Developing Multi Agent Systems on Semantic
Web Environment using SEAGENT Platform

Oguz Dikenelli', Riza Cenk Erdur', Geylani Kardas?, Ozgiir Giimiis',
Inanc Seylan®, Onder Giircan®, Ali Murat Tiryaki!, and Erdem Eser Ekinci'

'Ege University, Department of Computer Engineering,

35100 Bornova, Izmir, Turkey
{oguz.dikenelli,cenk.erdur,ozgur.gumus,inanc.seylan,onder.gurcan,
ali.murat.tiryaki}@ege.edu.tr, erdemeserekinci@gmail.com
2Ege University, International Computer Institute,

35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

Abstract. In this paper, we discuss the development of a multi agent
system working on the Semantic Web environment by using a new frame-
work called SEAGENT. SEAGENT is a new agent development frame-
work and platform, which includes built-in features for semantic web
based multi agent system development. These features provide semantic
supports such as a new specific content language for transferring semantic
knowledge, specifically designed agent’s internal architecture to handle
semantic knowledge, a new directory facilitator architecture based on
semantic service matching engine and ontology management service to
provide ontology translations within the platform’s ontologies. The im-
plemented case study shows the effectiveness of these features in terms
of semantically enriched multi agent system development.

1 Introduction

The standardization effort on Semantic Web [2] aims to transform the World
Wide Web into a knowledge representation system in which the information
provided by web pages is interpreted using ontologies. This creates an environ-
ment in which knowledge is defined in terms of these ontologies and information
systems are designed and implemented in a way that these ontologies are used,
transferred and regenerated. In these environments, agents place a critical role to
autonomously collect, interpret and use semantic knowledge as a part of future’s
information systems.

In this paper, we discuss how to develop MASs in such semantically enriched
environments with a new framework called SEAGENT. SEAGENT, which is
introduced in [8], is a new agent development framework and platform that
is specialized for semantic web based MAS development. The communication
and plan execution infrastructure of SEAGENT looks like other existing agent
development frameworks such as DECAF [10], JADE [1], and RETSINA [16].
However, to support and ease semantic web based MAS development, SEAGENT

includes the following built-in features that the existing agent frameworks and
platforms do not have:

* SEAGENT provides a specific feature within the agent’s internal archi-
tecture to handle the agent’s internal knowledge using OWL (Web Ontology
Language) [13].

* The directory service of SEAGENT stores agent capabilities using specially
designed OWL based ontologies and it provides a semantic matching engine to
find the agents with semantically related capabilities.

* Based on FIPA-RDF [9], a content language called Seagent Content Lan-
guage (SCL) has been defined to transfer semantic content within the agent
communication language messages.

* SEAGENT introduces a new service called Ontology Management Service
(OMS). The most important feature of this service is to define mappings between
platform ontologies and external ontologies. Then it provides a translation service
to the platform agents based on these defined mappings.

* SEAGENT supports discovery and dynamic invocation of semantic web
services by introducing a new platform service for semantic service discovery
and a reusable agent behavior for dynamic invocation of the discovered services.

The paper is organized as follows: Section 2 gives a brief overview of the re-
lated work. Section 3 explains the overall architecture of the SEAGENT frame-
work. In section 4, a case study on MAS development using SEAGENT is dis-
cussed in detail. This case study demonstrates the MAS implementation taking
into account of platform initialization, agent plan development using semantic
knowledge and semantic capability matching on platform’s Directory Facilitator
(DF). Conclusion is given in section 5.

2 Related Work

The idea of integrating the semantic web and agent research has already been
realized and some systems have been developed. ITtalks [5] system offers access
to information about activities such as talks and seminars related with informa-
tion technology. ITtalks uses DAML~+OIL for knowledge representation and lets
agents to retrieve and manipulate information stored in the ITtalks knowledge
base. The smart meeting room system [4] is a distributed system that consists
of agents, services, devices and sensors that provide relevant services and infor-
mation to the meeting participants based on their contexts. This system uses
semantic web languages for representing context ontologies. Both the ITtalks
and the smart meeting room system use a multi-agent development framework
in their underlying infrastructure. For example, ITtalks uses Jackal [6] and smart
meeting room system uses Jade [1]. In these systems, semantic web functionality
is hard coded into the system together with the domain knowledge, because the
agent frameworks used in the implementation of these systems do not have a
built-in support for semantic web. For example, it is difficult for these systems’
developers to support basic semantic web functionalities such as discovering and
dynamically invoking of semantic web services inside an agent or performing

an ontology translation between different platform ontologies. Moreover, it re-
quires knowledge for ordinary developers to handle the semantic web and agent
technology details in addition to the application domain related knowledge.

There have been a few implementations to integrate web services and FIPA
compliant agent platforms. WSDL2JADE [22] can generate agent ontologies and
agent codes from a WSDL input file. WSIG (Web Services Integration Gate-
way) [19] supports bi-directional integration of web services and Jade agents.
WS2JADE [21] allows deployment of web services as Jade agents’ services at
run time. But these tools only deal with agent and web service integration and
do not provide any mechanism to use semantic web knowledge during MAS
development.

There is an attempt called as “JADE Semantic Agent” [20], to integrate FIPA
ACL semantics into a multi agent development framework. It is implemented
on top of the JADE framework and it has a built-in mechanism to interpret
the semantics of FIPA messages. This is a very noble attempt but it is highly
dependent on the FIPA-SL language which seems to be a problem when sending
OWL content between agents. We believe that it still remains a problem to define
ACL semantics in a way compatible with OWL.

We can conclude from this discussion that there must be environments, which
will simplify semantic web based multi agent system (MAS) development for or-
dinary developers and which will support the basic semantic web functionalities.

3 Platform Architecture

In this section, we explain SEAGENT’s layered software architecture briefly.
Each layer and packages of the layers have been specially designed to provide
build-in support for MAS development on Semantic Web environment. The over-
all architecture is shown in Fig. 1. Although the given architecture is the im-
plemented architecture of the SEAGENT platform, we believe that it is generic
enough to be considered as a conceptual architecture of MASs those are devel-
oped and deployed for semantic web environment. In the following subsections,
we discuss each layer with an emphasis on the semantic support given by that
layer.

3.1 Communication Infrastructure Layer

This bottom layer is responsible of abstracting platform’s communication in-
frastructure implementation. SEAGENT implements FIPA’s Agent Communi-
cation and Agent Message Transport specifications [9] to handle agent mes-
saging. Although Communication Infrastructure Layer can transfer any content
using FIPA ACL and transport infrastructure, SEAGENT platform only sup-
ports Seagent Content Language (SCL) by default. SCL itself is a specific OWL
ontology to define the ACL content. It is based on the FIPA-RDF but extends
the FIPA-RDF by defining new concepts and relations. So, the language itself is
not OWL like Zou et. al’s work [18], but it is serialized into OWL. This allows

Application Dependent Behavior

Reusable Behavior Layer

Generic Reusable

. . Generic Behaviors
Semantic Behaviors

Platform Core Functionality Layer

Platform Services

I DF II Semantic Service Matcher I

Agency

I Ontology Management Service IIAMSI

Communication Infrastructure Layer

Fig.1. SEAGENT Platform Overall Architecture

content to be easily parsed and takes advantage of directly inserting concepts
/ individuals from OWL ontologies which form the knowledge bases of services
and agents.

In order to be used with FIPA-ACL, a content language must satisfy three
requirements [3]. The first two states that the language must be capable of
representing propositions and actions. This is done in SEAGENT by defining
those two concepts in the SCL ontology. The third requirement is that it must
be capable of representing objects, including identifying referential expressions to
describe objects. To achieve this, we have defined a query and match ontology in
OWL which is called “Seagent Match Ontology”. The concepts of this ontology
are used to define required content and are directly inserted into SCL based
content to represent objects.

3.2 Platform Core Functionality Layer

Agency Package The second layer includes packages, which provide the core
functionality of the platform. The first package, called as Agency, handles the
internal functionality of an agent. Agency package supports the creation of gen-
eral purpose and goal directed agents. In this sense, Agency package provides
a built-in “agent operating system” that matches the goal(s) to defined plan(s),
which are defined using HTN planning formalism [14]. It then schedules, executes
and monitors the plan(s). From semantic web based development perspective,
an agent’s internal architecture must support semantic web ontology standards
for messaging and internal knowledge handling to simplify semantic based devel-
opment. For this purpose, Agency package provides a build-in support to parse
and interpret SCL content language to handle semantic web based messaging. On
the other hand, Agency provides two interfaces for semantic knowledge handling,

one for local ontology management and the other one for querying. Although the
current version includes the JENA [11] based implementation of these interfaces,
other semantic knowledge management environments and query engines can be
integrated to the platform by implementing these interfaces.

Platform Services The second package of the Core Functionality Layer in-
cludes service sub-packages, one for each service of the platform. SEAGENT
provides all standard MAS services such as DF Service and Agent Management
Service (AMS) following the previous platform implementations and FIPA stan-
dards. But these standard services are implemented in a different way by using
the capabilities of a semantic web infrastructure.

In SEAGENT implementation, DF uses an OWL ontology to hold agent ca-
pabilities and includes a semantic matching engine to be able to return agent(s)
with semantically similar capabilities to the requested ones. Matchmaking pro-
cess in case is realized within the built-in capability matching engine of the DF
which is called Seagent Matching Engine. This engine matches advertised agent
services with the received service request. It stores agent service definitions in
a database. Actually this database is an ontology model of the agent services
in which agent service ontology individuals are included. Therefore each agent
service that is registered to the DF is also represented in this ontology with an
individual as it is discussed above. The matching engine uses those individuals
and compares them with given service requests semantically. Seagent Match-
ing Engine uses a basic reasoner called Ontolog to determine semantic relation
between agent services. We have adapted the service matching algorithm origi-
nally proposed in [15] for semantic web services into the matchmaking process of
agent services. The Ontolog works on ontology hierarchy tree of service concepts
and finds distance between any given two classes (i.e. service types of requested
and advertised agent services). Based on the results returned from the Ontolog,
Seagent Matching Engine defines and uses a degree of match function named
DoM(Cq, C9) which determines semantic match degree between concepts, Cq
and Co:

DoM(Cq, C9) = EXACT if Cy is a direct subclass of Cg or C1= Coq

DoM(Cq, C9) = PLUG-IN if Cy is a distant subclass of Co

DoM(Cq, C9) = SUBSUMES if Cy is a direct or distant subclass of Cq

DoM(Cq, C9) = FAIL otherwise

Matching engine of the agent platform takes the above defined relations into
account and determines the suitability of the advertised agent services with the
requested one. The internal architecture and theoretical base of the engine is
introduced in [12].

Similarly, AMS stores descriptions of agents in OWL using FIPA Agent Man-
agement Ontology [9] and can be queried semantically to learn descriptions of
any agent that is currently resident on the platform.

Besides implementing standard services in a semantic way, SEAGENT plat-
form provides two new services to simplify semantic web based MAS develop-
ment. The first one is called as Semantic Service Matcher (SSM). SSM is re-

sponsible for connecting the platform to the semantic web services hosted in the
outside of the platform. SSM uses “service profile” construct of the Web On-
tology Language for Semantic Web Services (OWL-S) [17] standard for service
advertisement and this knowledge is also used by the internal semantic match-
ing engine for discovery of the service(s) upon a request. SSM and DF services
are implemented by extending a generic semantic matching engine architecture,
which are introduced in [7] and [12] in detail.

The second unique service is the Ontology Management Service (OMS). It be-
haves as a central repository for the domain ontologies used within the platform
and provides basic ontology management functionality such as ontology deploy-
ment, ontology updating and querying etc. The most critical support of the OMS
is its translation support between the ontologies. OMS handles the translation
request(s) using the pre-defined mapping knowledge which is introduced through
a specific user interface. Through the usage of the ontology translation support,
any agent of the platform may communicate with MAS and/or services outside
the platform even if they use different ontologies.

3.3 Reusable Behaviour Layer

Third layer of the overall architecture includes pre-prepared generic agent plans.
We have divided these generic plans into two packages. Generic Behavior package
collects domain independent reusable behaviors that may be used by any MAS
such as well known auction protocols (English, Dutch etc.). On the other hand,
Generic Semantic Behaviors package includes only the semantic web related be-
haviors. In the current version, the most important generic semantic behavior is
the one that executes dynamic discovery and invocation of the external services.
This behaviour is defined as a pre-prepared HTN structure and during its execu-
tion, it uses SSM service to discover the desired service and then using OWL-S
“service grounding” construct, it dynamically invokes the found atomic web ser-
vice(s). Detail of this behaviour is explained in [7]. Hence, developers may include
dynamic external service discovery and invocation capability to their plan(s) by
simply inserting this reusable behavior as an ordinary complex task into their
HTN based plan definition(s).

4 Developing a MAS with using SEAGENT through a
Case Study

In this section, development of a simple MAS using SEAGENT framework is
discussed to demonstrate semantic knowledge handling capability of the frame-
work. We first describe scenario of the implemented case study. Then initializa-
tion of the MAS on semantic web enviroment, plan and behaviour structure of
the working agents and internal workflow of the system’s semantic DF service
are explained respectively.

4.1 Scenario

The agent environment in case is about Tourism domain in which traveler agents
try to reserve hotel rooms on behalf of their users while some other agents are
offering hotel services for those ones. In our prototype MAS, we have a traveler
agent and four hotel agents. Initially each one is unaware of the others. Those
four hotel agents are registered to the DF of the MAS with their service ad-
vertisements. Those agents use an agent description ontology called “fipa-agent-
management.owl” to advertise themselves (including their services and related
information) in DF. “df-agent-description” and “service-description” concepts de-
fined in this ontology are given in Fig. 2. This ontology involves the concepts
given in FIPA Agent Management Specification [9], thus making the platform
compatible with FIPA Specifications.

service-description

df-agent-description Tname: string
+name: agent-identifier +type: string
+services: Set of service-description +protocols: Set of string
+protocols: Set of string Mwntologies: Set of string
+ontologies: Set of string +languages: Set of string
+languages: Set of string +ownership: string
+lease-time: datetime +properties = Set of property

Fig. 2. DF Agent Description and Agent Service Description concepts

On the other hand, we use two properties of service description (type and
properties) to define agent services semantically. Values of these properties may
come from various domain ontologies. Therefore they involve URI of related
ontology concepts. For example in our case, hotel agents use “HotellnfoService”
concept which is defined in the OWL ontology called “TourismServices.owl” to
set type property of service description instance and to advertise themselves in
DF. This means that hotel agents provide a service called “HotellnfoService” to
other agents.

Service

VAV

I AirService I

HotelService I

I HotellnfoService I I HotelBookingService I

RoomAuvailabilityService

Fig. 3. TourismServices ontology

According to our scenario, hotel agents in here provide activities to their
customers. Hence, service descriptions include a service property called “activity”
within the set of service description properties. The range of the activity property
is an individual of the concept that comes from another domain ontology called
“Hotel.ow]”. TourismServices ontology and a fragment of Hotel Ontology are
given in Fig. 3 and Fig. 4 respectively. Service types and activities available in
each hotel agent’s service description are given in Table 1.

hasActivity

Hotel

Adventure | | Sightseeing | | Sports | | Mountain | | Citylnside | | Seaside

[oo]| | |

N

I

Fig. 4. A Fragment of Hotel Ontology

In the scenario, our traveler agent looks for suitable hotels in which “Sea-
Sports” activity is available. Hence, it first communicates with DF of the MAS;,
receives DF descriptions of the suitable agents and then calls “HotellnfoService”
service of those agents to get further information about the hotel.

Table 1. Four hotel agent services registered into the directory facilitator

| Agent’s name | Service type | Activity type |
hotell@seagent.com|TourismServices.owl#HotellnfoService| Hotel.owl#Windsurf
hotel2@seagent.com|TourismServices.owl# HotellnfoService|Hotel.owl# WinterSports
hotel3@seagent.com|TourismServices.owl#HotellnfoService| Hotel.owl#Swimming
hotel4@seagent.com|TourismServices.owl#HotellnfoService| Hotel.owl#SeaSports

4.2 Initiating the Platform

To instantiate the platform, the standard platform services are started first.
These are AMS, ACC (Agent Communication Channel) and DF in order. Agents
and services which aren’t registered to an AMS are not considered to be a part
of a platform, therefore registration to AMS is the initial behavior of all entities
(agents and services). The AMS maintains an OWL instance of the FIPA Agent
Management Ontology. When agents register themselves, their agent descriptions

are kept in this instance. The interaction between AMS and the agents are as
stated by FIPA specification [9]. If there is no problem with the content delivered
to AMS, it sends an agree message and if the agent is successfully registered, an
inform message is sent back by the AMS.

After the initialization of AMS, ACC is started. All communication is done
through ACC, thus it is needed when agents send their “register to AMS” mes-
sage. Finally, DF is created. It is not mandatory that agents register themselves
with DF on their creation as in AMS. This is why all entities take AMS and
ACC address in the construction but not the DF address. After the DF starts
its operation, it broadcasts that it is working. Then platform’s AMS and ACC
advertises their service descriptions to the DF. The types of these services are
reserved — fipa-acc and fipa-ams — so no other agent can advertise themselves
with those parameters.

When the instance of the standard Seagent platform is ready, it is then pop-
ulated with five agents mentioned above. These agents are supplied with their
AMS agent descriptions when they are created. They then use these agent de-
scriptions to register to AMS, which is already stated as a mandatory operation.
The agents are also planned to register their services with the DF. As in AMS,
the knowledge base of DF is an OWL ontology. This ontology has instances of
DF agent descriptions. An instance of DF agent description for one of the hotel
agents in N3 format is given in Fig. 5.

@prefix ts: <http://aegeants.ege.edu.tr/ont/TourismServices.owl#> .
@prefix xsd: <http://www.w3.org /2001 /XMLSchema#> .
@prefix hotel: <http://aegeants.ege.edu.tr/ont/Hotel.owl#> .
@prefix am: <http://aegeants.ege.edu.tr/ont/fipa—agent—management.owl#>.
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf —schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#> .
Qprefix : <#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
[a am: DFAgentDescription ;
am:language "http://aegeants.ege.edu.tr/ont/scl.owl”
am:name [a am: AgentIdentifier ;

am:name ”hotel4d@seagent.com” | ;
am:ontology _:bl ;
am: service
[a rdf:Bag ;
rdf:_1 [a am: ServiceDescription ;
hotel:activity hotel:SeaSports ;
am:name ”"sea sports service” ;
am:ontology _:bl ;
am:ownership ”"Foo Co.” ;
am:type ts:Hotellnfo | |
a rdf:Bag ;
rdf:_1 7http://aegeants.ege.edu.tr/ont/TourismServices.owl” ;
rdf:_2 “http://aegeants.ege.edu.tr/ont/Hotel.owl”

Fig. 5. DF Agent Description of a Hotel Agent in N3 format

4.3 Internal Plan of the Traveler Agent

In the Seagent Platform, there is a generic plan in which agents query on DF
and evaluate the match results to select agent(s) with appropriate service(s).
This plan simply contains one behaviour called “Find Agent from DF” and this
behaviour is composed of two actions: “Create Query and Send It to DF” and
“Select Agent”. The HTN structure of this plan is given in Fig. 6.

search criterial | OK |

Find Agent
from DF

search criteria | agents oK

Create Query and
Send It to DF

Select Agent

Fig. 6. HTN strcuture of the generic “Find Agent” plan

In the first action, the agent retrieves search criteria provision which is cre-
ated according to the previously mentioned Seagent Match Ontology. The search
criteria in here can define anything that can be retrieved from DF such as a ser-
vice description or an agent DF description. To model the criteria, a concept
which is called SeagentMatchRequest as a part of the Seagent Match Ontology
is used [12]. A SeagentMatchRequest has properties such as “hasPremise”, “has-
Query” and “hasSemanticMatch” to define RDF (Resource Description Frame-
work) triples which will be used in semantic match on DF. In “hasPremise” and
“hasQuery” lists, the requester defines RDF sentences of the RDQL (RDF Data
Query Language) [11] query which will be executed before semantic match to
filter result set according to non-semantic parameters. On the other hand, the
requester specifies each semantic parameter and its ontological value in “hasSe-
manticMatch” list to be used during semantic match on filtered query results.
Result type and desired semantic match degree of the match process is given in
“mustBind Variable” and “matchDegree” properties of the SeagentMatchRequest.

In our scenario, the traveler agent prepares the proper SeagentMatchRe-
quest instance in which a DF Agent Description is requested with Tourism-
Services.owl#HotellnfoService service and Hotel.owl#SeaSports activity. In this
request, match degree is emphasized as SUBSUMES and semantic matching is
requested on these two fields. That means the traveler agent accepts all agent ser-
vices which are semantically related with TourismServices.owl#HotellnfoService
service. Likewise the traveler agent also requests hotel activities which are se-
mantically related with Hotel.owl#SeaSports activity.

In order to be sent to DF, the instance of SeagentMatchRequest is serialized
in the outgoing ACL message based on Seagent Match Ontology. The content
of the message is shown in Fig. 7. Due to space limitations, the namespaces in
Fig. 5 are not given here again. As it is seen, the content language (SCL) itself
is an OWL ontology. Therefore the SeagentMatchRequest instance corresponds
to an individual in this ontology. It is the argument of the search action that is
requested from DF.

@prefix match: <http://aegeants.ege.edu.tr/ont/

seagent —match—ontology .owl#>
@prefix scl: <http://aegeants.ege.edu.tr/ont/scl.owl#>
[a scl:Action

scl:act ”search”
scl:actor

a am: Agentldentifier ;
am:name “df@seagent.com” | ;
scl:argument _:ml

_:ml a match: SeagentMatchRequest ;
match: hasPremise
[match:object ”fipa—agent—management.owl#ServiceDescription” ;
match: predicate "http://www.w3.0rg/02/22—rdf—syntax—ns#type”;
match:subject "?s”] ;
match: hasPremise
[match:object ”fipa—agent—management.owl#DFAgentDescription” ;
match: predicate "http://www.w3.0rg/02/22—rdf—syntax—ns#type”;
match:subject "?x”] ;
match: hasPremise
[match:object ”"http://.../ont/Hotel.owl#Activity” ;
match: predicate ”"http://www.w3.o0rg/02/22—rdf—syntax—ns#type”;
match:subject "?7a”] ;
match: hasQuery
[match:object 7?7a” ;
match: predicate ”"http://.../ont/Hotel.owl#activity” ;
match:subject "?7s”] ;
match: hasQuery
[match:object 7?7s” ;
match: predicate ”"http://../fipa—agent—management.owl#service
” .

;
match:subject "?7x”] ;
match: hasSemanticMatch
[match:object "http://.../ont/TourismServices.owl#Hotellnfo” ;
match: predicate ”"http://.../fipa—agent—management.owl#type” ;
match:subject "?7s”] ;
match: hasSemanticMatch
[match:object "http://.../ont/Hotel.owl#SeaSports” ;
match: predicate ”"http://www.w3.o0rg/02/22—rdf—syntax—ns#type”;
match:subject ”"7a”] ;
match: matchDegree ”"SUBSUMES”
match: mustBindVariable 77x”

Fig. 7. N3 formatted Seagent Match Request transferred in the ACL Message content

In the second action, the traveler agent receives DF Agent Descriptions those
are matched with the above request in a SeagentMatchResultSet instance. Each
element in this result set is a SeagentMatchResult and they are ordered accord-
ing to their match degrees. It should be noted that the DF of the MAS uses OWL

representations of those results to put them into the ongoing ACL message. So
the traveler agent parses the content and de-serializes each result object to pro-
ceed on its task. During this de-serialization it uses “seagent-match-ontology.owl”
to understand ontological content of the result objects. Since match results are
also semantically defined in the “seagent-match-ontology” as match requests, the
traveler agent retrieves query results to properly use in its plan execution. After
all, the traveler agent successfully retrieves appropriate services and it commu-
nicates with hotel agents starting from the first element of the result set.

4.4 Semantic Capability Matching on DF

When DF of the MAS receives request of the traveler agent; it determines proper
hotel agents - that means semantically “right” agents - and returns their descrip-
tions back to the traveler agent. As first, the engine performs an RDQL query
on the advertised hotel agent services and filters them according to the non-
semantic parameters. Then, it uses its reasoner (Ontolog) to determine semantic
relationship between the given request and recently filtered service advertise-
ments. As given in the request of the traveler, semantic query is performed on
service type and activity property of the descriptions. For both semantic param-
eters, match degree is desired as “SUBSUMES?” in the request. Semantic match
on service type is straightforward and all the advertised services are acceptable.
However, the traveler agent have asked for the hotel info services those have at
least a subsumes relationship between the given request activity type (SeaSports
in case). So, the engine matches the service descriptions hotell, hotel3 and hotel4
with the given request and sorts the match results starting from the most exact
one(s) in the following order: hotel4, hotell, hotel3 with EXACT, SUBSUMES
and SUBSUMES match degrees respectively. Each match result is returned in a
SeagentMatchResult object.

5 Conclusion

The main contribution of this study is to present how to develop a MAS running
on the Semantic Web environment. The case study, that is discussed in here, has
been implemented successfully by using the semantic features of the SEAGENT
platform. SEAGENT both presents a new development framework and a plat-
form that developers can use to create semantically enriched MASs. That means
ACL content transfer, agent service discovery and agent planning would all be
performed via processing the semantic knowledge of the environment.

Acknowledgments

This work is supported in part by the Scientific and Technical Research Council
of Turkey (TUBITAK), Project Number: 102E022. This support is gratefully
acknowledged.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bellifemine, F., Poggi, A., and Rimassa, G.: Developing Multi-agent Systems with
a FIPA-compliant Agent Framework, Software Practice and Experience, 31 (2001)
103-128

. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web, Scientific Ameri-

can, 284(5) (2001) 34-43

. Botelho, L., Willmott, S., Zhang, T., and Dale, J.: A review of Content Languages

Suitable for Agent-Agent Communication, EPFL 1&C Technical Report #200233.
Chen, H., et al.: Intelligent Agents Meet Semantic Web in a Smart Meeting Room,
in the proc. of Autonomous Agents and Multi Agent Systems 2004 (AAMAS’04),
NY, USA

Cost, R. S., et al.: Tttalks: A Case Study in the Semantic Web and DAML+OIL,
IEEE Intelligent Systems, January-February (2002) 40-46

Cost, R. S., et al.: Jackal: A Java-Based Tool for Agent Development, in the proc.
workshop tools for Developing Agents (AAAI98), AAAI Pres, Calif. (1998) 73-82
Dikeneli, O., Giimiis, O., Tiryaki, A. M. and Kardas, G.: Engineering a Multi
Agent Platform with Dynamic Semantic Service Discovery and Invocation Capa-
bility, Multiagent System Technologies - MATES 2005, Lecture Notes in Computer
Science (Subseries: Lecture Notes in Artificial Intelligence), Springer-Verlag, Vol.
3550 (2005) 141-152

Dikeneli, O., Erdur, R. C., Gumus, O., Ekinci, E. E., Gurcan, O., Kardas, G.,
Seylan, I. and Tiryaki, A. M.: SEAGENT: A Platform for Developing Semantic
Web Based Multi Agent Systems, AAMAS’05, ACM AAMAS (2005) 1271-1272
FIPA (Foundation for Intelligent Physical Agents): FIPA Specifications, available
at: http://www.fipa.org

Graham, J. R., Decker, K. S. and Mersic, M.: DECAF - A Flexible Multi Agent
Systems Infrastructure, Journal of Autonomous Agents and Multi-Agent Systems,
7 (2003) 7-27

JENA - A Semantic Web Framework for Java, available at:
http://jena.sourceforge.net

Kardas, G., Giimiis, O. and Dikeneli, O.: Applying Semantic Capability Matching
into Directory Service Structures of Multi Agent Systems”, Computer and Informa-
tion Sciences - ISCIS 2005, Lecture Notes in Computer Science, Springer-Verlag,
Vol. 3733 (2005) 452-461

McGuiness, D. L., and van Harmelen, F.: OWL Web Ontology Language Overview,
(2004), available at: http://www.w3.org/ TR /owl-features/

Paolucci, M., et al.: A Planning Component for RETSINA Agents, Intelligent
Agents VI, LNAI 1757, N. R. Jennings and Y. Lesperance, eds., Springer Verlag,
2000

Sycara, K., Paolucci, M., Ankolekar, A., and Srinavasan, N.: Automated discovery,
interaction and composition of Semantic Web Services, Journal of Web Semantics,
Elsevier 1 (2003) 27-46

Sycara, K., Paolucci, M., Van Velsen, M. and Giampapa, J.: The RETSINA MAS
Infrastructure, Journal of Autonomous Agents and Multi-Agent Systems, 7 (2003)
29-48

The OWL Services Coalition: OWL-S: Semantic Markup for Web Services, availabe
at: http://www.daml.org/services/owl-s/1.1/

Zou, Y., Finin, T., Ding, L., Chen, H., and Pan, P.: Using Semantic Web Technology
in Multi-Agent Systems: A Case Study in the TAGA Trading Agent Environment,
ICEC 2003, Oct 2003, Pittsburgh PA.

19.

20.

21.

22.

Greenwood, D., and Calisti, M.: Engineering Web Service - Agent Integration,
IEEE Systems, Cybernetics and Man Conference, 10-13 October, 2004, The Hague,
The Netherlands.

Louis, V. and Martinez, T.: An Operational Model for the FIPA-ACL Semantics,
Proceedings of the AAMAS’05 Workshop on Agent-Communication (AC’2005),
Utrecht, The Netherlands. (2005)

Nguyen, T. X. and Kowalczyk, R.: WS2JADE: Integrating Web Service with Jade
Agents, Proceedings of the AAMAS’05 Workshop on Service-Oriented Computing
and Agent-Based Engineering (SOCABE’2005), Utrecht, The Netherlands (2005)
Varga, L. Zs., Hajnal, A.: Engineering Web Service Invocations from Agent Sys-
tems, Proceedings of the 3rd International Central and Eastern European Confer-
ence on Multi-Agent Systems, CEEMAS 2003, June 16-18, Prague, Czech Republic
(2003) 626-635

