embedded device to create the cyber side of the system. The cyber side can be considered the
abstract container for the software.

In this way, software entities such as software agents can deploy. Agents can be modelled using
activity diagrams considering the model elements which were created a step before. Each activity
can represent the behaviour of an agent. The physical form of a CPS (plant) is shaped using a
sensor, actuator, and passive physical components. The passive physical components are merged
with actuators and/or each other to create the planned motion, rotation, and movement. For
example, a conveyor system is designed using a lot of combined belts to be formed. A motor then
creates the necessary rotational movement to move the conveyor system. We chose LEGO to
provide the physical construction of the agent-based CPS. We prioritized the structure of the
physical system because the software that will run on the cyber side should be developed
according to the capabilities of the physical system. For example, in a production line system, the
software should be shaped considering the process phases and quantities of the physical sensors
actuators. Specifically, how many motors should be configured and controlled by the agents and
which type of sensors will be used should be decided before finalizing the code. After building the
plant, the base code is developed. This base code is the software that runs the low-level API code
fragments encapsulated into the preferred language's functions. However, it might not be
possible to achieve seamless control over the actuators and sensors at first. The requirements
such as the speeds of the motors, operation angle of motors and prepossessing of the sensors
should be calibrated as another activity. At the same time, the base code is used for controlling
physical components. Once the calibration of the components is completed, the code can be
deployed onto embedded hardware. Each component then should be tested to ensure it can
realize the desired process(es). The code fragments tested and calibrated can be merged to
establish low-level control. Once the low-level control definition is completed, the agents can be
defined according to their roles. Agent behaviour should be defined for the planned task. Then,
agent communication should be decided on which type of messages should be sent or broadcast
to which agents. When the design is OK, the agents can be integrated with low-level functions. If
the design is not OK, the low-level control should be checked and modified. Once agents are
integrated with low-level functions, an integration test should be done. If the test fails, workflow
should be followed again, starting from the update of the plant.

Figure. 9. 4: Workflow for implementing the agent-based CPSs.

9.7 Concrete Implementation for the Agent-based CPSs
In this section, agent-based CPSs are described using the aforementioned technologies. The
following platform comparison Table 1 is given to provide better insights.

Table 9.1: Hardware comparison table.

Features/ Board
Name

EV3 BrickPI 3 PiStorms-v2

Requires
RaspberryPI

No Yes Yes

OS Ev3Dev+ Ev3Dev+ Debian Ev3Dev+

AOP JADE Jason, JADE SPADE

OOP Java Java Python

Use Case ACC LF, PL Production Line

Button 6 0 1

Input Output 4+4 4+4 4+4

Support for EV3
Comp

Yes Yes Yes

Support for NXT
Comp

Yes Partial Partial

Display Yes Addable Yes

Has Interface Yes Yes No

Battery Indicator V,I V V

Three examples of agent-based CPS studies are given in the following subsections. The convoy
system has two robots: the line follower robot and an adaptive cruise control robot. In the convoy
system, a robot system that tracks each other to mimic the production transportation of a
manufacturing factory was proposed. The production line system imitates a product life cycle. The
production line system takes a LEGO brick as an input, and that brick goes through multiple
phases. In the convoy robot system, the ACC robot has positioned some distance behind the LF
robot, and the LF robot is placed on a black line which is supposed to be tracked by the LF robot.
Once the LF robot starts following the line, the adaptive cruise control detects the movement and
starts to follow the LF robot while adapting its speed to keep a fixed distance. Two robots are
implemented using different hardware to provide a heterogeneous and complex system. The LF
robot is constructed using a RaspberryPi, the ACC is equipped with EV3 Brick, and a production
line system was implemented using both PiStorms-V2 and BrickPI boards. In the following
subsections, the implementation details, which conform to the workflow represented by Figure
9.4, were given based on the production line system. We preferred to select the production line
system for brevity and size constraints of this chapter, but other examples also conform to the
same workflow.

Agent-based CPS Example 1: The Production Line system represents a stationary, multi-stage,
complex system (Yalcin et al., 2021). Each agent has its goals to be achieved. Once a goal is

achieved, an inform message is sent to the target agent. All agents behave to mimic a product life
cycle. It can be inspected under cyber-physical production systems (CPPS). CPPS requires dynamic
control to enhance product quality with artificial intelligence, machine learning methods, and
agent-based techniques. This system was implemented using six software agents, using one-shot,
cyclic and FSM behaviour types. Eight actuators and three sensors were used (Karaduman et al.,
2021). A demonstration video can be found on https://youtu.be/H1hbTqo0BBY. For brevity, the
production line's push segment steps are addressed based on the workflow and the proposed
architecture, but Figure 9.5 describes the final structure. Documentation activities mostly describe
which components should be used according to the proposed architecture, and cyber and physical
activities describe the conformance relations to the introduced layers.

Figure. 9. 5: Production Line System.

Documentation Activity: To model a CPS, suitable UML/SysML diagrams should be selected. For
this case, the Block Definition Diagram was chosen for modelling the architectural hierarchy of the
system, and the Activity Diagram was preferred for modelling the system's behaviour. The agents'
communications were modelled using the Sequence Diagram. As the left side of Figure 9.6
represents a block definition diagram to model the second layer's architecture of the production
line system. It shows the composable hierarchy from top-to-bottom.

Figure. 9. 6: Excerpts of the UML/SysML diagrams.

The right side of Figure 9.6 describes an excerpt from the Activity Diagram. It shows the activity
that the Push agent follows. According to the colour of a brick, it pushes that brick to the
corresponding bucket. If the colour is red, the Build agent presses the red bricks. The agents
update each other for contextual changes using communication. According to the content of the
message, an agent can actuate a motor and/or start sensor sampling.
Physical Activity: When the modelling steps are finished, the plant can be built based on the
models provided for building the plant. At first, the plant should be built using the physical

https://youtu.be/H1hbTqo0BBY

segments while combining these physical segments, which consist of composable components. At
first, the motors and sensors should be selected according to the system's models and layer 1 of
the proposed architecture. Then, chosen sensors and actuators should be merged with Physical
Segments (level 0), which consist of passive LEGO components. The proposed architecture's layer
0 includes all the physical layers. Therefore, it should be built first. For example, the left top side
of Figure 9.7 illustrates the construction process of the Build segment of the production line
system. The right top side of Figure 9.7 depicts the Shred section of the production line. It is
another segment that constructs the plant. The bottom left of Figure 9.7 shows that these
segments are merged to build the whole plant. If necessary, some updates, such as adding extra
components or reducing the length of a part, can be applied.
Cyber Activity: Once the plant's construction is finished, a base code planned to control the
physical part can be implemented as a cyber activity. We used a RasperryPI 3 as an embedded
device and BrickPI 3 as a hardware interface. The base code creates a substance for reading the
data from the sensors and controlling a motor, including necessary configurations to use the API
functions, which is the next required layer. However, they are the code fragments that influence
these components and cannot be used to create process chains until correct calibration
parameters are found. An extra step should be followed to find the exact operation parameters.

Figure. 9. 7: Construction steps of a CPS using LEGO Technology.

Moreover, API functions' parameters can also be inputs for setting speed, positioning degree,
arranging sensor sampling rate etc. However, it may not be possible to find ideal calibration
parameters simultaneously. Therefore, it requires an iterative trial and error approach and
observance of the physical activity to develop a focus on the movement range. A physical system
that creates motion, rotation or movement should have limits for the freedom of displacement. In
other words, the motion created by a LEGO motor should be realized in the range of any points
between the physical limitations of that component. For example, the push mechanism that

pushes the buckets into the correct buckets requires a valid operation range and parameters.
Therefore, the physical operation range can be found by applying the trial-and-error method.
Specifically, the parameter values can be increased or decreased according to the achieved task.
The right bottom side of Figure 9.7 illustrates the push mechanism and green brick. The figure
shows that the green brick should stop in front of the middle bucket but could not be stopped at
the correct location. Therefore, the rotation duration of the conveyor motor should be increased
to stop the brick at a suitable spot.

Figure. 9. 8: Calibration steps of the Production Line.

The left top side of Figure 9.8 shows that the green brick was able to be stopped at the correct
location. This action was achieved after multiple trial and error efforts, and the resulted function
parameters were selected as the operation(calibrated) parameters. The right top side of Figure
9.8 depicts the initial position of the push mechanism. It should return to its initial position after
each pushing action. Therefore, the parameter for the initial position is 0 and is the reset
parameter. At first, a rotation degree to the middle point was found to calibrate the push
mechanism. Then rotation torque was calibrated. Because the displacement time is too much,
then it is possible to throw the brick away instead of pushing it into the bucket. The left bottom
side of Figure 9.8 illustrates that the push mechanism only moved to the middle of the conveyor
belt. The solution can be increasing the torque and increasing the operation length. In this way,
the pushing mechanism can touch the brick and pushes it. The right bottom side of Figure 9.8
illustrates that the pushing mechanism moves a little bit further from the conveyor belt's middle
point but fails to put the green brick into the bucket because of low torque. As a result, we
decided to move the pushing mechanism until its mechanical limits with an intermediate-level
torque. Eventually, we set the push mechanism to have the correct configuration and succeeded in
pushing the green brick into the bucket.

Cyber-Physical Activity: When all the components' calibration is completed, the embedded code

which uses the operation parameters can be deployed onto the embedded hardware. Once the
code is deployed, each segment's components should be tested to ensure they can work in a
combinational manner. This way, components' functionalities and synchronization between them
are also tested. In other words, the interplay and influential effect between cyber and physical
entities are observed.

 Cyber Activity: When the test phase is completed, cascade low-level operations can be merged.
For example, at first, a motor can be assigned to a port, namely portB. It can then be actuated for
200ms using a speed parameter of 200 units. After this, it is stopped for 100ms. Another function,
namely "moderate operation", can use different parameters, stop/start operations and platform-
specific API functions. In listing 1.1, calibrated functions were given. These functions can be called
in a sequential or combinational manner. In this way, the necessary movements of the
components can be achieved. In addition, sensor reading timings can also be arranged. The sensor
reading can be activated once a specific event is realized or based on a period. For example, when
the button is pressed, the colour sensor can be activated to check whether a brick has arrived or
not. As agent-oriented programming proposes higher-level abstraction to develop software,
software agents were defined according to the individually quite complex sections. As the
proposed architecture's layer 5 presents, the agents can be determined according to the sections
to be controlled. The processes and events that should be handled on the cyber side can be
defined using the agent's behaviours. The agents' communication should be specified on the
cyber side. The sequence diagram can be used to model the communication between the agents.
This way, when an event occurs or ends, the agents can inform each other to trigger other events.
When this step is finished, the design should be checked. If the design is not OK, it should be re-
planned starting from the low-level control. Once the design is agreeable, the design can be
implemented, and agents can be integrated with the low-level system functions via their
behaviours and establish communication among them.

Cyber-Physical Activity: The integration test should be applied when the integration is finished.
Physical events should be created to realize the processes. Agents are expected to control the
system by realizing the required actions and sensing the environment. If the test fails, the plant
should be updated, and the previous steps should be re-checked. If the test succeeds, an agent-
controlled cyber-physical system is created. As a result, an autonomous agent-controlled CPS is
established based on the workflow and the proposed architecture. Intelligence methods can be
applied to this exemplar system to merge the higher layers.

Agent-based CPS Example 2: Line Follower Robot: The Line follower is a robot that follows the
black lines to track a pre-defined line. It has two agents, Motor and LineFollower (Schoofs et al.,
2021). It has a power button to be powered on or off. When it is initialized to be functional, it
starts sensor reading and sends the data to the Motor Agent. According to the incoming data, the
motor agent decides to turn left, right, stop or slow down. A decision is taken when the line
follower robot encounters a turn. To make the turn, it slows down, turns and speeds up. While it
realizes these actions, it sends the same action parameters to the Adaptive Cruise Control agent.
Line Follower agent has three cyclic behaviours for establishing communication, controlling the
motors and data sampling. We also benefited from SimpleBehaviour and TickerBehaviour. Four
sensors and two motors were used to implement this system. SimpleBehaviour and
TickerBehaviour were also utilized.

Figure. 9. 9: Line Follower Robot.

Agent-based CPS Example 3: Adaptive Cruise Control Robot: The Adaptive Cruise Control Robot
(ACC) robot has an ultrasonic sensor to detect the distance between LF robot's (Schoofs et al.,
2021). When the LF robot is taking a turn, the ACC robot receives messages from the LF robot to
adapt its motion to have the same turn. The ACC robot estimates the sharpness of the turn and
tries to realize turning actions synchronously. It starts its operation when the power button is
pressed. It then starts to receive messages and sample sensor data used for distance
measurement, relative speed computation and arranging current speed. When a message is
received, the ACC robots try to take a turn. This system was implemented using two motors and
one sensor. Moreover, it benefited from two CyclicBehaviour, one SimpleBehaviour and one
OneShot Behaviour.

Figure. 9. 10: Adaptive Cruise Control Robot.

9.8 Software Excerpts
In this section, some code excerpts were given. During the implementation of this agent-based
CPSs, singleton design pattern and static class definition approaches were selected. The singleton
design pattern has been applied to encapsulate device-level functions into agents' behaviours.
Because multiple object creations have been encountered within two different embedded
hardware and agent programming platforms, the resource access problem had occurred
considering that software agents are concurrent entities. Therefore, the problem was tackled by
limiting object instantiation. Alternatively, static function definitions could also be used. Thus, this
concludes that singleton design pattern or static function definitions may be required while
integrating device functions with software agents. As Jason uses a prolog-like language and BDI
structure, it does not require such an approach.

Table 9:2 Code Excerpt from the examples.

1+!checkButtonStatus : dropButtonStatus (false) <− buttonPressed ; ! checkButtonStatus .
 2+!checkButtonStatus : dropButtonStatus (true) <−!checkProductStatus .

3 public class Button {

4 public static boolean isPressed () {

5 EV3TouchSensor touchSensor = new EV3TouchSensor(SensorPort.S2);

6 boolean touch = InitComp.touchSensor. isPressed () ;

7 return touch;}}

8 psm = PiStorms() instance = None
 9 @staticmethod def getInstance () :

 10 if dev1. instance == None: dev1() return dev1. instance
 11 def init (self) : if dev1. instance != None: raise Exception(" Singleton class ") else :
dev1. instance = self

Table 9.1's lines 1 and 2 describe a plan excerpt, checkButtonStatus, from the Jason
implementation. If button is pressed by the user, the dropButtonStatus(false) becomes
dropButtonStatus(true). The first line works until the condition of the button is changed, and in
each agent cycle, the state of the button is checked using the buttonPressed action. If the status
becomes true, then checkProductStatus plan is triggered. The low-level implementation of the
button control code is represented between lines 3 and 7. Using a CyclicBehaviour of the JADE,
the state of the button is checked in each cycle. The singleton pattern used in the SPADE
implementation is shown in lines 8 and 10. This pattern was used to constrain the object creation
to only one because accessing two different objects caused inconsistency in controlling the low-
level API.

9.9 Discussion & Technical Notes

The adaptation of MAS to CPS is an open research domain. This book chapter presents concrete
agent-based CPSs and their corresponding requirements to show how Agent-based frameworks
can be deployed into various embedded hardware. As recently, embedded system programming
interests have shifted to more abstract OOP-based languages such as microPython and C++. At the
same time, it is still benefited from high-level languages such as C and Basic. We are motivated to
show how software agents can be used to program CPSs as they have a higher abstraction
compared to OOP and other high-level languages.
Moreover, we are motivated to provide design choices, an integrated architecture, and concrete
agent-based CPSs to put sheds for rapid prototyping of both the cyber and physical sides of CPS.
As CPS can be enhanced with software agents, model-driven approaches can also be an integral
paradigm to reduce complexity (Challenger et al., 2021; Challenger et al., 2020). In this regard, a
casual language based on ABM and MAS should be implemented to represent the structure and
behaviour of the target dynamic system. These elements should cover both design-time and run-
time elements. It is necessary to develop new solutions and adapt existing standards such as IoT,
machine learning and fuzzy logic (Karaduman et al., 2021).
Moreover, we would like to share some technical details that may be beneficial for practitioners
and researchers. Switches can be used to limit the movement of dynamic parts. Once the moving
part or platform touches the limit switch (i.e., utilizing a LEGO button), the system can detect the
state change and stop the movement. While implementing the agent-based CPSs, we have seen
that preferring one agent for each section or robot is more suitable for development time and
code complexity. This way, the separation of concerns approach can be followed to avoid
accidental complexity and mutual exclusion problem. A suitable power source should be selected

according to the system type, such as mobile or stationary. For a stationary system, tunable
power supplies can be used along with the parameters of 9.8 Volts and 3 Amps. These are the
common parameters to feed all the hardware types because of LEGO EV3 motors and sensors'
power requirements. Two Li-Po batteries (18650) can be used for a mobile system when the
PiStorms-V2 is preferred. However, a stationary system can also use the same voltage and current
levels (i.e., 9.8 Volts and 3 Amps). In our agent-based CPSs, we used 8xAA 2600mAh rechargeable
batteries when the BrickPI had selected as programmable hardware. They provide enough energy
for approximately 2 hours. In case of low battery, at first, motors stop working, but sensors may
remain operational. This may confuse the developer, which can take time to find the source of the
cause. Therefore, batteries should be checked first when the system is mobile. When the motors
run for a long time at high speed, they may heat up, so cold spray or cold surface gels should be
applied. The friction between moving parts can be reduced using oil. However, because of LEGO's
material, too much machine oil sticks and does not dry for a long time. Therefore, a lightweight
type of oil should be preferred. While working with the PiStorms-V2, the display did not work
correctly, but it did not affect our implementation.
Moreover, sometimes the power button was also disabled. We disabled the power source for a
few seconds, and then it got operational. On the BrickPI side, we have seen that switching off
BrickPI's onboard power switch caused batteries to get short-circuited. It created some smoke and
damaged the batteries. Therefore, we stopped using the power switch and plugged out the
battery jack when needed. The LEGO sensors may require additional configurations. For example,
the colour sensor cannot recognize all tones of colour. Therefore, specific ones should be found. If
a brick or part moves fast, the colour sensors' sampling time might not be enough to recognize it,
or the wrong colour can result.
Furthermore, the ultrasonic sensor's range might be too far. Therefore, the operation distance
can be limited from the software part. Moreover, it can get the maximum integer value when the
distance is infinitive. Thus, these arrangements should be detected in the Develop Base Code step
and calibrated in the Calibrate Components phase using the trial-and-error method. Then
calibrated parameters should be used to perform necessary physical actions. A mechanical system
can be modelled according to parameters such as mass, length, the material of the components,
and time. Some assumptions must be made to compare large and complex systems with their
scaled-down representations. In addition, LEGO technology provides a physical abstraction by
scaling down the systems, but it suffers from some parameters such as weight, friction, and
durability. However, it creates an excellent form to mimic the processes, functionalities and
behaviour considering steady-state conditions of an industrial system which can also be the
asymptotic phase of most industrial systems. As mentioned, the trial-and-error method helps
achieve the timings of industrial systems. Using LEGO technology, it may also be possible to
implement actual operation timings or constant-based relative time periods on the miniaturized
system. Then, the developed software can be integrated into the existing system by tuning the
timing parameters.

References
Arslan, S., Challenger, M., Dagdeviren, O.: Wireless sensor network based fire detection system

for libraries. In: 2017 International Conference on Computer Science and Engineering

(UBMK). pp. 271–276. IEEE (2017)

Asici, T.Z., Karaduman, B., Eslampanah, R., Challenger, M., Denil, J., Vangheluwe, H.: Applying

model driven engineering techniques to the development of contiki-based iot systems. In:

2019 IEEE/ACM 1st International Workshop on Software Engineering Research &

Practices for the Internet of Things (SERP4IoT). pp. 25–32. IEEE (2019)

Baheti, R., Gill, H.: Cyber-physical systems. The impact of control technology 12(1), 161–166

(2011)

Bordini, R.H., Hübner, J.F.: Bdi agent programming in agentspeak using jason. In: International

workshop on computational logic in multi-agent systems. pp. 143–164. Springer (2005)

Carreira, P., Amaral, V., Vangheluwe, H.: Multi-paradigm modelling for cyber-physical systems:

Foundations. In: Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems,

pp. 1–14. Springer (2020)

Challenger, M., Erata, F., Onat, M., Gezgen, H., Kardas, G.: A model-driven engineering technique

for developing composite content applications. In: 5th Symposium on Languages,

Applications and Technologies (SLATE'16). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik (2016)

Challenger, M., Getir, S., Demirkol, S., Kardas, G.: A domain specific metamodel for semantic

web enabled multi-agent systems. In: International Conference on Advanced Information

Systems Engineering. pp. 177–186. Springer, Berlin, Heidelberg (2011)

Challenger, M., Tezel, B.T., Amaral, V., Goulao, M., Kardas, G.: Agent-based cyber-physical

system development with sea_ml++. In: Multi-Paradigm Modelling Approaches for Cyber-

Physical Systems, pp. 195–219. Elsevier (2021)

Challenger, M., Vangheluwe, H.: Towards employing abm and mas integrated with mbse for the

lifecycle of scpsos. In: Proceedings of the 23rd ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems: Companion Proceedings. pp. 1–7

(2020)

Karaduman, B., David, I., Challenger, M.: Modeling the engineering process of an agent-based

production system: An exemplar study. In: 2021 ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems Companion (MODELS-C). pp. 296–

305. IEEE (2021)

Karaduman, B., Oakes, B.J., Eslampanah, R., Denil, J., Vangheluwe, H., Challenger, M.: An

architecture and reference implementation for wsn-based iot systems. In: Emerging Trends

in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics, pp.

80–103. IGI Global (2022)

Karaduman, B., Tezel, B.T., Challenger, M.: Towards applying fuzzy systems in intelligent agent-

based cps: A case study. In: 2021 6th International Conference on Computer Science and

Engineering (UBMK). pp. 735–740. IEEE (2021)

Karnouskos, S., Leitao, P., Ribeiro, L., Colombo, A.W.: Industrial agents as a key enabler for

realizing industrial cyber-physical systems: Multi-agent systems entering industry 4.0.

IEEE Industrial Electronics Magazine 14(3), 18–32 (2020)

Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart agents in

industrial cyber– physical systems. Proceedings of the IEEE 104(5), 1086–1101 (2016)

Palanca, J., Terrasa, A., Julian, V., Carrascosa, C.: Spade 3: Supporting the new generation of

multi-agent systems. IEEE Access 8, 182537–182549 (2020)

Sakurada, L., Barbosa, J., Leitão, P., Alves, G., Borges, A.P., Botelho, P.: Development of agent-

based cps for smart parking systems. In: IECON 2019-45th Annual Conference of the

IEEE Industrial Electronics Society. vol. 1, pp. 2964–2969. IEEE (2019)

Schoofs, E., Kisaakye, J., Karaduman, B., Challenger, M.: Software agent-based multi-robot

development: A case study. In: 2021 10th Mediterranean Conference on Embedded

Computing (MECO). pp. 1–8. IEEE (2021)

Türk, E., Challenger, M.: An android-based iot system for vehicle monitoring and diagnostic. In:

26th Signal Processing and Communications Applications Conference (SIU).pp.1–4. IEEE

(2018)

Yalcin, M.M., Karaduman, B., Kardas, G., Challenger, M.: An agent-based cyber-physical

production system using lego technology. In: 2021 16th Conference on Computer Science

and Intelligence Systems (FedCSIS). pp. 521–531. IEEE (2021)

