
SEAGENT: A Platform for Developing Semantic Web Based
Multi Agent Systems

Oguz Dikenelli
Ege University

Computer Engineering
Department

35100, Bornova, Izmir, Turkey

oguzd@staff.ege.edu.tr

Riza Cenk Erdur
Ege University

Computer Engineering
Department

35100, Bornova, Izmir, Turkey

erdur@staff.ege.edu.tr

Ozgur Gumus
Ege University

Computer Engineering
Department

35100, Bornova, Izmir, Turkey

gumus@staff.ege.edu.tr

ABSTRACT
In this paper, a new agent development platform, which in-
cludes built-in features for semantic web based multi agent
system development, is introduced. All agents and services
in the platform use semantic web standards to represent
their internal knowledge and semantic web query languages
are used to query them. Semantic web services can be dis-
covered and dynamically invoked. The directory service is
implemented in a way to support semantic matching of agent
capabilities. The ontology service allows ontology transla-
tion based on defined mappings between platform ontologies
and external ontologies. With these features already inte-
grated, the agent development platform that is developed
simplifies the semantic web based multi-agent system devel-
opment.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Design

1. INTRODUCTION
Semantic web and agent research are evolving together.

Semantic web research aims to transform the World Wide
Web into a knowledge representation system in which the
information provided by web pages is interpreted using on-
tologies. This gives the opportunity for autonomous compu-
tational entities - agents - to collect and interpret semantic
content on the behalf of their users.

In this paper, we introduce SEAGENT, which is a new
agent development platform that is specialized for seman-
tic web based multi agent system development. The com-
munication and plan execution infrastructure of SEAGENT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

looks like other existing agent development frameworks such
as DECAF [3] , JADE [1] . To support and ease semantic
web based multi agent system development, SEAGENT in-
cludes the following built-in features that the existing agent
frameworks and platforms do not have:

i) Agents created using SEAGENT handle their internal
knowledge base using semantic web standards and the plat-
form provides specifically designed interfaces to manage and
query the internal knowledge without being dependent on a
particular application programming interface.

ii) The directory service of SEAGENT is implemented
in a way that the directory knowledge is held in semantic
web standards and the directory service supports semantic
matching of the agent capabilities to find the semantically
similar agents.

iii) FIPA-RDF content language has been used to trans-
fer semantic content in the agent communication language
messages and OWL-QL [2] is integrated to the FIPA-RDF
content language to query the agents and services.

iv) SEAGENT introduces a new service for managing and
translating ontologies. It provides a means to define map-
pings between platform ontologies and external ontologies.
The translation process is based on these defined mappings.

v) SEAGENT supports discovery and dynamic invoca-
tion of semantic web services by introducing a new platform
service for semantic service discovery and a reusable agent
behavior for dynamic invocation of the discovered services.

These built-in features will be explained in the follow-
ing sections. Section 2 discusses the overall architecture of
SEAGENT.

2. PLATFORM ARCHITECTURE
The layered software architecture of SEAGENT is shown

in Figure 1. In the following, we briefly discuss each layer
with an emphasis on the semantic support given by that
layer.

The bottom layer is responsible of abstracting platform’s
communication infrastructure implementation. SEAGENT
implements FIPA’s Agent Communication and Agent Mes-
sage Transport specifications to handle agent messaging.
Although Communication Infrastructure Layer can trans-
fer any content using FIPA ACL and transport infrastruc-
ture, SEAGENT platform only supports FIPA RDF content
language since it is very suitable to transfer semantic web
enabled content.

The second layer includes packages, which provide the

Reusable Behavior Layer

Generic Reusable
Semantic Behaviors

Generic
Behaviors

Platform Core Functionality Layer

Platform Services

Service MatcherDF

Ontology Manager AMS

Agency

Application Dependent Behavior

Communication Infrastructure Layer

Figure 1: SEAGENT Platform Overall Architecture

core functionality of the platform. The first package, called
as Agency, handles the internal functionality of an agent.
Agency package provides a built-in ’agent operating system’
that matches the goal(s) to defined plan(s), which are de-
fined using HTN planning formalism [4] . It then sched-
ules, executes and monitors the plan(s). From semantic web
based development perspective, an agent’s internal architec-
ture must support semantic web ontology standards for mes-
saging and internal knowledge handling to simplify semantic
based development. For this purpose, Agency package pro-
vides a build-in support to parse and interpret FIPA RDF
content language to handle semantic web based messaging.

The second package of the Core Functionality Layer in-
cludes service sub-packages, one for each service of the plat-
form. These services follow the FIPA standards but they
are implemented differently using the capabilities of a se-
mantic web infrastructure. In the SEAGENT implementa-
tion, DF uses an OWL ontology to hold agent capabilities
and includes a semantic matching engine to be able to re-
turn agent(s) with semantically similar capabilities to the
requested ones. Similarly, AMS stores agents’ descriptions
in OWL using FIPA Agent Management Ontology and can
be queried semantically to learn descriptions of any agent
that is currently resident on the platform.

Besides implementing standard services in a semantic way,
SEAGENT platform provides two new services to simplify
semantic web based MAS development. The first one is
called as Semantic Service Matcher (SSM). SSM is responsi-
ble for connecting the platform to the semantic web services
hosted in the outside of the platform. SSM uses ’service pro-
file’ construct of the Web Ontology Language for Semantic
Web Services (OWL-S) standard for service advertisement
and this knowledge is also used by the internal semantic
matching engine for discovery of the service(s) upon a re-
quest. The second unique service is the Ontology Manager
Service (OMS). The most critical support of the OMS is its
translation support between the ontologies. Through the
usage of the ontology translation support, any agent of the
platform may communicate with MAS and/or services out-
side the platform even if they use different ontologies.

Third layer of the overall architecture includes pre-prepared
generic agent plans. We have divided these generic plans
into two packages. Generic Behavior package collects do-

main independent reusable behaviors that may be used by
any MAS such as well known auction protocols (English,
Dutch etc.). On the other hand, Generic Semantic Behav-
iors package includes only the semantic web related behav-
iors. In the current version, the most important generic
semantic behavior is the one that executes dynamic discov-
ery and invocation of the external services. This plan is
defined as a pre-prepared HTN structure and during its ex-
ecution, it uses SSM service to discover the desired service
and then using OWL-S ’service grounding’ construct it dy-
namically invokes the found atomic web service(s). Hence,
developers may include dynamic external service discovery
and invocation capability to their plan(s) by simply insert-
ing this reusable behavior as an ordinary complex task to
their HTN based plan definition(s).

3. CONCLUSION
The platform’s overall architecture has been implemented

and it is operational. To evaluate the platform, we have de-
veloped an experimental but a realistic application in tourism
domain. The semantic features are tested in different scenar-
ios that make up the application. The main scenario aims of
finding the right hotel agent with the cheapest price. In this
scenario, the agents use different domain ontologies. The on-
tology handling capability of the platform makes the usage
of ontologies easy for the developer. In the application, hotel
agents that use different ontologies are modeled to evaluate
the ontology translation capability of the platform. We ob-
served that built-in ontology translation service simplifies
the development of MAS where multiple ontologies exist.

4. ACKNOWLEDGMENTS
This work is supported in part by the Scientific and Tech-

nical Research Council of Turkey, Project Number: 102E022.

5. ADDITIONAL AUTHORS
Additional authors: Erdem Eser Ekinci (Ege University,

email: erdemeserekinci@hotmail.com), Önder Gürcan (Ege
University, email: gurcan@staff.ege.edu.tr), Geylani Kar-
daş (Ege University, email: geylani@bornova.ege.edu.tr),
İnanç Seylan (Ege University, email:
seylan@staff.ege.edu.tr) and Ali Murat Tiryaki (Ege Uni-
versity, email: tiryaki@staff.ege.edu.tr).

6. REFERENCES
[1] F. Bellifemine and G. Rimassa. Developing multi-agent

systems with a FIPA-compliant agent framework.
Softw. Pract. Exper., 31(2):103–128, 2001.

[2] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL: A
language for deductive query answering on the
semantic web. Technical Report KSL 03-14, Stanford
University, Stanford, CA, 2003.

[3] J. R. Graham, K. Decker, and M. Mersic. DECAF - A
flexible multi agent system architecture. Autonomous
Agents and Multi-Agent Systems, 7(1-2):7–27, 2003.

[4] M. Paolucci, O. Shehory, K. P. Sycara, D. Kalp, and
A. Pannu. A planning component for RETSINA agents.
In ATAL ’99: 6th International Workshop on
Intelligent Agents VI, Agent Theories, Architectures,
and Languages (ATAL),, pages 147–161, London, UK,
2000. Springer-Verlag.

