
A Pervasive Environment for Location-Aware and
Semantic Matching Based Information Gathering

Riza Cenk Erdur1, Oguz Dikenelli1, Ata Önal1, Özgür Gümüs1, Geylani Kardas2,
Özgün Bayrak1, Yusuf Engin Tetik1

1 Ege University, Department of Computer Engineering, Bornova, 35100 Izmir, Turkey
{erdur, oguzd, onal, gumus}@staff.ege.edu.tr, {bayrak, tetik}@bornova.ege.edu.tr
2 Ege University, International Computer Institute, Bornova, 35100 Izmir, Turkey

geylani@bornova.ege.edu.tr

Abstract. The main motivation of this paper is to integrate the semantic
matching capability into the pervasive computing environments. In this context,
we have developed an environment that provides a semantic matching based
information gathering capability for mobile users. An important feature of the
developed environment is its domain independence. Domain independence is
realized by first transferring the concepts of a specific domain’s ontology in
XML format from the server to the mobile device, and then parsing that XML
file for dynamically creating a visual interface, using which users can enter
requests. The generic design of the semantic matching engine also contributes
to domain independence, since a generic matching engine can accept inputs and
return outputs using concepts from any ontology. To show the effectiveness of
the architecture, a case study was implemented in a campus area. In this case
study, mobile users can find closest places to reside or eat something.

1 Introduction

Advances in the enabling technologies for pervasive computing [9] have already
established the infrastructure for mobile users to access the information from
anywhere and anytime. Based on this infrastructure, different applications have been
developed for information access and service provisioning in pervasive environments.
On the other hand, Semantic web [1] describes a new vision for web computing in
which knowledge is represented and processed semantically using ontologies. An
ontology defines the concepts within a domain, describes the properties of each
concept, defines the relations between concepts, and rules can be constructed for
reasoning about concepts. Semantic matching is kind of an ontology-based
information search. A semantic matching engine takes concept(s) from an ontology as
input and then it returns knowledge which semantically matches the input concepts.
The advantage of semantic matching is that when an exact match is not found,
semantically related results can be returned to the user. In this paper, our primary
motivation is to take the advantage of semantic matching based information gathering
in pervasive environments.

In the pervasive computing and semantic web literature, there are pioneering
studies that use semantic web technologies. For example, there are pervasive
applications that use ontologies for context information modeling or semantic service
discovery. Below, we will summarize the previous works by comparing them with
the system that we have developed so that we can show in what ways our work is
different from them.

There are studies that extend the existing service discovery infrastructures using
semantic web technologies: Chakraborty, et. al. [2] implemented a semantic service
discovery infrastructure that uses Darpa Agent Markup Language (DAML) to
describe the services. The infrastructure contains a Prolog based reasoning engine.
Masuoka at. al. [7] has taken the semantic service discovery in pervasive
environments one step further and developed an application, where semantically
discovered services can also be composed to achieve more complex tasks. In addition
to semantic service discovery, there are studies that use ontologies for modeling
context information. Wang, et. al. [10] extends the basic context information
modeling by proposing an OWL (Web Ontology Modeling) encoded context
ontology for pervasive environments. Chen et. al. [3] describes an ontology called as
SOUPA (Standard Ontology for Ubiqutious and Pervasive Applications). Using
OWL, SOUPA defines vocabularies to represent intelligent agents’ beliefs, desires
and intentions, time, space, events, user profiles and actions and policies for security
and privacy. Although these studies use ontologies for both semantic service
discovery and context information modeling, the capability of semantic matching
does not exist in these systems.

On the other hand, there are many classical location-based information search
services in mobile environments [4]. For example, there are systems where users with
mobile phones can be directed to the nearest local restaurants, shops, etc. These
systems can be considered as standard information search services for mobile users.
There are two features, which make our work different from them. The first feature is
being domain independent or opennes. This means that new domains can be added at
any time. The visual user interfaces, which are necessary to prepare requests for
querying these domains, are created dynamically at run-time by first transferring and
then parsing the XML file containing the concepts belonging to that domain’s
ontology. Supporting semantic matching is the second feature where the system that
we have developed differs from them. Using semantic matching, a result list ranked
by the degree of semantic match can be presented to the user in response to his/her
request so that he/she can have the option of accessing to the most semantically
related information. So, we take the previous works one step further by integrating
semantic matching capability into the information gathering process in pervasive
environments and by modeling the system in a way that it supports domain
independence.

The rest of the paper is organized as follows: Section 2 gives an example scenario
to show usefulness of the proposed system. The architecture of the developed system
is discussed in section 3. The semantic matching engine component is discussed in
section 4. Section 5 gives an example case study, which demonstrates how the sample
scenario above is realized. Section 6 includes the conclusion.

2 Motivating Example

As the motivating example, we give below an example scenario to illustrate how the
system that is proposed in this paper can be useful:

John is a student who has been admitted to a university in a foreign country. In his
new university campus and the nearby areas, there is a pervasive computing
infrastructure where an information search service is provided for different domains
such as accommodation, eating out, and shopping etc. He has not arranged an
accommodation before, so when he visits the campus area for the first time, he asks
his mobile device to list the available services given to mobile users around. First of
all, he has to arrange an accommodation and chooses the accommodation domain.
Whenever he chooses it, a visual user interface is created automatically and
dynamically so that he can enter requests about accommodation. He chooses the
concept of dormitory from the interface. He also enters other filtering criteria such as
price or room capacity (e.g. he requests rooms for only one person). He was a bit late,
so when he looked at the results presented, he saw that no dormitory could be found,
but that the semantic matcher returned him names and addresses of some pensions
with the desired characteristics and ranked with respect to distance from him. After
visiting these pensions to see whether they are suitable to stay, he feels that he is
hungry and chooses the eating domain from his mobile device, which results in the
dynamic creation of a visual interface to prepare eating out requests by entering some
concepts. He selects RedMeatRestaurant concept from the interface and the semantic
matcher returns two red meat restaurants at top of the list and also one kebab
restaurant since KebabRestaurant concept is semantically related with
RedMeatRestaurant concept. Since the returned kebab restaurant is closer than red
meat restaurants to him, he decides to go to the kebab restaurant to eat some Turkish
kebab. The same way of information gathering is realized as he chooses other
domains such as shopping, culture, etc. Finally, the same scenario can also be applied
not only in campus area, but also for travelers arriving in a city, citizens looking for
real estate to buy or hire in a specific city area, and such.

In this paper, we introduce a software architecture to develop a pervasive system
that provides the requirements of above example scenario. The critical points of this
scenario are that openness of the system architecture in terms of addition of new
service domains, and the ability to gather semantically related services upon request.

3 System Architecture

The application that we have developed consists of three basic components. These are
the mobile client component, the server component and the semantic matching engine
component. The internal modules of the client and server side components, and the
semantic matching engine component are shown in Fig. 1 and will be discussed in
more detail in the following subsections.

Fig. 1. Internal modules of client and server components

3.1 Mobile Client Component

The client side component is responsible for getting the GPS data, providing the
interface for specifying the user requests and displaying the results, sending the
request to the server in XML format and parsing the results received in XML format.
The GPS data is received using the GPS receiver. The connectivity of the mobile
device and the GPS receiver is provided using a Bluetooth transceiver.

The “GPS Data Parser” module is responsible for parsing the location data
retrieved from the GPS receiver. Connecting the GPS receiver with a mobile device
using Bluetooth starts a stream of GPS data flowing over the Bluetooth serial port. To
get the most current position of the client, the GPS data parser module reads
periodically the GPS message strings, which are updated every second. After getting
GPS data stream, this module parses it and gets the Latitude and Longitude
coordinates.

“User Interface Generator” module is critical, since the creation of visual
interfaces dynamically at run-time is the responsibility of this module. The XML file
containing the concepts belonging to a specific domain’s ontology is transferred from
the server first. Then, the transferred XML file is parsed and a visual interface is
created. Hence, a user interface where users can enter their requests is created
independently at run-time for each different domain. In fact, the ontologies are
represented in Web Ontology Language (OWL) in the semantic matcher component.
However, since mobile devices are resource limited, we simplified and represented
these ontologies in simple XML format to make the parsing process efficient in the
mobile device. Otherwise, the mobile device should execute the code necessary to
parse OWL documents.

After the user selections are collected, they are converted into XML together with
the GPS location data by the “XML Message Generator” module. We preferred the
requests and results to be transmitted in XML format, since it is a well-known web
standard. The “XML Message Generator” module then sends the request in XML
format using a GPRS Http network connection. To send the data via GPRS Http
network, the client device needs to activate the GPRS settings. As an example, if the

user selects SeaFoodRestaurant concept, corresponding request XML document is
shown below:

<request>
 <PlaceType>SeaFoodRestaurant</PlaceType>
 <gpsData>
 <latitude>22.333E</latitude>
 <longtitude>52.444N</longtitude>
 </gpsData>
</request>

The “XML Parser” module parses the XML document that includes domain concepts
initially and the incoming XML formatted results that are received from the Http
server response. The incoming results are in the form of a collection, which is
organized as an XML document. The parser iterates over the collection and passes the
data to the “User Interface Generator” module to print the results on the user screen.
As an example, a part of the result XML document is shown below. This result tells
the user that a restaurant, whose name is Blue Ocean, exactly matches what he/she
requests. Other details about the place such as its address, telephone, opening hours,
geographical position (GPS data) and distance (in meters) from him/her are also
included in the result.

<matchResults>
 <result>
 <name>Blue Ocean</name>
 <matchDegree>EXACT</matchDegree>
 <tel>+90-232-1111111</tel>
 <address>Bornova Street 1</address>
 <openingHours>08:30 AM - 11:00 PM</openingHours>
 <gpsData>
 <latitude>27.229E</latitude>
 <longtitude>38.455N</longtitude>
 </gpsData>
 <distanceToClient>350m</distanceToClient>
 </result>
 :
 :
</matchResults>

Mobile devices have a limited memory. For this reason, the “XML Parser” module
has been designed to be small and light. The pull parser technique, in which the
software drives the parsing, has been used. In this technique, only some part of a
XML document is read at once; hence, it does not need a large memory size. The
application drives the parser through the document by repeatedly requesting the next
piece. Our application can process and display information as it is parsed after being
downloaded from the server. In this case it basically iterates over the XML tree and
finds the items. The parsed data is then passed to the “User Interface Generator”
module to be printed on the screen of the mobile device.

3.2 The Server Component

A server side program, which in our case a Java Servlet component, meets the user
request and passes it to the “Semantic Matching Engine Interface” module. The
“Query Parser” sub module of this interface module decomposes the request into a

format that the semantic matching engine can understand and then sends the request
to the semantic matching engine as shown in Fig. 1. It then waits for the results from
the semantic matching engine. The matching results are sorted by the degree of match
and location knowledge and are inserted into a collection. This collection is converted
into an XML message by the “XML Response Generator” sub module. The formed
XML message is then forwarded to the servlet component so that it can be sent to the
requester as an Http response.

3.3 The Semantic Matching Engine

Semantic matching engine is a registry to keep records of knowledge about advertised
places in a specific domain. It can be searched for the closest place to eat something,
to reside, to buy some clothes etc. using domain dependent information. So, a place
that gives a service in a specific domain, must advertise itself to the matching engine
using concepts in predefined domain ontologies. For example, a restaurant that serves
sea foods, must advertise itself using the SeaFoodRestaurant concept defined in
eating place ontology given in Fig. 2.

Fig. 2. An example eating place ontology to show the taxonomy of places in a domain

The basic idea behind the matching process is to find the advertised concepts that are
identical to the requested one. However, the advertised and requested concepts can be
semantically related with each other but are not directly identical. In this case, a
semantic matching process is required. Semantic matching process is a matching
process that can identify the semantic relationships between the advertised and
requested concepts. Semantic matching engine is the software module that executes
this process. For example, if a restaurant advertises itself to the matching engine
using meat restaurant concept, then a request that searches a meat restaurant is
matched with this advertised restaurant. With semantic matching process, a request
that searches a kebab restaurant is also matched with the same advertised restaurant if
there is a relationship between meat restaurant and kebab restaurant concepts.

In the literature, there are several studies [6], [8] proposing algorithms especially
for discovery of semantic web services. We have adapted the matching algorithms for
web services proposed in previous works and redesigned it for discovering places in a

specific domain. In our system (Fig. 1), mobile users can obtain the list of the most
suitable places based on their request and global position. Requested place type in a
specific domain and global position are input to our engine to realize semantic match.
Each place is advertised to the engine using predefined domain ontologies to specify
its type and GPS data to specify its location.

Place types are ontology classes with defined namespace URIs. In this study, we
have defined a concept named as “Place” to advertise the places in different domains
to the matching engine. One of the attributes of this concept is the “Place Type”
which takes value from different domain ontologies and specifies the domain
dependent value of the advertised places. For example, when a restaurant that serves
sea foods, wants to advertise itself to the matching engine, it fills the “Place Type”
attribute with SeaFoodRestaurant concept from the eating place ontology shown in
Fig. 2. The other critical attribute is the “GPS data” that defines the geographic
position of the advertised place and it takes value from GPS ontology. The other
attributes are name, address, telephone and opening hours. The “Place
Advertisements Database” module of the semantic matching engine stores all the
places in a particular area (e.g. campus) with their GPS Data.

The “Matching Engine” module realizes matching of mobile user’s request and
advertised places and produces the list of the suitable places. Consider the types of
requested and an advertised place are represented with C1 and C2 respectively.
According to the matching algorithm in [8], the “Matching Engine” module
determines four types of match degree between these two concepts:

− exact match when C2 and C1 are equal or C1 is subclass of C2
− plug-in match when C2 is more generic than C1 (C2 subsumes C1)
− subsumes match when C2 is more specific than C1 (C1 subsumes C2)
− fail when neither of the conditions above satisfies

The semantic matching engine has a “Reasoner” module for determining ontology
class relations. It gives the superclass distance of the two ontology classes with given
URIs using the relations between them. For doing this, it parses OWL ontologies and
finds subsumption relations. For example, consider the following simple ontology
class tree in Fig. 2. According to the ontology model, the “Reasoner” module finds
superclass distances as -1, 0, 1 and 2 in (SeaFoodRestaurant, CakeShop),
(SeaFoodRestaurant, SeaFoodRestaurant), (SeaFoodRestaurant, Restaurant) and
(SeaFoodRestaurant, EatingPlace) ontology class pairs respectively. In case of a
multiple inheritance, there will be different paths from a subclass to its superclass. In
this case, it returns the shortest distance as a result by performing a depth-first search
on the ontology tree. Calculated ontology class distances are cached as instances in
the “Reasoner” to optimize performance. When the same distance query is received
multiple times they are all responded (excluding the first one) via it’s cache.

The “Matching Engine” module determines the match degree between the
requested and advertised place types using the superclass distances found between
corresponding ontology classes. This is realized with the following pseudo code in
the “Matching Engine” module:

If distance = 0 or distance = 1 then EXACT match
If distance > 1 then PLUGIN match

If distance < 0 then calculate reverse_distance
 (reverse_distance means parameters in reverse order)
 If reverse_distance > 0 the SUBSUMES match
 Else FAIL in match is determined

The scoring function of the “Matching Engine” is ordered as exact > plug-in >
subsumes > fail. The engine sorts out advertised places according to their semantic
degree of match with the given requested type. The GPS data of the places are used as
tie-breaker to sort the places that have the same match degree. So, the semantically
equal match results are sorted according to their distances to the user. To keep
implementation and test simple, only latitude and longitude tags of a GPS data are
evaluated and distance between two geographic points is calculated using a formula
considering those points’ latitude and longitude values [5].

5 Case Study

As a case study, we have implemented a scenario like the one illustrated in the section
2. To realize the test scenario, we have walked through the campus with the GPS
receiver, detected the GPS data for the major places for eating and accommodation.
Then, we have advertised these places to the semantic matching engine using “Place”
concept. For the “Place Type” attribute of this concept, we have defined two example
ontologies using OWL; one for accommodation and the other for eating places (Fig.
2). We also mapped a simplified version of these ontologies to XML format and
stored in the server so that whenever a specific domain is selected, this XML file can
be transferred to the mobile device for the creation of the visual interface at run-time.
Finally, we have formed different requests using the mobile phone in various places
of the campus and observed what the matching engine returned us.

For identifying user locations, a GPS receiver has been used. Since the application
is initially implemented for campus area, which is an open area, the GPS receiver
satisfied our needs. However, different location identification technologies such as
cell-id based identification can be added to our system whenever a need arises. The
connectivity of the mobile phone and the GPS receiver is provided via Bluetooth
technology.

User screens are usually limited in mobile devices; hence, the user interfaces
created are not so complex. The primary user interface window provides view of all
data received along with user-selectable menu choices for controlling the application.
When the user starts application, he/she first selects a domain and then a place type
using the taxonomy of places within this domain. The terms representing the types of
the selected place come from that domain’s ontology. Then, the system will return
results sorted by the degree of semantic match. Also, the system can give detailed
information about returned places when the user selects a matched result.

First of all, the client application on mobile phone connects to the server and gets
the available service domains. In parallel with the scenario, let us assume that the user
selected the eating domain, then following the taxonomy of places within this
domain, he/she selected RedMeatRestaurant concept to find places that instances of
this concept. Screen snapshots showing user’s selection of his/her request are given in

Fig. 3. So, the RedMeatRestaurant concept and the position of the user send to the
server and the semantic matching engine.

Fig. 3. Screen snapshots showing user’s selection of his/her request

Again assuming that there are suitable restaurants, after the semantic matching
process, the engine returns a list of three restaurants sorted by match degree and
distance from the user. Then, the user selects returned results to see detailed
information about them. Screen snapshots showing match results list and details of
each returned place are given in Fig. 4.

Fig. 4. Screen snapshots showing match results list and details of each returned place

As shown in Fig. 4, first two of the returned restaurants have degree of exact match
with the user’s requested place type. However, assume that the user is very hungry
and he/she selects the third one though it has degree of subsumes match. But, it’s
closer to the user than the other restaurants.

6 Conclusion

We think that integrating semantic web technologies into pervasive environments will
help to implement more novel services for mobile users. In this respect, we have
implemented a semantic matching based information search service for mobile users.
Using the application that we have developed, we have observed that having the

ability of finding the most semantically related information, the semantic matching
process increases the quality and relevance of the information presented to the users.

As an immediate future work, we plan to present the results in different colors
according to the degree of match on a map in the mobile device. Towards this
direction, we have already begun to prepare a map of the campus.

References

1. Berners-Lee, T., Hendler, J. and Lassila, O.: The Semantic Web, Scientific American,
284(5), (2001), 34-43

2. Chakraborty, D., Perich, F., Avancha, S. and Joshi, A.: Dreggie: Semantic Service Discovery
for M-commerce Applications, in the 20th Symposiom on Reliable Distributed Systems,
(2001)

3. Chen, H., Perich, F., Finin, T. and Joshi, A.: SOUPA:Standard Ontology for Ubiquitous and
Pervasive Applications, In the Proc. of the First Annual Conference on Mobile and
Ubiqutious Systems: Networking and Services, Boston, MA, (2004)

4. Deitel, “Wireless Internet and Mobile Business: How to Program”, Prentice Hall, (2002)
5. Green, R. M.: Textbook on Spherical Astronomy, 6th ed. Cambridge, England: Cambridge

University Press, (1985)
6. Li, L. and Horrocks, I.: A Software Framework for Matchmaking based on Semantic Web

Technology, In the proc. of WWW’2003, Budapest, Hungary, (2003), 331-339
7. Masuoka, R., Labrou, Y., Parsia, B. and Sirin, E.: Ontology-Enabled Pervasive Computing

Applications, IEEE Intelligent Systems, Vol.18, No.5, (2003), 68-72
8. Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K.: Semantic Matching of Web

Services Capabilities, In the proc. of the first international semantic web conference
(ISWC), Sardinia (Italy), (2002)

9. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges, IEEE Personal
Communications, vol.8, no.4, (2001), 10-17

10. Wang, X. H., Zhang, D. Q., Gu, T. and Pung, H. K.: Ontology based Context Modeling and
Reasoning using OWL, In the Proc. of Second IEEE Annual Conference on Pervasive
Computing and Communications Workshops, (2004)

11. The OWL Services Coalition: Semantic Markup for Web Services (OWL-S), (2004),
available at http://www.daml.org/services/owl-s/1.1/

