
Modeling Tools for Platform Specific Design of
Multi-agent Systems

Geylani Kardas1, Erdem Eser Ekinci2, Bekir Afsar2, Oguz Dikenelli2, N. Yasemin
Topaloglu2

1 Ege University, International Computer Institute, 35100 Bornova, Izmir, Turkey
geylani.kardas@ege.edu.tr

2 Ege University, Department of Computer Engineering, 35100 Bornova, Izmir, Turkey
erdemeserekinci@gmail.com, {bekir.afsar, oguz.dikenelli, yasemin.topaloglu}@ege.edu.tr

Abstract. In this paper, we introduce platform specific modeling and code
generation tools for the model driven development of multi-agent systems
(MAS). These tools enable agent developers to model their MASs for the
SEAGENT and the JADEX agent platforms based on the semantics and design
principles of these platforms. The toolkit also provides automatic code
generation for agent developers in order to implement their MASs on the target
platforms. Generated codes may vary on type (e.g. Java class files, XML
documents or ontologies) according to each platform’s requirements.

1 Introduction

Model Driven Development (MDD), which aims to change the focus of software
development from code to models, may also provide rapid and easy development of
Multi-agent Systems (MAS). However, such a development process should be
supported by modeling tools in order to assist developers during their design. Many
researchers in Agent-oriented software engineering (AOSE) community propose
model driven approaches (e.g. [1], [2] and [3]) in MAS development and also
introduce related modeling tools for their approaches. This study contributes to these
efforts by introducing new graphical modeling tools for different MAS platforms.

Based on the well-known MDD realization called Model Driven Architecture
(MDA)1, our ongoing work aims to define a MAS development process which will
consider the ontologies as the basic components of the MAS architecture. The
proposed development process includes definition of metamodels for each layer of
the MDA architecture; called the Computation Independent Model (CIM), the
Platform Independent Model (PIM), and the Platform Specific Model (PSM) and
provides modeling software tools for modeling in each layer. This study introduces
the software modeling tools which can be used at the PSM level. The developers can
use these tools to model MASs for SEAGENT [4] and JADEX [5] platforms and
obtain auto-generated software codes of their agent systems for the related platforms.

1 http://www.omg.org/mda/

The paper is organized as follows: In Section 2, we briefly discuss design and use
of the tools. Visual modeling and code generation for SEAGENT and JADEX agents
are discussed in Section 3 and 4 respectively. Section 5 covers related work.
Conclusion and future work are given in Section 6.

2 Design and Use of the Modeling Tools

The modeling tools introduced in this paper are developed on Eclipse2 platform by
using Graphical Modeling Framework (GMF)3. GMF is a framework for building
graphical modeling editors for various domains. In our study, we (1) provide domain
models of SEAGENT and JADEX agent platforms as Ecore4 metamodels, (2) prepare
graphical elements representing the agent domain elements and their relations, (3)
map agent components with the related graphical nodes and (4) generate the agent
modeling editors as the Eclipse plug-ins.

The developers use editors for visually modeling their agent systems. Agent
domain elements and their relationship links are represented in the editor palettes.
The developers choose desired elements and links from palettes and visually create
their agent models as will be discussed in the following sections. The editor
environment also supports developers in model consistency and prevents wrong
relation establishments between agent model elements.

The outputs of the visual modeling are the model documents for the designed
agent systems. The next step is the automatic generation of agent software codes,
ontology documents and any other system files from visually created agent models.
We employ the Abstract Syntax Tree (AST) and related parser in the Eclipse Java
Development Tools (JDT) for automatic generation of SEAGENT agent software,
plan documents and ontology files. On the other hand, MOFScript5 is used to
generate JADEX agent description files and agent plan codes. Above mentioned code
generations are completely abstract from the developers and hence developers do not
deal with the generation process.

In order to illustrate practical use of the introduced tools, let us consider a multi-
agent based e-barter system. A barter system is an alternative commerce approach
where customers meet at a marketplace in order to exchange their goods or services
without currency. An agent-based e-barter system consists of agents called Customer
that exchange goods or services of owners corresponding to their preferences. The
Barter Manager agent manages all trades in the system. This agent is responsible for
collecting barter proposals, matching proper barter proposals and tracking the
bargaining process between customer agents. In the following sections, the
registration scenario of customer agents with the Barter Manager agent is discussed
for the demonstration of the modeling tools. Interested readers may refer to [6] for the
complete design and description of the related e-barter MAS system.

2 http://www.eclipse.org/
3 http://www.eclipse.org/gmf/
4 http://www.eclipse.org/modeling/emf/
5 http://www.eclipse.org/gmt/mofscript/

3 Modeling SEAGENT Agents

SEAGENT [4] is an agent development platform in which Semantic Web enabled
MASs can be developed in an interactive and test-driven manner. SEAGENT Agents
manage all of their internal knowledge using OWL6 ontologies and can interact with
the semantic web services. Development of SEAGENT MASs includes MAS
modeling according to 4 viewpoints called Organization, Plan, Protocol and Domain.
Within Organization Model, agents, organizations, roles, goals and responsibilities of
the roles are declared. Plan Model provides internal planning of the agents based on
the Hierarchical Task Network (HTN) [7] paradigm. Protocol Models include
protocols for the interactions between SEAGENT agents. Finally, Domain Model
composes the ontological representation of the related business domain elements. Our
modeling toolkit includes editors for all 4 base models of the SEAGENT. However,
due to space limitations only editor for the Plan model is discussed in here.

In the SEAGENT framework, agents execute their tasks according to HTN. HTN
planning creates plans by task decomposition. This decomposition process continues
until the planning system finds primitive tasks that can be performed directly. In the
HTN formalism, there are two types of tasks: complex tasks called behaviours and
primitive tasks called actions. Each plan has a root task which is a behaviour itself
consisting of subtasks (actions) that are composed to achieve a predefined goal.
Behaviours hold a “reduction schema” data structure that defines the decomposition
of the complex task to subtasks and the information flow between these subtasks and
their parent task. Actions, on the other hand, are primitive tasks that can be executed
by the SEAGENT planner using the Java Reflection API.

Our toolkit provides the editor called HTN planner for the visual modeling of the
SEAGENT agent plans (Fig. 1). In this editor, agent developers can create plan
models including agent behaviours, actions and linkage between behaviour and their
subtasks by first selecting proper elements from the component palette and then
entering their attribute values. Fig. 1 also depicts the HTN plan model of the Barter
Manager agent for the customer registration scenario. The Barter Manager has the
behaviour “BHResponseRegistration” which can be decomposed into three actions
called “ACCheckExistence”, “ACRegisterCompany” and “ACAcceptCompany
Registration”. In these actions, the agent first controls whether the customer already
has been registered, then checks customer’s registration data according to the related
ontology if it is a new customer and finally realizes the registration.

SEAGENT platform executes the artifacts which are stored in two different
representation formats: OWL and Java. Considering HTN plans of SEAGENT
agents, our editor has built-in model to text translators for automatic generalization of
agent behaviour ontologies and template Java class codes of the related behaviour’s
actions. As shown in Fig. 1, the developer just needs to right-click on the proper
model element, chose code generation and set required parameters (e.g. source code
folder, namespace and action method name). Then the editor automatically generates
required plan ontologies (for the root behaviours) and action Java codes (for
subtasks).

6 http://www.w3.org/2004/OWL/

Fig. 1. Modeling SEAGENT Agent HTN plans

4 Modeling JADEX Agents

Our toolkit includes modeling and automatic code generation utilities for another
agent development platform called JADEX. JADEX [5] provides an engine and a
programming platform for developing well-known Belief-Desire-Intention (BDI) [8]
agents. The development of JADEX agents is based on a hybrid approach in which
declaration of static agent properties and programming of executable agent plans take
place. Declaration of static agent properties is given in files called Agent Definition
Files (ADF). An ADF file is written using XML and specifies the BDI model of the
related agent. On the other hand, agent plans are executable components and they are
given in Java program files. In order to assist agent developers in design and
development of JADEX BDI agents, we provided a graphical modeling editor and an
automatic code generation tool based on the design principles discussed in Section 2.
Developers can model the BDI architecture of the agents by choosing appropriate
model elements from the component palette, drawing the relationship links between
elements and setting model attributes. The editor environment (Fig. 2) provides
visualization of the BDI model of the agents and supports easy and efficient
development of JADEX agents. The editor also prevents users from wrong
relationship establishments between BDI elements. For example, Body of the plan
node can only be linked with the Plan node according to the BDI semantics of the
JADEX metamodel. Hence the editor does not allow linking Body nodes with any
other nodes except the Plan node.

Fig. 2. Modeling JADEX BDI Agents

Considering our case study, the BDI model of the Barter Manager agent can be
visualized as given in Fig. 2. Registration information received from the customer
agents is given as the initial facts (beliefs) for the Barter Manager (at the upper left of
the model in Fig. 2). The model also includes agent’s goals to be achieved (at the
lower left of the model), the plan structure (at the right of the model) and their
relations. After modeling of the JADEX Agent system is completed, developers can
obtain the ADF and related agent plan’s Java classes by using the integrated code
generator. Agent BDI models are stored as Ecore files. The code generator uses these
files as input, applies a model-to-text transformation using MOFScript and finally
outputs related ADF and template Java class files for the designed agent system.

5 Related Work

Several MAS software tools exist for modeling agent systems according to various
AOSE methodologies e.g. agentTool7 for O-Mase, IDK8 for INGENIAS, TAOM4e9
for Tropos and PDT10 for Prometheus. These tools mostly cover analysis and design
of MASs and a few of them only consider implementation and provide code
generation for specific agent platforms. On the other hand, studies like [1] and [2]
utilize tools for MDD of MASs but only one MAS development platform and its
PSM are taken into consideration. The graphical modeling editor introduced in [9]

7 http://agenttool.cis.ksu.edu/
8 http://sourceforge.net/projects/ingenias/
9 http://sra.itc.it/tools/taom4e/
10 http://www.cs.rmit.edu.au/agents/pdt/

has the same design principles with our toolkit. The editor is GMF based and
supports MDD of MASs at the PIM level. The toolkit introduced in this paper
contributes to those noteworthy studies by supporting platform specific modeling and
implementation of MASs according to MDA principles.

6 Conclusion and Future Work

In this paper, platform specific modeling and code generation tools for the MDD of
SEAGENT and JADEX agents are introduced. These tools enable agent developers to
design and implement their MASs on different target platforms which vary on the
design principles such as BDI, HTN and Semantic Web integration. In our future
work, we plan to develop another modeling toolkit for the platform independent
modeling of MASs. The toolkit will be again based on the GMF and use the enhanced
version of the PIM discussed in [3]. This new toolkit will be integrated into the
development environment introduced in this paper.

Acknowledgements

This work is funded by The Scientific and Technological Research Council of Turkey
(TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG) under
grant 108E141.

References

[1] Perini, A., Susi, A.: Automating Model Transformations in Agent-Oriented Modeling. In:
Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 167-178, Springer,
Heidelberg (2006)

[2] Pavon, J., Gomez, J., Fuentes, R.: Model Driven Development of Multi-Agent Systems.
In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp.284-298,
Springer, Heidelberg (2006)

[3] Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Modeling the Interaction between
Semantic Agents and Semantic Web Services using MDA Approach. In: O’Hare, G., et al.
(eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 209–228. Springer, Heidelberg (2007)

[4] SEAGENT MAS Development Framework, http://seagent.ege.edu.tr/
[5] JADEX BDI Agent System, http://jadex.informatik.uni-hamburg.de/
[6] Cakirlar, I., Ekinci, E. E., Dikenelli, O.: Exception Handling in Multi-Agent Systems. In:

9th Workshop on Engineering Societies in the Agents World, Saint-Etienne (2008)
[7] Williamson, M., Decker, K., Sycara, K.: Unified Information and Control Flow in

Hierarchical Task Networks. In: AAAI-96 Workshop, pp. 142-150 (1996)
[8] Rao, A, Georgeff, M.: BDI Agents: From Theory to Practice. In: First International

Conference on Multi-Agent Systems, pp. 312-319, San Francisco (1995)
[9] Warwas, S., Hahn, C.: The concrete syntax of the platform independent modeling

language for multiagent systems. In: ATOP 2008 Workshop, pp. 94-105, Estoril (2008)

