Personalized Access to Semantic Web Agents
Using Smart Cards

Riza Cenk Erdur! and Geylani Kardas?

!Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey
erdur@staff.ege.edu.tr
http://bornova.ege.edu.tr/ erdur
2Ege University, International Computer Institute,
35100 Bornova, Izmir, Turkey
geylani@bornova.ege.edu.tr
http://ube.ege.edu.tr/ kardas

Abstract. In this paper, we mainly focus on the integration of smart
card based access to semantic web enabled multi-agent systems. Besides
classical benefits such as smart card based authentication and authoriza-
tion, integration of such a feature will make it possible for semantic web
agents to take the personal knowledge stored as instances of a specific
personal ontology in the smart cards into account and behave in a way
that is more responsible to the individual requirements of the users. To
integrate smart card based access to a semantic web agent, we need an
agent plan specifically defined for that purpose. This plan will be re-
sponsible for both communicating with the smart card reader module
and for semantically manipulating the personal knowledge that is trans-
ferred from the card. In the paper, we give the implementation level
details for this plan. Another important aspect of the paper is that var-
ious alternatives for storing ontological knowledge on smart cards have
been discussed based on some experimental results.

1 Introduction

Semantic web [2] aims to transform the World Wide Web into a knowledge repre-
sentation system in which the information provided by web pages is interpreted
using ontologies. This gives the opportunity for autonomous and interacting en-
tities - semantic web agents [6] - to collect and interpret semantic content on the
behalf of their users. On the other hand, smart card technology has paved the
way for an individual to carry personal information in a small card with storage,
data processing and security features [8].

By the marriage of agent, semantic web and smart card technologies, in
addition to classical benefits such as smart card based authentication and au-
thorization for accessing agent systems, semantic web agents can be accessed
using smart cards that store users personal knowledge as instances of a specific
personal ontology. By this way, agents can take the personal knowledge stored

in the card into account in adapting their behavior to act in a way that is more
responsible to the individual requirements of their users.

Here, we will describe a scenario to illustrate an example case where enabling
smart card based access to semantic web agents may have potential benefits for
the users: Let us think of a multi-agent system, which has been established to
provide tourism related facilities in a specific geographic area. If smart card based
access to this multi-agent system is provided via card terminals located in several
places such as airports or various locations in city centers, then a newly arrived
traveler without a pre-built travel plan can have the chance of discovering the
hotel facilities that best matches against her personal knowledge stored in her
smart card. In addition, after discovering the hotel facility, it will also be possible
for the traveler to make an online reservation from the terminal using the credit
card knowledge that is defined and stored as part of her personal knowledge.
We believe that this scenario is valid, because there are always travelers around
without a pre-built travel plan.

A semantic web enabled multi-agent system infrastructure that can be used
in realizing the above scenario is shown in Fig. 1.

T] =
.— : U Services Information| &
r ser fo
Agent A Agent(s) | %y
m g g
i = =7 i
n =7 {*¥
‘: Information
Users with stcre_d n
smart cards semantic web
* A Mudti-agene System i a Specific Domain standards such
as OWL.

Fig. 1. The basic infrastructure for smart card based access to a multi-agent system

As shown in Fig. 1, the user agent in the multi-agent system must have the
functionality to deal with the smart card based accesses. The user agent also
must have the capability of understanding ontologies, since it has to understand
the personal ontology instance that is transferred from the users smart card. In
the multi-agent system, information is represented using semantic web standards
such as OWL [12]. Hence, the information agents have the capability of manipu-
lating semantic knowledge and answering queries over that semantic knowledge.
Agent platform services, which are agent management, agent directory, and agent
message transport services, are standard services that a platform, on which the
multi-agent system is operating, has to provide. These services are usually pro-
vided as built-in services by the multi-agent development framework/ platform
used.

In this paper, we mainly focus on the integration of smart card based access
to the agents in a semantic web enabled multi-agent system. To achieve such

kind of integration, we have to define a basic agent plan for that purpose. This
agent plan is needed both for communicating with the smart card reader modules
and for manipulating the transferred personal knowledge. Manipulation of the
transferred personal knowledge includes parsing it, constructing the ontology
model in memory, and preparing requests for querying the knowledge stored in
information agents.

In smart card technology related literature, there are several studies covering
the use of smart cards in Web applications, especially in medical healthcare
systems [4]. However, there is no work discussing in detail either how smart card
access support can be integrated to multi-agent systems or how ontologies are
stored in smart cards, transferred from them and manipulated in agents. This
paper aims to fill in this gap by discussing the implementation level details.

2 Architecture for Enabling Smart Card Based Access

In this section, first, the generic agent plan needed for smart card based access to
a semantic web agent is explained. Then, details concerning the implementation
of this plan are given. Finally, the personal ontology, which is used in representing
the personal knowledge of each user, is given and various alternatives about
storing ontologies in smart cards are discussed.

2.1 A Generic Agent Plan for Smart Card Related Behavior

To behave in a way to satisfy what is expected from them, agents formulate
plans. Each plan consists of a number of tasks that are scheduled and executed.
Plans are represented using a planning formalism. Hierarchical Task Network
(HTN) is the most frequently used planning formalism in the planner modules
[11] of agent development frameworks. Hence, the plan component defined for
smart card access in this paper will be explained based on the HTN approach.

HTN structure consists of nodes that represent tasks. Since a task may be
composed of subtasks, the plan structure may take the form of a tree-like struc-
ture. There are two kinds of links in a HTN representation. Reduction links
describe the de-composition of high-level tasks to subtasks. Provision or out-
come links represent value propagation between task nodes [11].

In an agent, smart card access related behavior can be modeled as a composite
HTN task structure that consists of three subtasks, which are card reading and
session opening subtask, the ontology manipulation related subtask(s) and card
writing and closing the session subtask. Fig. 2 shows the HTN structure of this
composite task.

As shown in Fig. 2, the smart card access task is a complex task that consists
of three subtasks. The first subtask is responsible for waiting for the smart card
to be inserted into card acceptance device and opening a new session when the
card is inserted. After the session is opened, knowledge is read from the card
and this knowledge is passed to the second subtask via the provision Knowl-
edge FromCard. The second subtask is a complex task that represents the be-
havior related with the manipulation of the semantic personal knowledge. After

init) 0X.

Smart Card @1
Access Error

b (Composite Task) @+
A

—

Tnit_ Knowlegde

O K.
Parameters P FromCard

Card Reading S Ontology

and /Eﬁ . d
o M lat
Opening Sessjon r .

{Composite Task)

Results OK.

m?‘

Closing Sessign

><Tg

Knowlegde Pgrosnal Ontology
From Card QK. odel 0‘%
1 @ é Query
Parse and Map o / Semantically prror
Personal Knowledge @ ®

Fig. 2. HTN structure for smart card access behavior

the information agents are queried based on the concepts in the personal knowl-
edge, incoming results are passed to the third subtask via the Results provision,
which writes the necessary results back to the card and closes the session. We
used a task for card writing, because we preferred the final results of a request
to be written on users card so as to keep a history for the user.

2.2 Implementation Details for the Generic Plan

We need two basic components for implementing the smart card based access
support plan completely. The first component is a middleware, which will enable
an agent to communicate with the smart card. The second component is an API
that is going to be used for the manipulation of ontological knowledge. In the
following paragraphs, we discuss these two components.

In general, a smart card and an application communicate using a special pro-
tocol, which is called as Application Protocol Data Unit (APDU) and which is an
application layer standard based on ISO 7816-4 [8]. In order to retrieve personal
knowledge from the card, an agent needs to communicate with the smart card
using APDU packages. However, we think that this task that is quite primitive
and that integrating codes for pure smart card access will make an agents plan
unnecessarily complicated. Hence, we have proposed a layered approach and us-
ing the OpenCard Framework (OCF) API [10] developed a middleware to handle
smart card communications on behalf of the agents. OCF is an API that sup-
ports communication between the smart card host and the applications inside
the card. It supports Java platform and is maintained by the OpenCard Consor-

tium. Our middleware uses this API to control smart card events and manage
operations like card applet selection, cryptographic key exchange, receiving and
sending of APDUs.

The user agent, which is the users entrance point to the multi-agent system,
is responsible for manipulating the personal knowledge that is transferred from
the smart card. Personal knowledge is an instance of the personal ontology.
Personal knowledge is stored in the smart card in compliant with the semantic
web standards, such as an OWL document. The user agents access this document
over a secure and authenticated communication channel established between the
smart card and the agent itself.

An agent handles the semantic knowledge by creating the resource model of
the personal ontology and querying the model. For example, in tourism domain,
a user agent using the personal knowledge should first determine its customer’s
preferences for hotel reservation and then based on these preferences prepare
requests for querying the hotel information represented semantically in hotel
agents. In our implementation, we have used JENA API [9] to supply reading,
writing and semantic querying of ontological knowledge in agent components.
JENA is a semantic web framework, which provides a programming environment
for RDF, RDFS and OWL and includes a rule-based inference engine. It also
ensures a query language for RDF called RDQL. Our agents use RDQL to query
on the ontology model to obtain the desired semantic knowledge.

During the implementation of the multi-agent system, the generic HTN struc-
ture, for which the subtask implementation details are given above, is instanti-
ated and executed based on the plan definition and execution model of the agent
development tool that is being used. For example, if JADE [1] is being used as the
agent development framework /platform, then the generic HTN structure will be
implemented and executed in compliant with the behavior model of JADE. How
the generic plan is instantiated using an agent development framework /platform
will be clear in section 3, which includes a case study explaining the instantiation
of this plan in JADE environment.

2.3 Personal Ontology Example and Storing its Instances on the

Card

As mentioned before, the personal knowledge that is stored in the cards should
be an instance of a specific personal ontology. Such an example personal ontology
consists of two main parts: The first part is the domain independent part, where
user identification, contact and payment information are kept. The other part
is the domain specific part and includes knowledge represented using a specific
domain ontology. For example, if the smart card is intended to be used in tourism
domain for travelers who want to discover hotels and make reservations, then
the knowledge belonging to this part will be represented using a specific tourism
ontology defining facilities about hotels and reservations. One such ontology is
introduced in [7].

Various alternatives may be considered for storing ontological knowledge in
smart cards. These various alternatives are discussed below for different cases
by giving the possible advantages and disadvantages:

Alternative-1: Store the personal knowledge completely in the card.
Advantages for alternative-1:

i) The knowledge stored in the card can be transferred to the agent by taking
the advantage of strong security and authentication features of smart cards.

Disadvantages for alternative-1:

i) The storage capacity of smart cards is limited. However, the personal
ontology is not very complex in most cases and capacity would not be a serious
problem with the application of the scaling down techniques. One such technique
is introduced in [3].

ii) To investigate whether response time may be a problem as the ontology file
sizes get larger, we have measured the time needed to read or write ontological
knowledge and have seen that as the file sizes increase, the time needed to read
from or write to the card increases linearly. Measurements have been realized
using Gemplus GemXpresso 211/PK model Java cards with multi applet support
and with 32K ROM, 32K EEPROM and 2K RAM. JavaCard Framework 2.1 has
been used during on-card software development. Gemplus GCR410 serial card
read/write device has been connected to a terminal PC with 9600 baud data
transmission rate. The measurement results are shown in Fig. 3. As Fig. 3 shows,
larger personal knowledge file sizes may cause delays in response time. One of the
most important reasons for delays is that APDU packets are maximum 255 bytes
length and this requires multiple packet exchanges for large file sizes increasing
the response time. In addition, the time values in Fig. 3 also include the time
needed to convert the byte stream to a Java file in the agent. Please note that
the ontological knowledge is stored in byte-streams in the card, which then needs
a conversion into necessary Java files/objects.

m

£ = 100000
£E 80000

S 2 B0000 —4—Read
g% 40000 B —\rite
c=

EFE

=

0 - -T—T—TT—T—T—T—T—T—T—T
rﬁafﬁﬁﬁw%@@@ﬁ&ﬁ

omtology file s ze (in bytes)

Fig. 3. Read/Write times for different ontology file sizes

Alternative-2: Store only the URL of the personal knowledge document in
the smart card. In this case, the agent retrieves the URL of the ontology instance
document rather than the document itself and then accesses the document over
the Internet.

Advantages for alternative-2:

i) Obviously this approach decreases smart card communication time and
shortens card sessions.

Disadvantages for alternative-2:

i) The security feature of smart cards cannot be used. The agent itself should
manage the accessing privileges and security over the Internet. This may be a
problem for the private part of personal knowledge, such as the payment infor-
mation.

Conclusion: We have preferred the first alternative in our implementation
although storing ontologies completely in the card may cause delays for especially
large ontology files and especially for write operations. The reason for preferring
the first alternative is that we think of taking the advantage of smart cards
as a means of secure, portable and cheap personal knowledge storage media
for accessing semantic web enabled multi-agent systems. In addition, ontology
file transfer delays can be overcome using more efficient connection technologies
between the card acceptance device and the host. In our experiment, the serial
COM port has been used, which is another potential cause for the delays in
transferring large ontology files.

3 Case Study: A Multi-Agent System for Tourism
Domain

As a case study, we have implemented a prototype semantic web enabled multi-
agent system for realizing the infrastructure of the scenario given in the intro-
duction section. There exist two types of agents in the developed system: hotel
agents and customer agents. A hotel agent is an information type agent that rep-
resents a hotel in the system. A customer agent is an interface type agent that
is responsible for searching suitable hotel rooms and making reservations based
on the personal knowledge read from the card. The overall architecture of the
system is shown in Fig. 4. The agents in the system have been developed using
JADE [1], which currently is one of the most widely used Java based multi-agent
system development framework/platform in the multi-agent literature.

The implementation consists of three Java packages, which are named as
“CustomerCard”, “CustomerCardClient” and “Tourism” respectively. The “Cus-
tomerCard” package includes on-card Java application, which is developed using
Java Card Framework (JCF) [5]. This package is related with the smart card
reader /writer unit connected to the host PC via COM port as shown at the
left side of Fig. 4. The “CustomerApplet” class in this package is extended from
the “javacard.framework.Applet” and it processes command APDUs sent from
a customer agent. The “CustomerCardClient” package behaves like a middle-
ware between the on-card applet and the customer agent. As it is shown in the

middle part of Fig 4., this package resides on the same host with the customer
agent that has smart card access and it supports functionalities such as smart
card applet selection, APDU communication and hex-coded data package han-
dling. The third package, which we named as the “Tourism” package, contains
the agents in the developed multi-agent system, including the hotel agents and
the customer agents. The agent management service maintaining life cycles of
agents in a multi-agent system and the directory service providing yellow pages
services to other agents are already supported by JADE platform.

Computer that hosts a
customer agent
Agent
. teni Other Management
Event Listening Customer o fce
Mechanism Custom Servi
Agent (Jade Agents -
Components) Du’ec?u-y
VAN Service

A

s

Card Read/ __/\‘

Write Unit Classes communicating v

(CAD) with apps on card '
Hotel Agent-1 Hotel Agent-N
(Tade Agent) (Jade Agent)

......

1: Sublevel communi cation with smart cards using APDU packages
2: Data request from smart card or data update on smart card

Fig. 4. A multi-agent system with a smart card access integrated customer agent

The hotel agents and the customer agent are instances of the class “Hotel A-
gent”, and “CustomerAgent” respectively. These classes are derived from jade.core
Agent class and these agents behaviors are implemented using the behavior
model of JADE. During initialization, a hotel agent registers itself to the plat-
forms directory service as a Hotel Service provider. So, when a customer agent
looks for a specific hotel room, it gets the hotel agents description from the direc-
tory service and can interact with this hotel agent. To be semantic web enabled,
the RDQL [9] query language is supported. As mentioned before, JENA API
has been used in semantic knowledge manipulations in all kinds of agents.

3.1 Instantiating the Generic Smart Card Access Plan in JADE
Environment

The generic HTN structure given in section 2 can be modeled as a finite state
machine (FSM) with transitions between subtasks. In JADE, there is a composite
behavior subclass “jade.core.behaviours.FSMBehaviour” [1], which can be used
to model behaviors as a finite state machine. For this reason, we have used

JADE’s FSM behavior to model the customer agents behavior as shown in Fig.
5. Each state of the FSM is implemented as a subclass of jade.core.behaviors.
OneShotBehaviour.

@ sTaRT

CARD_WAITING CARD_SESSION_OPENEDR |

RESTART_RESERWATI

SEMD_QUERY

RESERWVATION_IMIT

RECENVGRS_NOT_FOUND ERY_MEGATNWE_RESULT

INVALID_CARD_SESSION

RESTART ALL QUERY_TIMEOQUT_OR_WRONG_CONTENT

[ERROR

SEND_RESERWVATION_REQUEST
INITIALIZE_MEWY CARD_SESSION

FIMNISH

END

RESERWATION_] 8]

RESERWVATION_FINIZH]
J RESERWVATION_SUCCEEDED

RESERWATION

FINISH_ALL

Fig. 5. Finite state machine of the customer agents behavior

Initially, the state is CARD _WAITING. After the card is inserted and a suc-
cessful customer PIN entry is made, customer’s personal knowledge is transferred
from smart card and the RESERVATION INIT becomes the new state. In that
state, the customer agent searches for the descriptions of the agents providing
hotel reservation services and updates its contact list based on the response from
the directory service so that the hotel agents that are going to be queried are
determined. Now, the state becomes QUERY. In this state, the customer agent
first constructs an ontology model for the personal ontology instance transferred
from the card. Second, based on the concepts in the domain dependent part of
users personal knowledge, the customer agent prepares requests, places them in
agent communication language messages and sends them to each hotel agent
determined before. Then, it waits for the replies from hotel agents. When a suc-
cessful query result is returned from one of the hotel agents, the customer agent
begins to behave in RESERVATION state and makes a second contact with the
suitable hotel agent for reservation. Customer agent writes the reservation in-
formation to the customers smart card and finishes customers card session in
RESERVATION FINISH state. At this point, it can again wait for a new card
session or completely terminates by calling doDelete() method in FINISH state.
The errors during the execution of the behavior are managed in ERROR state
of the behavior.

4 Conclusion

In this paper, it has been mainly discussed how to enable personalized access to
semantic web enabled multi-agent systems using smart cards that store users’
personal knowledge as instances of a specific personal ontology. For this pur-
pose, a generic agent plan, which is responsible for communicating with the
smart card terminal via a suitable middleware and for transferring and seman-
tically manipulating the personal knowledge, is given. This plan has been tested
with agents implemented on JADE platform. The reason for choosing JADE is
that it is currently one of the well-known and widely used agent development
frameworks /platforms for Java environments.

Another aspect that is discussed in the paper is the various alternatives for
storing ontological knowledge in smart cards. As it is stated in the local conclu-
sion part in section 3, we have preferred the approach of storing the personal
knowledge completely in the card, because we wanted to take the advantage of
smart cards as a means of secure, portable and cheap personal knowledge storage
media for accessing semantic web enabled multi-agent systems.

References

1. Bellifemine, F., Poggi, A., and Rimassa, G.: Developing multi-agent systems with
a FIPA-compliant agent framework. Software Practice and Experience, 31 (2001)
103-128.

2. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web, Scientific Amer-
ican, 284(5), (2001), pp:34-43.

3. Bobineau, C., Bouganim, L., Pucheral, P.,Valduriez, P., PicoDMBS: Scaling Down
Database Techniques for the Smartcard, VLDB (2000): 11-20

4. Chan, A.T.S.: Web-enabled smart card for ubiquitous access of patient’s medical
record. WWW ’99: Proceeding of the eighth international conference on World
Wide Web, 31 (1999) 1591-1598.

5. Chen, Z.: Java CardTM technology for smart cards architecture and programmers
guide. Addison-Wesley, Massachusetts USA, (2000)

6. Dickinson, I.: The Semantic Web and Software Agents: Partners, or Just Neigh-
bours?, AgentLink News 15, September, 3-6 (2004). http://www.agentlink.org

7. Dogac, A., Kabak, Y., Laleci, G., Sinir, S., Yildiz, A., Kirbas, S., Gurcan, Y.:
Semantically enriched web services for the travel industry. SIGMOD Record 33(3):
21-27 (2004).

8. Hansmann, U., Nicklous, M.S., Schack, T. and Seliger, F.: Smart card application
development using Java, Springer-Verlag, Berlin Germany, (2000)

9. JENA, A Semantic Web Framework for Java, http://jena.sourceforge.net/

10. OpenCard Consortium, OpenCard Framework 1.2 Programmer’s Guide, IBM
Deutschland Entwicklung GmbH, Boeblingen Germany, (1999)

11. Paolucci, M. et al., A Planning Component for RETSINA Agents, Intelligent
Agents VI, LNAI 1757, N.R.Jennings and Y. Lesperance, eds., Springer Verlag,
(2000).

12. Web Ontology Language (OWL), http://www.w3.0rg/2001/sw/WebOnt/

