Engineering an MAS Platform for Semantic Service
Integration based on the SWSA

Ozgiir Giimiis!, Onder Giircan', Geylani Kardas?,
Erdem Eser Ekinci!, and Oguz Dikenelli'

'Ege University, Department of Computer Engineering, 35100 Bornova, Izmir, Turkey
{onder.gurcan, ozgur.gumus,oguz.dikenelli}@ege.edu. tr
erdemeserekinci@gmail.com
ZEge University, International Computer Institute, 35100 Bornova, Izmir, Turkey
geylani.kardas@Qege.edu.tr

Abstract. In this paper, a Multi-Agent System (MAS) platform for semantic
service integration based on the Semantic Web Services Initiative Architecture
(SWSA) is discussed. We define a software architecture in order to provide con-
crete realization of the SWSA. The architecture fullfills fundamental require-
ments of the SWSA’s sub-processes. Software agents are employed in automatic
discovery and execution of the Semantic Web Services within this architecture.
We also elaborate implementation of SWSA’s sub-processes (service advertise-
ment, discovery, engagement and enactment) taking the main components of the
defined architecture and their interactions into consideration. Hence, the devel-
opers can easily utilize semantic web service technologies by using this flexible
and extensible platform.

1 Introduction

Web services enable the software components on different platforms to interact with
others conforming some specific description and communication standards. So, they
are supported strongly by industrial players in the Internet computing area. On the
other hand, software agents are entities that perform actions to achieve user’s goals
by interacting with other agents. Any software agent can use existent web services dy-
namically/automatically to perform an action which is necessary for achieving its user’s
goals. However, they use different communication and coordination standards from web
services and they need some semantic knowledge about these services to reason in or-
der to use them dynamically. At this point, the semantic web service concept can help
us since semantic web services are web services whose functionalities and execution
details are described using ontologies. However, there are still some problems and un-
certain situations to succeed this cooperation.

The Semantic Web Services Initiative! Architecture (SWSA) committee? has cre-
ated a set of architectural and protocol abstractions that serve as a foundation for se-
mantic web service technologies [1]. The proposed SWSA framework builds on the

! http://www.swsi.org/, last access on May 16, 2007.
2 http://www.daml.org/services/swsa/, last access on May 16, 2007.

W3C Web Services Architecture working group recommendation’ and attempts to ad-
dress all requirements of semantic service agents: dynamic service discovery, service
engagement, service process enactment and management, community support services,
and quality of service (QoS). The SWSA framework also determines the actors of each
phase, functional requirements of each phase and the required architectural elements to
accomplish these requirements in terms of abstract protocols. This architecture is based
on the multi-agent system (MAS) infrastructure because the specified requirements can
be accomplished with asynchronous interactions based on predefined protocols and us-
ing goal oriented software agents.

Although SWSA defines a detailed conceptual model based on MAS infrastructure
and semantic web standards, it does not define the software architecture to realize this
conceptual model and does not include the theoretical and implementation details of the
required software architecture. Hence, in this paper we introduce a completely working
subset of SWSA that fulfills fundemental requirements of SWSA’s conceptual model.
We define a coherent software platform to enable the developers to utilize semantic web
service technologies with an engineering perspective. The provided agent platform has
the following capabilities which make it flexible and extensible:

— The platform can utilize semantic web technologies to represent and manipulate
knowledge and semantic web service technologies to perform its tasks.

— Service provider agent accepts both pure web services and services with a semantic
interface. However, admin of this agent must resolve ontology mismatches between
platform and service ontology and process mismatches between goal template and
service process model using the tools provided by the service provider agent.

— The user creates agent plans which may include instances of predefined goal tem-
plates as tasks.

— There are predefined generic plans for each phase of the service execution pro-
cess: discovery, selection/engagement and enactment/invocation. These plans can
be specialized for different service execution needs of application dependent agent
plans and they are executed by a special planner [8].

There are some standardization efforts for semantic web services to allow the web ser-
vices to work in the semantic web environment. The most attractive ones are OWL-S*
and WSMO?>. OWL-S is an ontology system for describing web services but it’s not a
complete system and meaning of some of its elements is not clearly defined. WSMO is
said to be more complete framework but it is not based on W3C standards such as OWL
and SWRLP. Also it does not make use of OWL ontologies and it looks like a workflow
system in a distributed and heterogeneous service environment. We preferred OWL-S

3 W3C Web Services Architecture Working Group, Web Services Architecture Recommenda-
tion, 11 February 2004, http://www.w3.org/TR/ws-arch/, last access on May 16, 2007.

4 Semantic Markup for Web Services, http://www.daml.org/services/owl-s/, last access on May
18, 2007.

5 Web Service Modelling Ontology, http://www.wsmo.org/, last access on May 18, 2007.

6 Semantic Web Rule Language, http:/www.w3.org/Submission/SWRL/, last access July 18,
2007.

for defining agent’s goals and services and external semantic web services but we also
implemented the mediation notions mentioned in WSMO.

The paper is organized as follows: in Section 2 our proposed software architecture is
discussed. Phases of the semantic service integration in this architecture are explained
in Section 3. Evaluation of the architecture within the scope of a real system implemen-
tation is given in Section 4. Section 5 contains the related work and finally Section 6
concludes the paper and discusses the future work.

2 Agent Based Semantic Service Architecture

Since the SWSA is conceptual and has a broad perspective, we have some assumptions
to implement this architecture in a reasonable way:

— There is a platform ontology which represents the working domain of the platform.
This ontology is designed by platform’s administrator and stored and managed by
platform’s ontology agent.

— There are predefined goal templates which the users of the platform may want to
achieve by delegating these goals to an agent as a plan. These goal templates are de-
scribed similar to semantic web service descriptions (inputs, outputs, preconditions
and effects) by platform’s administrator and stored in a service registry agent.

— Agent services are advertised on a registry agent with their semantic descriptions.
These services could be internal capabilities of regular agents or external semantic
web services which are included to the platform by service provider agents.

— The mappings between platform’s ontology and the ontology that the semantic ser-
vice depends on must be defined if they are different. Otherwise the service cannot
be used by platform’s agents.

In order to concretely fulfill fundamental requirements of the aforementioned SWSA’s
sub-processes, we propose a software architecture in which software agents are em-
ployed in automatic discovery and execution of the Semantic Web Services on behalf
of their human users (Figure 1).

The architecture ensures utilization of both pure web services and services with
the semantic interface via service provider agents. In fact, the architecture presents an
IEEE FIPA” compliant MAS and member agents of this system also constitute main
components of the proposed architecture which are called Service Provider Agent, Ser-
vice Requester Agent, Service Registry Agent and Ontology Agent. Communication
between these agents takes place according to the well known Agent Communication
Language (ACL)? infrastructure.

Service Provider Agent (SPA) realizes inclusion of pure web services (WSDL) and
semantic web services (OWL-S, WSMO etc.) into the MAS and supports agent - se-
mantic service interaction. In case of a web service inclusion, the admin of SPA first

7 Institution of Electrical and Electronics Engineers (IEEE) Foundation for Intelligent Physical
Agents (FIPA), http://www.fipa.org/, last access on May 16, 2007.

8 FIPA Agent Communication Language Specifications, http://www.fipa.org/repository/aclspecs.html,
last access on May 16, 2007.

Web Services
(WSDL or OWL-S)

Ontology
Repository

0

Service

Semantic Service
Matcher (OWLS-MX)
Repository

Service Registry — Ontology Web

Agent (DF) ' Agent (OA) ‘_--' Service
I"

R Web

S LeemT Service
ACL - £
J
l"

Goal
Repository

) N Service
Service Provider

Agent (SPA)

C
Service Requester
Agent (SRA)

Usage

— — ACL Communication e Service Matching

SOAP Communication Tables

Local Ontology Local Service
Repository Repository

Fig. 1. The Architecture of the MAS Platform for Semantic Service Integration

gives SPA the address of the service description document. Then SPA makes the re-
quired mappings and matchings and prepares plans for the service and finally advertises
it to the platform as an agent service. In order to perform these operations SPA uses
these components: WSDL2OWL Converter, Mapping Tool, WSDL2OWLS Converter
and Matching Tool. WSDL2OWL Converter converts the concepts in a given WSDL
to OWL concepts. Mapping Tool is a tool which defines mappings between given two
ontologies via human interaction. The tool saves mapping knowledge as instances of
a mapping ontology for the future use. WSDL2OWLS Converter converts the service
description in a given WSDL to an OWL-S service description. A similar service profile
generation approach can be found in [11]. Matching Tool helps user to find an appropri-
ate goal template for the service and defines matching between that goal template and
the description of the service. Matching Tool also helps to create service specific plans
in order to realize process mediation.

Service Requester Agent (SRA) is a service client agent in the architecture. In order
to find and execute services, SRA uses the processes which are defined in SWSA. When
SRA needs a service it first retrieves a list of semantically appropriate services from
Service Registry Agent (discovery), then engages with the provider of a suitable service
(SPA) (engagement) and finally requests SPA to execute the service (enactment).

The Service Registry Agent is the Directory Facilitator (DF) of our IEEE FIPA com-
pliant MAS. This DF advertises capabilities of the services provided by the agents. It
includes a Service Repository which stores service advertisements as OWL-S Profiles
registered by the corresponding SPAs. It can perform semantic service matching be-
tween a requested goal definition and advertised service definitions in order to deter-
mine semantically most appropriate OWL-S services for the request. For the capabil-

ity matching, our DF in the architecture employs a Semantic Service Matcher called
OWLS-MX [9]. OWLS-MX is a hybrid semantic web service matcher that utilizes both
logic based reasoning and content based information retrieval techniques for services
specified in OWL-S. On the other hand, the DF of the architecture also stores agent
goal templates of the platform in a repository called Goal Repository. Services adver-
tised by the platform agents must conform to these templates stored in this repository.
Also agents can use these templates in order to specify their goals.

The Ontology Agent (OA) includes an Ontology Repository in which ontologies
used in the platform are stored. The OA provides controlled access and query on these
platform ontologies for other members of the platform.

3 Phases of Semantic Service Integration

The design of the architecture is organized around four main phases for services: (1)
the advertisement phase in which the inclusion of the web service to the platform is
performed by the provider agent; (2) the discovery phase that the intended service is
explored by the requester; (3) the engagement phase in which requester and provider
agents make an agreement; (4) the enactment phase that the service is invoked by a
requester agent via the provider agent.

3.1 Service Advertisement

In this phase external services are included into the platform by SPAs. As mentioned
above, agents cannot advertise any service to the platform, unless the service is compati-
ble with the platform’s goal templates. SPA accepts both pure web services and services
with a semantic interface. Advertisement of these external services is quite similar to the
advertisement of agent services. However these services must be semantically adapted
to the platform in order to be advertised by SPA. This adaptation involves both data and
process adaptations. That is, both the concepts which are used by the service must be
suitable to the platform’s domain and the work which is done by the service must be
compatible with the platform’s goal templates.

To advertise an external service, the admin of SPA requests SPA to start the adver-
tisement phase by giving the address of service description document of the service.
SPA loads the description and checks whether the service is pure or semantically de-
scribed. If it is pure, SPA converts the concepts in that service description to semantic
concepts using WSDL2OWL converter and stores it as an ontology document (local on-
tology) in the Local Ontology Repository. Then mappings between this local ontology
and platform ontology are defined using Mapping tool with the help of the admin. This
process generates a mapping knowledge and it is stored in a file. After this, SPA converts
the service description (WSDL) to a semantic service description using WSDL2OWLS
converter and stores it in the Local Service Repository. Then SPA tries to adapt this
description to a platform’s goal template. This is required because agents can only ad-
vertise services which are compatible to the platform’s goal templates. To do this, SPA
requests the goal templates from DF and starts its Matching tool. Matching tools cre-
ates a Service Matching Table which holds mapping knowledge, local service profile,

the goal template and a plan to enact the service. Finally SPA requests DF to advertise
the service using its service description. The AUML? sequence diagram for the steps of
the external web service advertisement is given in Figure 2.

sd: service advertisement J
i Admin : SPA : 0A : DF

| advertise(description address) ~

| i (J t=read(description address)

|
|
|
lo=createLocalOntology(t) |
2 saveToLocalOntologyRepository(yo) :

|

request(platformOntology)

[refused] refuse

| [accepted, accept
I~ will be informed]

: inform(platformOntology)

|
|
|
|
|
|
T
! alternative] |
| |
|
|
|
|
|
|
|

defineMappings(lo, p\atformOnto\ogyJ

f) -___S;_\Fi—("]a-m_ngs-)____ -:_ - defineMappings(lo, platformOntology)

; Isd=createLocalServiceDescription(t)

; saveTolLocalServiceRepository(lsd)

request(goalTemplates)

T
|
‘alternatlveJ | [refused] refuse
|} will be informed]
L
| inform(goalTemplates)
|
defineMatchings(lsd, goalTemplates) |
e . . |
tchi defineMatchings(lsd, goalTemplates)

Dﬁ . — save(matchings) . _y)] gsilsd, goalTemp |
|
|

save(service profile) |
Il
alternativel |
| | [refused] refuse

! [accepted, accept
I_II will be informed]

|

!

|

!

|

!

|

!

|

!

|

|

T

;

|
:I:i; T

—_— —_— [— —_— —_— —t=

| [accepted accept |
|

I

!

!

|

|

|

|

|

|

;

t

|

T

—

|

|

] inform(success) 1

inform message
- e I ‘ ‘

| : !

Fig. 2. An External Service Advertisement Scenario

In case of a semantic service advertisement, the process depends on the interface
language of the service: it might be OWL-S or another semantic service description
language. Since OWL-S is the service description language of the platform it is not

9 Agent UML, http://www.auml.org/, last access on July 24, 2007.

required to convert the description document when it is in OWL-S, only semantic com-
patibility is needed (mappings). But if it is in another language then the mechanism
is similar to pure service advertisement: first the description document is converted to
OWL-S, then semantic compatibility is obtained.

3.2 Service Discovery

In order to realize semantic service discovery, the platform services should be registered
to a service registry which has the capability of matchmaking. Service requesters should
query on this registry and have ability to interpret resultant service advertisements. As
mentioned before, the DF of our platform stores capability advertisements of registered
services as OWL-S profiles in its service repository and allows the semantic discovery
of active services via querying these service descriptions.

The whole service execution process of the requester agent is handled by a plan
which is based on a predefined generic semantic service execution plan for SWSA.
This generic plan is discussed in our previous work [8]. When an agent (SRA) needs a
service (a service to perform its goal), it loads that plan, and within the discovery phase
it first forms a query. This query contains the capability description of the intended ser-
vice and the degree of match to retrieve suitable service descriptions. This capability
description is expressed in OWL-S profile and is valid if it conforms to the capability
descriptions (goal templates) of the platform. The suitable communication protocol and
content language for the client have already been designed and implemented for OWL-
S services [5]. Then the DF receives the query request and using a semantic service
matcher and a service repository it finds and returns the semantically appropriate ser-
vices. Finally SRA receives the resultant services, selects one or more of them and then
starts the engagement process with the providers of these selected services as the next
step of its semantic service execution plan.

3.3 Service Engagement

After completion of the service selection, the requester-provider engagement process,
which involves the negotiation on QoS metrics and agreement settlement. In our plat-
form this phase is implemented in a simple manner. We just utilize some QoS parame-
ters (like service cost, run-time, location, etc.) defined in various studies [2,15].

3.4 Service Enactment

After the engagement on the metrics of a semantic service between SPA and SRA, SRA
initiates the enactment phase. SRA requests SPA to execute the engaged service using
its service profile and the proper parameters. Then SPA finds the Service Matching
Table using Matching tool and loads the plan within this table to enact the service. SPA
first converts the parameters to the local ontology then converts them to the WSDL
parameters using the mapping knowledge and the matching knowledge. Finally SPA
prepares a SOAP message using these parameters and invokes the service. Result of the
service execution is converted from its SOAP form into the platform ontology and sent
to SRA. AUML sequence diagram of this scenario is shown in Figure 3.

sd: service enactment ,

: SRA : SPA : Web Service

R -

[]_request(service profile, parameters)

serviceMatchingTable=find(service profile)
load(serviceMatchingTable.plan, parameters)

!
|
!
!
E localParams=convertToLocalOntyerel(parameters) :
; wsdlParameters=convertToWSDLParameters(localParams) |
|

|

!

2 soapCall=prepareSOAPMessage(wsdIParameters)

call(soapCall) -
>
soapResponse
e« - — - = — — - 52 PResponse _ _ _ _ _ _ _ _ _ _

E localResponse=convertToLocalOnt(soapResponse)

E globalResponse=convertToGlobalOnt(localResponse)

inform(globalResponse) T

|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
m) %

Fig. 3. An External Service Enactment Scenario

4 Evaluation

The platform introduced in this study was employed during a commercial project in
which design and implementation of a tourism system based on the SEAGENT [4]
framework were realized. The project included adaptation of an existing hotel reser-
vation system into the Semantic Web environment. The existing system was one of
the products of a countrywide known software company which sells hotel automation
systems'?. The system had been previously based on the web service architecture and
project aimed at providing semantic interfaces of the web services in use and realize an
online system in which software agents reserve hotel rooms on behalf of their human
users.

The development team used the architecture and semantic web service integration
process discussed in this study during design and implementation phases of the project.
Following is the feedback gained from the development team about utilization of our
platform.

The developers in general found the architecture helpful especially in determining
architectural roles and related agents in addition to the domain based role and agent
specifications. They agreed that the architecture provided pre-defined constructs for
their system and those constructs were used during the design of the system. Service
Registry, Service Provider and Ontology Agents were all developed by the team using
the SEAGENT framework. In the system, agents for the hotel clients were designed as
service requester agents and they played the role of SRA.

The integration of the existing web services into the MAS was crucial and the team
used our proposed service registration, discovery and execution dynamics during the re-

10 0deon Hotel Management Systems, http://www.myodeon.com/, last access on May 18, 2007.

alization of this integration. The team expressed that they previously had expected this
task as a big challenge however they agreed that our service deployment mechanism
simplified the work considering analysis, documentation and implementation issues.
However, they found implementation of matching and mapping operations for the ser-
vice integration in agent plans as a bit tricky and error prone. They also expressed that
the policies used in service engagement were still too abstract and hard to implement.

5 Related Work

There have been a few partial implementations to integrate web services and FIPA com-
pliant agent platforms. WSDL2Jade [14] can generate agent ontologies and agent codes
from a WSDL input file to create a wrapper agent that can use external web services.
WSDL2Agent [13] describes an agent based method for migrating web services to the
semantic web service environment by deriving the skeletons of the elements of WSMO
from a WSDL input file with human interaction. WSIG (Web Services Integration Gate-
way) [7] supports bi-directional integration of web services and Jade agents. WS2JADE
[10] allows deployment of web services as Jade agents’ services at run time to make
web services visible to FIPA-compliant agents through proxy agents. But these tools
only deal with the integration of agents and external web services and do not make use
of semantic web technologies.

Some studies on integrating agent technologies with semantic web services also
exist. For example the studies in [6] and [16] describe agent environments which use
OWL-S (formerly DAML-S) to advertise descriptions of agent services in DF and to
transport them with ACL messages. Dickinson and Wooldridge illustrate one approach
using reactive planning to control web service invocation by BDI agents [3]. In these
studies, the support for semantic web resources is limited and they do not provide com-
plete system architectures. The most relevant work to our study is [12] wherein an
agent framework is introduced for automated goal resolution on the semantic web. It
uses WSMO-based technologies and tools. However it is not compatible with SWSA
framework and the proposed architecture is hard to extend because of strict coupling to
WSMO.

6 Conclusion and Future Work

An MAS platform for semantic service integration based on SWSA is discussed in
this paper. We define a software architecture in order to provide concrete realization
of the SWSA. Software agents are employed in automatic discovery and execution of
the Semantic Web Services within this architecture. We also elaborate implementation
of SWSA’s sub-processes taking into consideration of the main components and their
interactions of the defined architecture.

The protocols of the service engagement phase are currently in their preliminary
state. Our first aim is to detail usage of the QoS parameters within the scope of the
engagement protocols and fully employ service engagement during the agent - service
interaction. We also plan to redesign and implement SPA component of the architec-
ture so it would be a software tool for service providers by supplying a GUI for service

integration. This would simplify semi-automatic service deployment for service own-
ers. Therefore ontology mapping and process matching would be realized in a more
comfortable and error-free way.

7

Acknowledgements

This work is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) Electrical, Electronics and Informatics Research Group (EEEAG) under
grant 106E008.

References

1.

10.

11.

12.

13.

14.

15.

16.

M. Burstein, C. Bussler, M. Zaremba, T. Finin, M.N. Huhns, M. Paolucci, A.P. Sheth, and
S. Williams. A semantic web services architecture. IEEE Internet Computing, Volume 9
Issue 5:72 — 81, 2005.

. J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and K. Kochut. Quality of service for work-

flows and web service processes. J. Web Sem., 1(3):281-308, 2004.

. L. Dickinson and M. Wooldridge. Agents are not (just) web services: investigating bdi agents

and web services. In SOCABE’2005 held at AAMAS’05, 2005.

. 0. Dikenelli, R. C. Erdur, O. Giimiis, E. E. Ekinci, O. Giircan, G. Kardas, I. Seylan, and

A. M. Tiryaki. Seagent: A platform for developing semantic web based multi agent systems.
In AAMAS, pages 1271-1272. ACM, 2005.

. O. Dikenelli, O Giimiis, A. M. Tiryaki, and G. Kardas. Engineering a multi agent platform

with dynamic semantic service discovery and invocation capability. In MATES, volume 3550
of Lecture Notes in Computer Science, pages 141-152. Springer, 2005.

. Nicholas Gibbins, Stephen Harris, and Nigel Shadbolt. Agent-based semantic web services.

In WWW’03, pages 710-717, New York, NY, USA, 2003. ACM Press.

. D. Greenwood and M. Calisti. Engineering web service - agent integration. In SMC (2),

pages 1918-1925. IEEE, 2004.

. O. Giircan, G. Kardas, O. Giimiis, E. E. Ekinci, and O. Dikenelli. An MAS Infrastructure

for Implementing SWSA based Semantic Services. In Service-Oriented Computing: Agents,
Semantics, and Engineering, volume 4504 of LNCS, pages 118 — 131. Springer-Verlag, 2007.

. M. Klusch, B. Fries, and K. Sycara. Automated semantic web service discovery with owls-

mx. In AAMAS’06, pages 915-922, New York, NY, USA, 2006. ACM Press.

T. X. Nguyen and R. Kowalczyk. Ws2jade: Integrating web service with jade agents. In
SOCABE’2005 held at AAMAS’05, 2005.

E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting semantic web services with inter-
active composition techniques. /EEE Intelligent Systems, 19(4):42-49, 2004.

M. Stollberg, D. Roman, I. Toma, U. Keller, R. Herzog, P. Zugmann, and D. Fensel. Se-
mantic web fred - automated goal resolution on the semantic web. In 38th Annual Hawaii
International Conference, 2005.

L. Z. Varga, K. Hajnal, and Z. Werner. An Agent Based Approach for Migrating Web Services
to Semantic Web Services, volume 3192, pages 381 — 390. LNCS.

L. Z. Varga, K. Hajnal, and Z. Werner. Engineering Web Service Invocations from Agent
Systems, volume 2691, pages 626 — 635. Lecture Notes in Computer Science, January 2003.
L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven web
services composition. In WWW’03, pages 411-421, New York, NY, USA, 2003. ACM Press.
Y. Zou. Agent-Based Services for the Semantic Web. PhD thesis, the Faculty of the Graduate
School of the University of Maryland, 2004.

