
An MAS Infrastructure for Implementing SWSA

based Semantic Services

Önder Gürcan1, Geylani Kardas2, Özgür Gümüs1,
Erdem Eser Ekinci1, and Oguz Dikenelli1

1Ege University, Department of Computer Engineering,
35100 Bornova, Izmir, Turkey

{onder.gurcan,ozgur.gumus,oguz.dikenelli}@ege.edu.tr

erdemeserekinci@gmail.com
2Ege University, International Computer Institute,

35100 Bornova,Izmir
geylani.kardas@ege.edu.tr

Abstract. The Semantic Web Services Initiative Architecture (SWSA)
describes the overall process of semantic service execution in three phases:
discovery, engagement and enactment. To accomplish the speci�ed re-
quirements of these phases, it de�nes a conceptual model which is based
on semantic service agents that provide and consume semantic web ser-
vices and includes architectural and protocol abstractions. In this paper,
an MAS infrastructure is de�ned which ful�lls fundamental requirements
of SWSA's conceptual model including all its sub-processes. Based on
this infrastructure, requirements of a planner module is identi�ed and
has been implemented. The developed planner has the capability of ex-
ecuting plans consisting of special tasks for semantic service agents in
a way that is described in SWSA. These special tasks are prede�ned to
accomplish the requirements of SWSA's sub-processes and they can be
reused in real plans of semantic service agents both as is and as special-
ized according to domain requirements.

1 Introduction

The Semantic Web Services Initiative Architecture (SWSA) committee, which
has been contributed by the Semantic Markup for Services (OWL-S)1, Web
Service Modeling Ontology (WSMO)2 and Managing End-to-End Operations-
Semantics (METEOR-S)3 working groups, has created a set of architectural
and protocol abstractions that serve as a foundation for Semantic Web service

1 The OWL Services Coalition: Semantic Markup for Web Services (OWL-S), 2004,
http://www.daml.org/services/owl-s/1.1/

2 Web Service Modeling Ontology (WSMO) Working Group, http://www.wsmo.org/
3 Managing End-to-End Operations-Semantics (METEOR-S) Working Group,
http://lsdis.cs.uga.edu/projects/meteor-s/

technologies[1]. The proposed SWSA framework builds on the W3C Web Ser-
vices Architecture working group recommendation4 and attempts to address
all requirements of semantic service agents: dynamic service discovery, service
engagement, service process enactment and management, community support
services, and quality of service (QoS). This architecture is based on the multi-
agent system (MAS) infrastructure because the speci�ed requirements can be
accomplished with asynchronous interactions based on prede�ned protocols and
using goal oriented software agents.

The SWSA framework describes the overall process of discovering and inter-
acting with a Semantic Web service in three consecutive phases: (1) candidate
service discovery, (2) service engagement, (3) service enactment. The SWSA
framework also determines the actors of each phase, functional requirements of
each phase and the required architectural elements to accomplish these require-
ments in terms of abstract protocols. Although it de�nes a detailed conceptual
model based on MAS infrastructure and semantic web standards, it does not
de�ne the software architecture to realize this conceptual model and does not
include the theoretical and implementation details of the required software ar-
chitecture.

There have been a few partial implementations to integrate web services and
FIPA compliant agent platforms. WSDL2Jade [2] can generate agent ontologies
and agent codes from a WSDL input �le to create a wrapper agent that can
use external web services. WSDL2Agent [3] describes an agent based method
for migrating web services to the semantic web service environment by deriving
the skeletons of the elements of the Web Service Modeling Framework (WSMF)
[4] from a WSDL input �le with human interaction. WSIG (Web Services In-
tegration Gateway) [5] supports bi-directional integration of web services and
Jade agents. WS2JADE [6] allows deployment of web services as Jade agents'
services at run time to make web services visible to FIPA-compliant agents
through proxy agents. But these tools only deal with the integration of agents
and external web services and do not provide any mechanism to realize the entire
architectural and protocol abstractions addressed by the SWSA framework. It's
clear that there must be environments which will simplify the development of
SWSA based software systems for ordinary developers.

The main contribution of this paper is to de�ne a software platform which
ful�lls fundamental requirements of SWSA's conceptual model including all its
sub-processes. Then, these sub-processes are modeled as reusable plans for de-
velopment of semantic service agents. And the second contribution of this paper
is to develop a planner that has the capability of executing these kinds of plans.
So, the developed planner has the innovative features listed below:

� De�nition of reusable template plans that includes abstract task structures
for SWSA's sub-processes and usage of these templates for generating agents'
real plans by specializing these abstract tasks

4 W3C Web Services Architecture Working Group, Web Services Architecture Rec-
ommendation, 11 February 2004, http://www.w3.org/TR/ws-arch/

� Support for recursion on the plan structure
� Constitution of composite services by using reusable semantic service agent

plans

The paper is organized as follows: in section 2, the proposed architecture of the
Software Platform for the SWSA framework is given. Planning requirements of
SWSA is discussed in section 3. Section 4 introduces the planner component of
the platform. Conclusion and future work are given in section 5.

2 Semantic Service Platform Architecture

It is apparent that SWSA describes the architecture extensively in a conceptual
base. However it doesn't de�ne required details and theoretical infrastructure
to realize the architecture. Hence, we propose a new software platform in which
above mentioned fundamental requirements of all SWSA's sub-processes (service
discovery, engagement and enactment) are concretely ful�lled.

The software architecture of the proposed Semantic Service Platform is given
in Figure 1. The platform is composed of two main modules called Semantic

Service Kernel and External Service Agent.

Semantic Service Kernel

Service Layer

Planning Layer

Semantic
Knowledge
Manager

Plan Library

Service Architecture
Kernel Plan Interfaces

Domain Plans

External Service Agent

Service Layer

Planning Layer

Plan Library

External Service
Plan Interfaces

Domain Plans

Ontology Mapping &
Translation Service

WSDL2OWLS

External
Service

Semantic
Knowledge
Manager

Monitoring Service

Plan Generator

Planning Module

Plan Executer

Goal Matcher

Planning Module

Plan Executer

Goal Matcher

Communication Layer Fipa-ACL Parser Communication Layer Fipa-ACL Parser

Match Maker

Monitoring Service

Ontology Server

HTTP - IIOP

Fig. 1. The software architecture of the Semantic Service Platform: Two main models
are Semantic Service Kernel and External Service Agent. The kernel provides archi-
tectural components for an agent to execute sub-processes of SWSA. On the other
hand, External Service Agent provides integration of external services (either purely
de�ned in WSDL or OWL-S) into the agent platform. Communication takes place via
the well-known HTTP - IIOP (Internet Inter-ORB Protocol).

The Semantic Service Kernel includes the required infrastructure and archi-
tectural components for an agent to execute sub-processes of SWSA. The agent's
actions, to be used in semantic service discovery, engagement and enactment, are
modeled as reusable plans and will be executed in a composite fashion by a plan-
ner. The sub-tasks, which compose the plan, will execute SWSA's sub-processes
by invoking the related services. Invocation will be realized via prede�ned exe-
cution protocols.

The External Service Agent converts either WSDL or OWL-S de�ned ex-
ternal services into agents that are able to execute SWSA's de�ned processes.
This module includes inner services like WSDL to OWL-S Converter, Ontology
Mapper and Translator -that provides mapping of services into the platform's
ontologies, stores those mapping ontologies and serves ontology translation- and
Monitor service that monitors quality of service parameters. Planner component
of the External Service Agent realizes registration of the related service into the
platform and executes interaction plans concerning service engagement and en-
actment. Those plans are formed automatically during the creation phase of the
External Service Agent and stored in the plan library as domain plans.

In the following subsections, we discuss details of how our proposed semantic
service platform meets the requirements of the SWSA taking into consideration
prede�ned SWSA sub-processes.

2.1 Realization of service discovery process

In order to realize semantic service discovery, the platform services should be
registered to a matchmaker and service clients should query on this matchmaker
and have ability to interpret resultant service advertisements.

The Matchmaker service of the Semantic Service Platform stores capability
advertisements of registered services as OWL-S pro�les. As previously imple-
mented in SEAGENT environment [7], the capability matching of the requested
and registered service advertisements herein, is also based on the algorithm given
in [8] and deals with semantic distances between input/output parameter con-
cepts of related services. The details of the implemented capability matching may
be found in [9] and [10]. However, in addition to the above mentioned matching
algorithm, Matchmaker service of our proposed platform also supports seman-
tic match only on types of services (excluding input/output parameter match).
Therefore, a client may indicate his/her preferred capability matching approach
to the matchmaker and matchmaker performs capability matching upon this
client's preference.

Based on domain knowledge of the related application, the Semantic Service
Platform provides a meta-pro�le de�nition for platform services those to be reg-
istered, discovered and invoked within the platform. Hence, in this approach,
Semantic Service Kernel plans, that include client invocation codes, may be pre-
pared easily by only using those prede�ned meta-pro�les of services. However
this naturally exposes an ontology mapping requirement when an outer service,
that is needed to be included in the platform, has a di�erent pro�le model than

platform's meta-de�nitions. It is aimed to bring a solution to this problem by us-
ing capabilities of the ontology mapping and translation service of the External
Service Agent. So, advertisement plan of the External Service Agent supports
platform administrators to be able to map platform's meta-pro�le with the re-
lated external service's ontology by using mapping service via a user interface.

It should be noted that discovery process of the client, has already been de-
�ned as a reusable plan template in the Semantic Service Kernel. So, the content
of this plan template is determined during domain based application develop-
ment and this creates the application dependent plan of the discovery process.
The client agent, which uses the related created discovery plan, �rst sends the
required service's pro�le to the matchmaker service and receives advertisement
pro�les of semantically appropriate services. The suitable communication pro-
tocol and content language for the client has already been designed and imple-
mented for OWL-S services [9].

Another important task of the discovery process is the service selection policy
of the requester client. The Matchmaker of the platform may return a collection
of suitable service pro�les for the client's requests in many cases and client
should apply a policy into the result collection to select the service(s) for further
engagement and enactment processes. The Semantic Service Platform provides
extensible service selection policy structures for plan designers to add various
selection criteria into the service user agent plans.

2.2 Realization of service engagement process

After completion of the service selection, the client-service engagement process
begins. The engagement process has 2 stages: (1) negotiation on quality of service
metrics between client and service agents and (2) agreement settlement.

The �rst stage of the engagement process includes determination of the exact
service according to quality of service (QoS) metrics. Currently, there exists
no standard for the service quality metrics. However, during the exact service
determination, our proposed service platform utilizes some QoS parameters (like
service cost, run-time, location, etc.) de�ned in various studies [11,12] which
address this issue. When both sides (client and service) agree on the quality
metrics, the �rst stage of the process is �nished.

The engagement process is completed after determined service's OWL-S pro-
cess ontology and QoS parameters are sent to the Monitoring Service for being
monitored during service execution.

2.3 Realization of service enactment process

Conceptually, enactment can be de�ned as the invocation of the engaged service
by the client agent. However, in fact, enactment includes more than just invoca-
tion and it should take into consideration of monitoring, certi�cation, trust and
security requirements of service calls.

Execution of composite semantic services (modeled by using OWL-S) is main-
tained in the platform by means of a planning approach. The approach herein,

provides de�nition of service templates for each atomic service of the composite
service and realizes composition of the service by linking those atomic subpro-
cesses.

Service execution also requires monitoring of the invocation according to
the engagement between client agent and the server. Monitoring services of the
Semantic Service Kernel and External Service Agent both monitor execution of
services and control whether current interaction conforms into the prede�ned
QoS metrics and engagement protocol or not. Hence, the Monitoring service of
the External Service Agent informs the platform's monitoring service about the
produced values of the quality metrics during service execution. According to
the state of the ongoing interaction, the informed client agent may change his
task execution behavior as de�ned in his enactment plan.

3 Planning Requirements of SWSA

The Semantic Service Kernel includes the required infrastructure and archi-
tectural components for an agent to execute subprocesses of SWSA. Such an
environment simpli�es the overall process of executing semantic web services for
ordinary developers. Client agent(s) in this environment, must provide plans to
be used in semantic service discovery, engagement and enactment. Hence, in our
platform, we modeled these plans as reusable plans that are de�ned using the
well known Hierarchical Task Network (HTN) planning structures. HTN Plan-
ning is an AI planning methodology that creates plans by task decomposition.
This decomposition process continues until the planning system �nds primitive
tasks that can be performed directly. The basic idea of HTN planning was in the
mid-70s [13,14], and the formal underpinnings were developed in the mid-90s
[15]. In an HTN planning system, the objective is to accomplish a partially-
ordered set of given tasks (plan) and a plan is correct if it is executable, and it
accomplishes the given tasks. That is, the main focus of an HTN planner is to
perform tasks, while a traditional planner focuses on achieving a desired state.

The planner of our MAS development framework, called SEAGENT, is based
on the HTN planning framework presented by Sycara et. al [16] and DECAF ar-
chitecture [17]. In SEAGENT, tasks might be either complex (called behaviours)
or primitive (called actions). Each plan consists of a root task (behaviour) which
is a complex task itself consisting of sub-tasks to achieve a prede�ned goal. Be-
haviours hold a 'reduction schema' knowledge that de�nes the decomposition of
the complex task to the sub-tasks and the information �ow between these sub-
tasks and their parent task. The information �ow mechanism is as follows: each
task represents its information need by a set of provisions and the execution of
a task produces outcomes, and there are links that represents the information
�ows between tasks using these provision and outcome slots. Actions, on the
other hand, are primitive tasks that can be executed directly by the planner.
Also, each task produces an outcome state after its execution. Default outcome
state is �OK� and usually it is not shown. This outcome state is used to route
the information �ow between tasks.

Figure 2 shows the task tree of the HTN plan for service execution of client
agents. �Execute Service� task represents the service execution process which was
proposed by SWSA and is the root task of the plan that needs abstract charac-
terizations of candidate services in order to be executed. It is composed of three
sub-tasks: �Discover Candidate Services�, �Engage with a Service� and �Enact
Service� (decomposition of these tasks are not shown in this �gure). �Discover
Candidate Services� task inherits the abstract characterization of candidate ser-
vices from its parent task and produces service pro�les of candidate services after
its execution completes. Then these service pro�les are passed to �Engage with
a Service� task via a provision link and then the execution of this task begins.
�Engage with a Service� task �nishes by producing two outcomes: selected ser-
vice provider and service agreement. These outcomes are consumed by �Enact
Service� task in order to complete the �nal part of the plan. This task executes
selected service and passes the output list of its execution to its parent task.

Execute Service

abstract characteriaztions
of candidate service

output list

provisions

inheritance
link

outcomes

disinheritance
link

Enact Service

selected
service provider

service
agreement

output list

Engage with
a Service

selected
service provider

service
agreement

candidate
sevices

Discover
Candidate Sevices

candidate
sevices

abstract characteriaztions
of candidate service

internal
provision links

sub-task
relations

Fig. 2. HTN plan for SWSA based Semantic Service Execution

As discussed above, SWSA processes are controlled and monitored by Se-
mantic Service Kernel. Planner is at the heart of the architecture which controls
the work�ows of the SWSA processes. Each of these processes are modeled as
reusable plans and the developed planner must have the innovative features in
order to have the capability of executing these kind of plans. These features are
listed below:

� De�nition of reusable template plans that includes abstract task structures

for SWSA's subprocesses and usage of these templates for generating agent's

real plans by specializing these abstract tasks.

Some parts of processes introduced by SWSA is abstract because, they
change according to domain. Hence, it must be possible to generate a

template plan for SWSA and realize it on speci�c domains. Such tem-
plate plan must include variable (or abstract) tasks which can be spec-
i�ed based on the domain requirements. So, the plan structure must
provide mechanisms to de�ne and specify such variable task constructs
for developers. Without such a planning mechanism, it is impossible to
de�ne reusable plan templates for executing SWSA processes. For exam-
ple, in service discovery, the client agent, �rst forms a query using the
required service's pro�le, sends it to the matchmaker service, receives
advertisement pro�les of semantically appropriate services and �nally
applies a service selection policy to return a collection of suitable pro-
�les. The reusable template plan for this service discovery process is
illustrated in Figure 3. As shown in the �gure, �Form a Query for Ser-
vice Discovery� task and �Select Service(s)� task are abstract. Former is
abstract because the query could be formed either according to service
type or input/output parameter types or etc. Latter is abstract because
developers should be able to use various service selection criteria.

Discover
Candidate Sevices

candidate
sevices

abstract characteriaztions
of candidate service

Select Service(s)

candidate
sevices

service
profiles

 Send Message

message

Form a Query for
Service Discovery

query
message

abstract characteriaztions
of candidate service

external
provision link

Fig. 3. Decomposed view of the task for service discovery

� Support for recursion on the plan structure.

By a recursion we mean a situation where one instance of a task is an
ancestor in the planning tree of another instance of the same task. Con-
sider the engagement process of the client agent given in section 2.2.
At �rst, one of the candidate services are chosen and then completeness
of all service invocation parameters is assured. After the assurance, ne-
gotiation on QoS metrics and agreement settlement are performed. If
either assurance or negotiation tasks fail, the engagement process will
be restarted for unselected services (Figure 4). To provide this iteration
the plan structure must have support for recursion. Such support needs
the ability for a task to contain itself as a sub-task (in Figure 4, �Engage
with a Service� contains itself as a sub-task).

fail

OK Same tasks

Engage with
a Service

selected
service provider

service
agreement

candidate
sevices

Engage with
a Service

selected
service provider

service
agreement

candidate
sevices

Negotitate with
Candidate Service

selected
service provider

service
agreement

candidate
sevice

unselected
sevices

unselected
sevices

Select a Service

unselected
sevices

candidate
sevice

service
profiles

Assure on Parameters

unselected
sevices

candidate
sevice

candidate
sevice

unselected
sevices

OK

fail

Fig. 4. Decomposed view of the task for service engagement

� Constitution of composite services by using semantic service execution plans

in agent's real plans.

Reserve Hotel

Take User Preferences

preference info

 Find a Hotel

preference info hotel info

 Make Hotel Reservation

reservationhotel info

 Show Reservation Result

reservation

 Make Room Reservation

reservationroom

 Find a Room

roomhotel info

Concrete realizations of
"Execute Service"

reusable template task

Fig. 5. Hotel reservation plan

To generate domain dependent service execution plans, developer must
realize �Execute Service� template plan shown in Figure 2. Consider the
HTN plan for reserving a hotel room shown in Figure 5. Reserving a
hotel is as follows: �rst user preferences are taken, and according to
these preferences a hotel is found, then it is tried to make reservation
with that hotel and �nally results are shown to the user. In this plan,
�Find a Hotel�, �Find a Room� and �Make Room Reservation� sub-tasks
of the plan are concrete realizations of �Execute Service� task. They are
connected with their provisions and outcome slots, and because they
are domain dependent plans they know what input parameters they will
take.

4 SEAGENT Planner

4.1 Internal Architecture

Planner

Plan Library

Incoming FIPA ACL
Message

Outgoing FIPA ACL
Message

Incoming message
queue

Outgoing message
queue

Dispatcher Matcher Scheduler Executor

Objective queue Behaviour queue Ready action
queue

Pending task
hashtable

Fig. 6. Overall structure of SEAGENT planner

The overall structure of the planner architecture (Figure 6) is designed to
execute HTN structure(s) that includes complex and primitive tasks. In order to
execute a plan, the planner dynamically opens the complex root task using the
'reduction schema' knowledge, and this reduction continues until the planner
�nds actions (directly executable tasks), and then the planner executes these
actions. Propagation of output values of the executed task to other dependent
task(s) is handled by the �plan structure� itself. The planner is composed of four
functional modules: dispatcher, matcher, scheduler and executor. Each module
runs concurrently in a separate Java thread and uses the common data struc-
tures. All together, they match the goal extracted from the incoming FIPA-ACL
message to an agent plan, schedule and execute the plan following the prede-
�ned HTN based plan. In the following, we brie�y explain responsibilities of each
module during plan execution.

The planner is responsible for processing incoming and outgoing messages,
matching (�nding), scheduling and executing tasks. When a FIPA-ACL message
is received by the agent, it is enqueued to incoming message queue by the com-
munication infrastructure layer. Dispatcher checks incoming message queue for
the existence of an incoming message, if so, it parses the message and checks
whether it is part of an ongoing conversation or not. If so, then the dispatcher
�nds out the task waiting for that message from pending task hash table, and
sets the provision(s) of that task. If the incoming message is not part of an on-

going conversation, then the dispatcher creates a new objective, puts it to the
objective queue.

Matcher is responsible for matching the incoming objective to a pre-de�ned
plan by querying the plan library which is constructed using plan ontology and
match ontology. When a new objective is occurred, matcher gets message infor-
mation from it, and tries match a plan from the plan library for that objective.
If match succeeds, Matcher creates an instance of the plan and enqueues it to
behaviour queue.

Scheduler's role is to determine the execution time of each behaviour. Sched-
uler gets behaviours from the behaviour queue and prepares them for execution.
If all of the provisions of the behaviour are set, Scheduler reducts that behaviour
by calling its reduct() method - decomposes the behaviour to its sub-tasks. All
sub-tasks are checked whether their all provisions are set or not. If provisions of
a sub-task are set, then, if it is an action it is put to the ready action queue, else
(if it is a behaviour) it is put to the behaviour queue. If not, the sub-task is put
to the pending task hash table to wait for its provisions to be set. They may be
action or behaviour.

Executor checks the ready action queue and if there are pending actions on
that queue, it gets and executes them by invoking their Do() method. After
execution of an action, produced outcomes are passed to the dependent task's
provisions internally by the plan itself.

4.2 SEAGENT Plan Structure

Task

+defineName()

+defineProvision()

+defineOutcome()

Behaviour

#defineSubtask()

#defineProvisionLink()

#defineInheritanceLink()

#defineDisinheritanceLink()

Action

+do()

Provision

-name

+isSet()

InternalProvision ExternalProvision

Outcome

-name

+getValue()

OneShotBehaviour TickerBehaviour WaiterBehaviour

InternalProvisionLink

-senderTaskClassName

-senderTaskOutcomeName

-targetTaskClassName

-targetTaskOutcomeName

InheritanceLink

-senderProvisionName

-targetTaskClassName

-targetProvisionName

DisinheritanceLink

-senderTaskClassName

-senderOutcomeName

-targetOutcomeName

ExternalProvisionLink

-senderTaskClassName

-senderOutcomeName

-targetTaskClassName

-targetTaskOutcomeName

Fig. 7. Components of SEAGENT plan structure

Components of SEAGENT plan structure are shown in Figure 7 (only key
attributes and operations are shown). Tasks are represented with Task class
and have a name describing what it is supposed to do and have zero or more

provisions and outcomes. Provisions might be of two types: internal provision
and external provision. Internal provisions are provisions whose value's are in-
ternally set within the plan, in other words, value of internal provisions is deter-
mined by outcome of another tasks. External provisions, on the other hand, is
set externally, with an incoming FIPA-ACL message. Incoming messages from
another agents are routed to the external provisions of pending tasks. This rout-
ing is done according to conversation-id and in-reply-to �elds of the incom-
ing message. There are various types of behaviours, such as OneShotBehaviour
which is executed only once, TickerBehaviour which is executed periodically
and WaiterBehaviour which is executed after an amount of time is passed. All
speci�cations about behaviours and actions is hold by themselves and, these
speci�cations are described by using defineXXX() methods.

To write an action, it is enough to extend Action class, de�ne provisions
and outcomes using defineProvision() and defineOutcome() methods and
�nally implement do() method. Writing behaviours is a bit di�erent because,
behaviours have no do() method, and they only hold the speci�cations about
its sub-tasks, and relationships between these sub-tasks. Also they may contain
provision and outcomes, and, de�nition of provisions and outcomes is just as in
actions. To de�ne sub-tasks, defineSubtask(String className) method is
used by giving the absolute class name of the task to be added to this behaviour.
For example, �Enact Service� task in Figure 2 can be de�ned in �Execute Service�
parent task as defineSubtask(EnactService.class.getName()). And also
provision links must be de�ned in order to satisfy information �ow by using
provision link de�nition methods5.

4.3 SWSA Support in Planning Level

As mentioned in section 3, SEAGENT planner has innovative features to handle
the work�ows of the SWSA processes. This section shows how these features
are satis�ed by SEAGENT planner. The built-in support makes implementing
overall processes of SWSA easier for developers.

Template plan support In SEAGENT it is possible to create template (generic)
plans. The basic idea resembles abstract class logic in object orientation. That
is, to construct a generic plan, describe the main characteristics of a plan leaving
some special pieces (tasks) unimplemented. So that in the future they may be
specialized and used (remember the service discovery plan in Figure 3). Tasks
de�ned in reusable template plan can be extended (by rede�nition of abstract
tasks) to concrete plans. The important point here is the con�iction of the speci-
�cations of the abstract task to be extended (provision and outcome de�nitions)
and speci�cations of the extended concrete task. To implement template plans,
construct the plan as a normal plan but use abstract task de�nitions where you
want to make abstract tasks.

5 defineInternalProvisionLink() and defineExternalProvisionLink()

In SEAGENT, to de�ne sub-tasks, defineSubtask() method is used by
giving the class name of the sub-task as a parameter. If we want to de�ne
an abstract sub-task, all we need to do is to give the name of the abstract
sub-task indirectly. This can be done by using an abstract method that re-
turns the name of the sub-task, and passing this abstract method as param-
eter to defineSubtask() method. For example, �Select Service(s)� abstract
task in Figure 3 can be de�ned in �Discover Candidate Services� parent task
by using getSelectServicesTaskName() abstract method (defineSubtask(

getSelectServicesTaskName()). Concrete realization of this plan is made by
extending this plan and implementing the abstract methods that return the class
names of the concrete tasks.

Recursion support Recursion is another capability of SEAGENT planner. By
a recursion we mean a situation where one instance of a task is an ancestor
in the planning tree of another instance of the same task. This is usually used
when we cannot satisfy something in a task and want to execute this task again
but with di�erent provisions. Since there is no restriction on de�ning sub-tasks,
a task may contains itself as a sub-task. But the important point here is that
the decomposition of the successor task must be in control, just like in recursive
methods in traditional programming. In SEAGENT, the decomposition of a task
is controlled via its provision's state, that is, if all provisions are set or there is
no provision then the task decomposes. So, in a recursive HTN plan, recursion
tasks must contain at least one provision and the value of this provision must
be di�erent from its ancestor's value (see Figure 4). Otherwise an in�nite loop
arises and our agent crashes.

Constitution of Composite Services support Constitution of composite
services is simple in SEAGENT, because there are prede�ned reusable template
plans for service execution (see Figure 2) in plan library and, developers can use
these plans to construct their own domain dependent service execution plans and
compose them just as building an ordinary plan (see Figure 5). The important
point here is the satisfaction of input/output compatibility and this is easily
handled by the correct concrete realizations of the abstract tasks.

5 Conclusion

The SWSA is currently a working group recommendation and describes ab-
stract infrastructures and related processes for semantic web services and agents
interaction in a conceptual base. We believe that this architecture brings a com-
prehensive model of software agents which utilize and provide semantic web
services. However this architecture is a product of an initiative study and most
of its components are only theoretically de�ned, not implemented. In this paper,
a new MAS software platform, which aims to concretely ful�ll fundamental re-
quirements of the SWSA, has been introduced. We have modeled subprocesses of

SWSA as reusable plans by HTN approach and provided a framework in which
those plans can be executed in a composite fashion by agent planners. Hence,
platform agents can accomplish execution of discovery, engagement and enact-
ment processes for semantic web service interaction by employing those reusable
and prede�ned HTN plans. We have also discussed necessary properties of an
agent planner which can execute those de�ned plans. Such a planner has been
implemented based on the SEAGENT platform.

In the paper we focused on the requirements of the planner for execution of
SWSA subprocesses. But we are also working on the other parts of the software
architecture. For example, service discovery mechanisms for the platform are
fully operational. Semantic capability matching of services has already been
implemented and platform agents are currently able to invoke semantic web
services in proper to OWL-S standards.

Perhaps our major weakness, considering both the software and reusable
agent plans, is seen in de�nition and design of the service engagement sub-
process. QoS topics are currently being studied and they weren't addressed in
detail by the service oriented computing community. Hence our QoS support dur-
ing the engagement process is extremely primitive and only composes monitoring
service. That support is also in its initial state. Security and trust mechanisms
have not been considered yet in our implementation.

References

1. Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M., Paolucci, M., Sheth,
A., Williams, S.: A semantic web services architecture. IEEE Internet Computing
Volume 9 Issue 5 (2005) 72 � 81

2. Varga, L.Z., Ákos Hajnal, Werner, Z. In: Engineering Web Service Invocations
from Agent Systems. Volume 2691. Lecture Notes in Computer Science (2003) 626
� 635

3. Varga, L.Z., Ákos Hajnal, Werner, Z. In: An Agent Based Approach for Migrating
Web Services to Semantic Web Services. Volume 3192. Lecture Notes in Computer
Science (2004) 381 � 390

4. Fensel, D., Bussler, C.: The web service modeling framework wsmf. Electronic
Commerce Research and Applications 1(2) (2002) 113�137

5. Greenwood, D., Calisti, M.: Engineering web service - agent integration. In: SMC
(2), IEEE (2004) 1918�1925

6. Nguyen, T.X., Kowalczyk, R.: Ws2jade: Integrating web service with jade agents.
In: AAMAS'05 Workshop on Service-Oriented Computing and Agent-Based Engi-
neering (SOCABE'2005). (2005)

7. Dikenelli, O., Erdur, R.C., Özgür Gümüs, Ekinci, E.E., Önder Gürcan, Kardas,
G., Seylan, I., Tiryaki, A.M.: Seagent: A platform for developing semantic web
based multi agent systems. In: AAMAS, ACM (2005) 1271�1272

8. Paolucci, M., Kawmura, T., Payne, T., Sycara, K.: Semantic matching of web
services capabilities. In: First Int. Semantic Web Conf. (2002)

9. Dikenelli, O., Gümüs, Ö., Tiryaki, A., Kardas, G.: Engineering a multi agent
platform with dynamic semantic service discovery and invocation capability. In
Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N., eds.: MATES.
Volume 3550 of Lecture Notes in Computer Science., Springer (2005) 141�152

10. Kardas, G., Gümüs, Ö., Dikenelli, O.: Applying semantic capability matching into
directory service structures of multi agent systems. In: ISCIS. Volume 3733 of
Lecture Notes in Computer Science., Springer (2005) 452�461

11. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.Z.: Quality driven
web services composition. In: WWW '03: Proceedings of the 12th international
conference on World Wide Web, New York, NY, USA, ACM Press (2003) 411�421

12. Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service
for work�ows and web service processes. J. Web Sem. 1(3) (2004) 281�308

13. Sacerdoti, E.: The nonlinear nature of plans. In: International Joint Conference
on Arti�cial Intelligence. (1975)

14. Tate, A.: Generation project networks. In: International Joint Conference on
Arti�cial Intelligence. (1977) 888 � 893

15. Erol, K., Hendler, J.A., Nau, D.S.: Complexity results for htn planning. Ann.
Math. Artif. Intell. 18(1) (1996) 69�93

16. Sycara, K., Williamson, M., Decker, K.: Uni�ed information and control �ow in
hierarchical task networks. In: Working Notes of the AAAI-96 workshop 'Theories
of Action, Planning, and Control'. (1996)

17. Graham, J.R., Decker, K., Mersic, M.: Decaf - a �exible multi agent system archi-
tecture. Autonomous Agents and Multi-Agent Systems 7(1-2) (2003) 7�27

