
SMOP: A Semantic Web and Service Driven
Information Gathering Environment for Mobile

Platforms

Özgür Gümüs1, Geylani Kardas2, Oguz Dikenelli1, Riza Cenk Erdur1, and Ata
Önal1

1 Ege University, Department of Computer Engineering, Bornova, 35100 Izmir, Turkey
{ozgur.gumus, oguz.dikenelli, cenk.erdur, ata.onal}@ege.edu.tr

2 Ege University, International Computer Institute, Bornova, 35100 Izmir, Turkey
geylani.kardas@ege.edu.tr

Abstract. In this paper, we introduce a mobile services environment, namely
SMOP, in which semantic web based service capability matching and location-
aware information gathering are both used to develop mobile applications.
Domain independency and support on semantic matching in mobile service
capabilities are the innovative features of the proposed environment. Built-in
semantic matching engine of the environment provides the addition of new
service domain ontologies which is critical in terms of system extensibility.
Therefore the environment is generic in terms of developing various mobile
applications and provides most relevant services for mobile users by applying
semantic capability matching in service lookups. GPS (Global Positioning
System) and map service utilization cause to find near services in addition to
capability relevancy. The software architecture and system extensibility support
of the environment are discussed in the paper. The real life implementation of
the environment for the estate domain is also given as a case study in the
evaluation section of the paper.

1 Introduction

Location aware and personal interest based information gathering from mobile
devices is very active application and research area. Different experimental
applications with such capabilities have been introduced in the literature [1] [2] [3].
From our perspective, one of the most critical problems of such applications is the
extensibility of the software architecture. In our context, extensibility of the
architecture describes domain independency: the addition of the new service domains
to the running mobile application.

In this paper, we will introduce a software environment to develop location aware
and semantic web based mobile information gathering applications. From now on, we
will call this environment as SMOP (A Semantic Web and Service Driven
Information Gathering Environment for Mobile Platforms). The innovative feature of
SMOP is the use of a semantic matching engine which can identify semantically

related knowledge, based on user queries. This semantic matching engine supports
the addition of new service domain ontologies and this capability is critical in terms
of domain independency. Moreover, service oriented infrastructure of SMOP further
contributes to the extensibility, since it is possible to introduce new services without
affecting the core of the architecture.

The paper is organized as follows: Section 2 introduces the system overview and
architecture of the environment. System extensibility from domain independency
perspective is discussed in section 3. Section 4 gives an example case study and
evaluates the environment while a new domain is added to the system. Section 5
gives an overview of related works in the literature and compares SMOP with those
works. Conclusion and future work are given in section 6.

2 System Overview

2.1 General Architecture

SMOP has a three tiered architecture. Mobile client, the server side and platform web
services exist in the corresponding tiers. The components of each tier and interactions
between those components are shown in Fig. 1. Each tier will be discussed in more
detail in the following subsections.

2.2 Mobile Client

The client side is responsible for getting the GPS data, providing the interface for
specifying the user requests and displaying the results, sending the requests to the
server in XML format and parsing the results received in XML format.

The “GPS Data Parser” component is responsible for parsing the location data
retrieved from the internal or external GPS receiver. To get the most current position
of the client/user, it reads periodically raw GPS data, parses it and gets the Latitude
and Longitude coordinates of the client/user.

Dynamic creation of visual interfaces at run-time is the responsibility of the “User
Interface Generator” component. User screens are usually limited in mobile devices;
hence, the user interfaces created are not so complex. The primary user interface
window provides view of all data received along with user-selectable menu choices
for controlling the application. When the mobile client connects to the server at first
time, the domain names which are added to the platform up to that time are retrieved
and shown to the user by the “User Interface Generator”. Then, user selects a domain
and the XML files containing the concepts belonging to selected domain’s ontology
are transferred from the server. After that, the transferred XML files are parsed and a
visual interface is created to let the user specify his/her choices. Hence, a user
interface where users can specify their choices is created independently at run-time
for each different domain by the “User Interface Generator”. In fact, the ontologies

are represented in Web Ontology Language (OWL) in the knowledgebase of the
Semantic Matching Service (SMS). However, since mobile devices are resource
limited, we simplified and represented these ontologies in simple XML format to
make the parsing process efficient in the mobile device. Otherwise, the mobile device
should execute the code necessary to parse OWL documents. When the results of
semantic match query are returned, the “User Interface Generator” lists the found
domain instances and shows detailed information about these instances. User may
want to see one of those instances on the map. In this case, the “User Interface
Generator” shows the map which is provided by the Map Service (MS) on the screen.

Mobile Client

Server

SMS Interface

Servlet Container

Semantic Matching Service Servlet Map Service Servlet

MS Interface

Platform Web Services

Semantic Matching Service Map Service

XML Message
Generator XML Parser

GPS Data
Parser

User Interface
Generator

Semantic Match Query / D
omain Query Map Query

Se
ria

liz
ed

 M
ap

 F
ile

Raw GPS Data

Location Info
Selected Domain /

User Choices /
Map Request

Domain Concepts /
Match Results /

Map

SOAP Message Handler SOAP Message Handler

Matching Engine

Reasoner
Domain
Instances

Knowledgebase Domain
Ontologies

M
at

ch
 Q

ue
ry

M
ap

 R
eq

ue
st

M
at

ch
 R

es
po

ns
e

M
ap

 R
es

po
ns

e

Map Finder

Geographic Information System

Match Response / XML Encoded Domain Concepts

GPS Receiver

Fig. 1. SMOP’s three tiered architecture

We preferred the requests and results to be transmitted in XML format, since it is a
well-known web standard. So, the “XML Message Generator” component of the
mobile client converts the (1) request of selected domain concepts, (2) request of
semantic match according to user choices and (3) request of a map into the XML
format. It also inserts the GPS location data of the client/user into last two requests.

Then, it sends the requests in XML format to the server using a GPRS Http network
connection.

The “XML Parser” component parses the XML response document received from
the

2.3 The Server

The server side has the components that are responsible for meeting the client

“SMS Servlet” component takes the XML encoded match request,
de

imilar to the
co

 server. So, depending on the given request, this XML document may include (1)
concepts of a selected domain or (2) domain instances satisfying user choices in the
form of a collection or (3) a serialized map showing one of found instances. Mobile
devices have a limited memory. For this reason, the “XML Parser” component has
been designed to be small and light. The pull parser technique, in which the software
drives the parsing, has been used. In this technique, only some part of a XML
document is read at once; hence, it does not need a large memory size. The
application drives the parser through the document by repeatedly requesting the next
piece. Our mobile client can process and display information as it is parsed after
being downloaded from the server. In this case the “XML Parser” component
basically iterates over the XML tree and finds the items. The parsed data is then
passed to the “User Interface Generator” component to be printed on the screen of the
mobile device.

requests, fulfilling these requests via web services and returning the results to the
client: servlet components interact with the client, interface components interact with
web services and corresponding servlet and interface components interact with each
other.

The
composes it and prepares the inputs of the SMS. These inputs are the domain

concept (including its some properties that are chosen by the user) to be discovered
and the required “degree of match” value. They are sent to the “SMS Interface”
component. This component invokes the SMS and sends the outputs to the
corresponding servlet. These outputs are the discovered domain instances that are
matched with request sorted by the “degree of match” values. The “SMS Servlet”
takes these instances, re-sorts the ones which have equivalent “degree of match”
value according to distance to the client/user using the GPS location data and finally
it inserts them into a collection. It then converts this collection into an XML message
and sends the formed XML message to the client as an Http response.

The “MS Servlet” and “MS Interface” components work s
rresponding SMS components explained above. But, the inputs of the MS are the

GPS location data of the mobile client/user and the instance that will be shown on the
map. The “MS Servlet” takes the returned map from the “MS Interface” and serializes
it into an XML message and sends it to the client.

2.4 Platform Services

2.4.1 Semantic Matching Service
The basic idea behind the matching process is to find the advertised concepts that are
identical to the requested one. However, the advertised and requested concepts can be
semantically related with each other but are not directly identical. In this case, a
semantic matching process is required. Semantic matching process is a matching
process that can identify the semantic relationships between the advertised and
requested concepts. SMS executes this process. It has a registry to keep records of
knowledge about advertised domain instances. It can be searched for the semantically
most suitable instances using specific domain concepts.

The “Domain Instances Knowledgebase” component stores the instances of all
domains. In this study, we have defined an abstract concept named as Domain. To
add a new domain to the platform, a new concept that is specific type of Domain is
defined. This new domain concept has its own data type properties and object type
properties. Instances of this concept are created using different predefined domain
ontologies for the object type properties and stored in the knowledgebase.

The “Matching Engine” component realizes matching of requested domain concept
with advertised domain instances and produces the list of suitable instances sorted by
“degree of match” values. It uses the “Reasoner” component to determine
subsumption relation between ontological concepts. It uses an algorithm similar to
one that is especially for discovery of semantic web services proposed in Paolucci et
al’s study [6] and it has explained in detail in our previous work [7].

2.4.2 Map Service
MS provides a satellite map enclosing specified locations in an area. The
“Geographic Information System” (GIS) component is a software package named as
Mapxtreme Java Edition of Mapinfo Corporation. It stores the information about
geographic objects on the earth including their attributes, positions and shapes. It
provides an API named MapJ to form a map image and make some operations and
analysis on this image. The “Map Finder” component interacts with the GIS using
this API. It sends the position of objects that must be enclosed in the map. GIS forms
a map image on which the given objects (in this case the client and selected domain
instance) are marked, and returns it to the “Map Finder” in binary format.

3 System Extensibility from Domain Independency Perspective

SMOP provides a mobile services environment in which capabilities of both semantic
web and location-aware information gathering are utilized to develop mobile
applications for various business domains. Considering system extensibility aspect,
domain independency support is an important feature and should be provided within
the platform via software reusability. In this section, domain independency support in
SMOP is discussed.

When service capability matching is required for a new domain, it is enough to
initialize knowledgebase of the internal semantic service matching engine of the
platform with this new domain ontology without any need of software architecture
modification. Only domain concept and related semantic service capability
advertisement ontologies are needed to be added into the knowledgebase of the
engine. Communication between the engine and the outer environment is realized
over standard OWL messages: Match requests and responses are composed of RDF
(Resource Description Framework) triples. Hence, change in domain only effects the
communication content, neither structure nor software architecture. More about the
internal execution and capability matching algorithm of our matching engine are
beyond the scope of this paper. However, they have been discussed in [7] and [8].

Taking into consideration of Model-View-Controller system pattern [9]
decomposition of the SMOP’s architecture; it can be said that domain ontology and
related knowledgebase represent model, mobile GUI components residing on cell
phones represent view and finally servlet container and related web services stand for
the controller layer within the system. We applied an abstract domain model into the
controller layer of the SMOP to support various business domains without any code
modification (Fig. 2).

Estate
type : String
agentName : String
area : Double
telephone : String
forSale : Boolean
forRent : Boolean
salePrice : Currency
rentPrice : Currency

Estate()

EatingPlace
name : String
telephone : String
openingHours : String
smoking : Boolean
parkingArea : Boolean
gameArea : Boolean

EatingPlace()

ServletListener
domain : Domain
docBuilder : DocumentBuilder
matcher : SemanticMatcher

init()
doGet()
doPost()

DomainFactory

createDomain()

Domain
address : String
gpsLatitude : Double
gpsLongitude : Double
distance : Double
matchDegree : Integer

createDomainInstance()
createSemanticMatchRequest()
sendResult()
getOWLFileName()

usescreates

Fig. 2. Domain model of the SMOP to support extensibility in domain perspective

Domain is an abstract class which is extended by domain dependent wrapper
classes to utilize the SMOP for new domains. For example, in Fig. 2, two subclasses
of the Domain are given: Estate and EatingPlace. Estate is used for a “Real Estate
Discovery System” in which mobile clients may search for geographically near real

estates those match with clients’ preferences – semantically appropriate with client’s
needs. On the other hand, EatingPlace instances represent eating places (like
restaurants, cafes, patisseries, etc.) within an “Eating Place Discovery and
Reservation” system in which semantic matching of eating place services with mobile
clients’ eating preferences is realized.

Apparently, it is enough to write such domain-dependent wrapper classes
(subclasses of Domain) when a new domain is needed to be added into SMOP-based
environment. Three abstract methods of Domain, called
createSemanticMatchRequest, createDomainInstance and sendResult should be
implemented within wrappers to handle domain knowledge.

createSemanticMatchRequest method receives related domain instance and domain
type as input and returns its semantic match request counterpart which is processed
by the engine during semantic match process. For example, eating place preferences
of a mobile client are encapsulated within an EatingPlace object in a system. By
calling this object’s createSemanticMatchRequest method, controller servlet retrieves
those preferences in RDF triples to form service match request and hence, they are
compared with the advertised service capabilities by the built-in semantic matching
engine.

Implementation of the createDomainInstance provides reverse information flow
inside the system. As it is discussed in the architecture section, SMOP’s semantic
service capability matching engine –called Semantic Matching Engine- returns
semantic match results in a collection of SemanticMatchResult objects. Those objects
store matched service advertisements as OWL individuals with their match degrees
and GPS data. Those ontological result properties should be converted into the
domain-specific attributes of the wrapper class. So, they can be processed by
controller servlets and transferred into the mobile clients. This match result – domain
class conversion is realized by calling createDomainInstance method of the related
domain object.

sendResult method implementation provides transmission of domain instance
content into mobile clients in XML format. Controller servlet sends those XML
representations of the semantic query results to the view components of SMOP
residing on the mobile phone. Those software components also don’t need to be re-
written in case of a domain change. Because, as it is mentioned in the previous
section, “User Interface Generator” module of the mobile software initially retrieves
concepts belonging to a specific domain’s ontology from controller servlet also as
XML data –they are not hard coded in GUI components- and it dynamically creates
the visual interface. During semantic query communication, SMOP’s mobile GUI
components only need to parse received XML data and print out the content into the
phone’s screen in appropriate to the domain’s desired format.

On the other hand, the constructor method of the wrapper class should be
implemented in a way that attributes are set with the values which are retrieved from
request XML document. This request document is received from the mobile client.

Runtime employment of wrapper classes is realized by applying Factory creational
design pattern [10]. Initially, DomainFactory processes a document in which various
domain definitions are specified and it creates desired domain-related class instance
to be used within the controller servlet during system interactions. Notice that

application of the Factory pattern and Domain class abstraction in software design
provide the representation and use of the above mentioned domain-related wrapper
classes in the system in a completely domain independent way; because wrappers are
always referenced over their superclass (Domain) inside the software.

4 Case Study and Evaluation

As a case study, a mobile services application for the real estate domain has been
designed and deployed on SMOP. In order to realize such an application
environment, we have first defined a concept named as “Estate” to advertise the
places for sale and/or rent to the internal matching engine of the SMS. One of the
properties of this concept is the “type” which takes value from an OWL ontology
shown in Fig. 3. This property is used during semantic matching process to find out
semantically related real estates with user’s request. The other critical properties are
“for sale” and “for rent” to define a real estate is for sale, for rent or both. These
properties are the additional options that users can specify in addition to real estate
type. “GPS latitude” and “GPS longitude” properties define the geographic position
of the advertised real estate. The other properties are address, area, sale price, rent
price, agent name and telephone.

Fig. 3. An example Real Estate Type ontology to show the taxonomy of instances in a domain

We mapped a simplified version of Real Estate Type ontology to XML format and
stored in the server. We also prepare an XML document representing of “for sale”
and “for rent” properties of “Estate” concept and possible values of these properties.
So, whenever the real estate domain is selected, these XML files are transferred to the
mobile device for the creation of the visual interfaces at run-time. The XML
document corresponding to the Real Estate Type ontology given in Fig. 3, is shown
below:

<level1 type="Real Estate">
 <level2 type="Residence">
 <level3 type="House">
 <level4 type="Winter House"/>

 <level4 type="Summer House"/>
 </level3>
 <level3 type="Apartment"/>
 </level2>
 <level2 type="Building Land"/>
 <level2 type="Building"/>
 <level2 type="Office">
 <level3 type="Bureau"/>
 <level3 type="Shop"/>
 </level2>
</level1>

For a test scenario, we have created six instances of real estate concept and
advertised to the SMS. Some important properties of these instances are shown in
Table 1. Notice that, “type” property takes value from predefined Real Estate Type
ontology.

Table 1. Instances of “Estate” concept that are advertised to SMS

No Agent Name Type For Sale For Rent
1 Green House Building Yes Yes
2 Homecity SummerHouse No Yes
3 House&House House Yes No
4 RE/MAXX WinterHouse No Yes
5 RE/MAXX Office No Yes
6 RE/MAXX House Yes Yes

Mobile client components of the application software have been deployed on a
Siemens SXG75 cell phone with built-in GPS receiver and Java 2 Micro Edition
(J2ME) 1.1, Mobile Information Device Profile (MIDP) 2.0 and Connected Limited
Device Configuration (CLDC) 1.1 support.

When the client application on mobile phone is started by the user, first of all, it
connects to the server and gets the available service domains. Let us assume that the
user selected the real estate domain, then following the taxonomy of real estate types
within this domain, he/she selected House concept to find instances of this concept.
And he/she also specifies that he/she seeks real estates for rent. Screen snapshots
showing user’s selection of his/her request are given in Fig. 4.

Fig. 4. Screen snapshots showing user’s selection of his/her request

After user completes his/her request, the House concept, additional choices about
the requested real estate and the position of the user are sent to the server. So,
corresponding request XML document is shown below:

<request>
 <type>House</type>
 <forRent>Yes</forRent>
 <forSale>Unspecified</forSale>
 <gpsData>
 <latitude>22.333E</latitude>
 <longitude>52.444N</longitude>
 </gpsData>
</request>

Default value of “degree of match” parameter is given as subsumes. So, the server
invokes the SMS with the given request. The SMS performs semantic matching in the
following way: it excludes the first and fifth instances because their “degree of
match” values are fail. It also excludes the third one because it isn’t for rent. The
sixth one has the exact “degree of match” value and second and fourth instances have
the subsumes “degree of match” values. So, the SMS returns the matched real estate
instances with their “degree of match” values in the following order: sixth, second,
and fourth.

After the server receives match results from the SMS, it performs another sort
operation on semantically equal match results regarding their distances to the user.
Although the second and fourth ones have the same “degree of match” values, the
fourth one is closer than the second to the user. Hence, final list contains match
results in the following order: sixth, fourth, second. Finally, the server creates an
XML document that includes resultant domain instances and sends it to the mobile
client. As an example, a part of the result XML document is shown below:

<matchResults>
 <result>
 <type>House</type>
 <degreeOfMatch>EXACT</degreeOfMatch>
 <distanceToClient>0,724km</distanceToClient>
 <agentName>RE/MAXX</agentName>
 <address>Bornova Street 1</address>

 <tel>2154585</tel>
 <forRent>Yes</forRent>
 <forSale>Yes</forSale>
 <area>200</area>
 <rentPrice>350€</rentPrice>
 <salePrice>25000€</salePrice>
 <gpsData>
 <latitude>27.229E</latitude>
 <longitude>38.455N</longitude>
 </gpsData>
 </result>
 <result>
 ...
 </result>
 ...
</matchResults>

The mobile device parses result XML document and creates a visual interface to
show returned real estates to the user. The user can select one of the real estates from
the list of match results to see detailed information about it. Snapshots showing list of
match results and details of first two matched real estates are given in Fig. 5.

Fig. 5. Snapshots showing list of match results and details of first two matched real estates

The user may choose to see a satellite map which shows one of these locations’
and his/her geographic position. In this case, the GPS data of both user and the real
estate are sent to the server in XML format. As an example, corresponding XML
document for the first result is shown below:

<locations>
 <user>
 <gpsData>
 <latitude>22.333E</latitude>
 <longitude>52.444N</longitude>
 </gpsData>
 </user>
 <domain instance>

 <gpsData>
 <latitude>27.229E</latitude>
 <longitude>38.455N</longitude>
 </gpsData>
 </domain instance>
</locations>

The server takes this XML document and invokes the MS. The MS marks the user
and the real estate with different colors (blue for the user and red for the real estate)
on a satellite map using its GIS. Then, this map is received by the mobile client
through the server in binary format. Screen snapshot showing a satellite map
enclosing first one of the matched real estates and the user is given in Fig. 6.

Fig. 6. Screen snapshot showing a satellite map enclosing first one of the matched real estates
and the user. The blue point on the map marks current position of the mobile user while red
point represents position of the real estate.

To demonstrate domain independency feature of SMOP, we have added a new
domain, called eating place, to the above application environment. We didn’t need to
change mobile client and platform web services tiers as we expected. On the other
hand, we have naturally designed concept ontology of this new domain, added
corresponding domain individuals into the SMS knowledgebase and prepared XML
documents representing concepts of the domain ontology. Notice that, the wrapper
class stands for this new domain has also been implemented by extending Domain
abstract class as discussed in section 3. Hence the mobile client could interact with
the SMS by means of this wrapper. Upon completion of above preparations, we
examined that the environment successfully provides semantic web based information
gathering on both domains for mobile clients.

5 Related Work

In the pervasive computing literature there are studies to develop software
environments for location aware and context aware application development. Below,
we will summarize some of these studies by comparing them with our system so that
we can show in what ways SMOP is different from them.

Hessling et al. [1] devised an application, where the semantic user profiles which
are stored in the mobile devices are matched against the semantic services
broadcasted by stations. When the users with their mobile devices enter the range of a
station, the station’s services are matched against the semantic user profiles. Although
the algorithm of how the user profiles are matched semantically is not given in detail
in their paper, from the semantic matching point of view, the work of Hessling et al.
[1] can be considered as the nearest one to our study. As we mentioned above, our
aim is not to discover services, but to search the predefined semantic knowledge
using semantic matching techniques so that mobile users can get the most relevant
results for their queries. In addition, we focus on the extensibility of the architecture
which is not considered in work of Hessling et al.

The Agents2Go [2] is an agent based distributed system that allows the creation of
location dependent and service-based information systems. Although the proposed
agent based architecture may allow the generation of new location dependent
information systems, the extensibility perspective is not clear and not discussed in the
paper. Also, a semantic matching engine, which makes it possible to extend the
architecture by adding new service ontologies at run time, is not considered in
Agents2Go.

Intelligent Computing group in University College Dublin developed some
location dependent and context aware mobile applications like Gulliver’s Genie [3]
based on their Agent Factory framework. Their focus is in application development in
space limited mobile devices and they have proposed an approach called as
collaborative agent tuning [4] to incrementally develop such applications. Although
Agent Factory framework and ACCESS context aware infrastructure [5] provide the
necessary software architecture to implement agent based location dependent
applications, extensibility in terms of adding new service domains at run time is not
the focus of their works.

On the other hand, there are many classical location-based information search
services in mobile environments commercialized by GSM operators. For example,
there are systems where users with mobile phones can be directed to the nearest local
restaurants, shops, etc. These systems can be considered as standard information
search services for mobile users. There are two features, which make SMOP different
from them. The first feature is being domain independent based on an extensible
software architecture. Supporting semantic matching is the second feature where the
system that we have developed differs from them. Using semantic matching, a result
list ranked by the degree of semantic match can be presented to the user in response
to his/her request so that he/she can have the option of accessing to the most
semantically related information. So, we take the previous works one step further by
integrating semantic matching capability into the information gathering process in

pervasive environments and by modeling the system in a way that it supports domain
independency.

6 Conclusion and Future Work

We have introduced a mobile services environment in which semantic web based
service capability matching and location-aware information gathering are used to
develop mobile applications. The proposed architecture has been fully implemented
and tested for different service domains.

The environment is adaptive for various mobile applications due to its domain
independency and provides most relevant services for mobile users by applying
semantic capability matching in service lookups. GPS and map service utilization
cause to find near services in addition to capability relevancy and hence we believe
this increases quality of the mobile services.

We currently work on to integrate mobile service execution into the environment.
The system in use provides an enhanced service information gathering. However,
invocation of remote services - except semantic service discovery and map services -
by the mobile clients is not currently supported. Our aim is to provide an ultimate
mobile services system in which semantic service discovery and execution are both
fulfilled. In such a system, for example, a mobile client may first choose a relevant
restaurant service and then reserve a table at this restaurant by only using his/her cell
phone; or considering the real estate system given in this paper, the user may also
arrange a meeting with the related estate agent after determination of the semantically
most suitable and nearby estate.

Acknowledgements

We would like to thank members of Mobile Software Development Group in Ege
University Computer Engineering Department (Seymen Ersen Diraman, Mehmet
Niziplioglu, Oguz Karakus, Serkan Kaba, Murat Colak and Salim Asan) for their
great effort in this study.

This study is partially funded by Ege University Scientific Research Projects
Directorate with the project number 2003MUH039.

References

1. Hessling, A., Kleemann, T., Sinner, A.: Semantic User Profiles and their Applications in a
Mobile Environment, In the Proc. of Artificial Intelligence in Mobile Systems 2004
(AIMS’04) In conjunction with UbiComp 2004, Nottingham, UK (2004)

2. Ratsiomor, O., Korolev, V., Joshi, A., Finin, T.: Agents2Go: An Infrastructure for Location-
Dependent Service Discovery in the Mobile Electronic Commerce Environment, In ACM
Mobile Commerce Workshop 2001, available at: http://research.ebiquity.org/v2.1/papers.

http://research.ebiquity.org/v2.1/papers

3. O'Grady, M. J., O'Hare, G. M. P., Sas, C.: Mobile agents for mobile tourists: a user
evaluation of Gulliver's Genie, Interacting with Computers 17(4): 343-366 (2005)

4. Muldoon, C., O'Hare, G. M. P., O'Grady, M. J.: Collaborative Agent Tuning, ESAW’05,
Kusadasi, Turkey (2005)

5. Muldoon, C., O'Hare, G. M. P., Phelan, D., Strahan, R., Collier, R. W.: ACCESS: An Agent
Architecture for Ubiquitous Service Delivery, CIA 2003, pp. 1-15 (2003)

6. Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K.: Semantic Matching of Web Services
Capabilities, In the proc. of the first international semantic web conference (ISWC),
Sardinia, Italy (2002)

7. Erdur, R. C., Dikeneli, O., Önal, A., Gümüs, Ö., Kardas, G., Bayrak, Ö., Tetik, Y. E.: "A
Pervasive Environment for Location-Aware and Semantic Matching Based Information
Gathering", Computer and Information Sciences - ISCIS 2005, Lecture Notes in Computer
Science, Springer-Verlag, Vol. 3733, pp. 352-361 (2005)

8. Kardas, G., Gümüs, Ö., Dikeneli, O.: "Applying Semantic Capability Matching into
Directory Service Structures of Multi Agent Systems", Computer and Information Sciences
- ISCIS 2005, Lecture Notes in Computer Science, Springer-Verlag, Vol. 3733, pp. 452-461
(2005)

9. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad P., Stal, M.: “Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns”, John Wiley & Son Ltd, New York
USA (1996)

10. Gamma, E., Helm, R., Johnson R., Vlissides, J.: “Design Patterns - Elements of Reusable
Object-Oriented Software”, Addison-Wesley, Massachusetts USA (1994)

