
Towards a DSML for Semantic Web enabled
Multi-agent Systems

Geylani Kardas
International Computer Institute

Ege University
35100 Bornova, Izmir, TURKEY

Tel: +90-232-3423232-103

geylani.kardas@ege.edu.tr

Zekai Demirezen
Department of Computer and

Information Sciences
University of Alabama at Birmingham
35294-1170 Birmingham, AL, USA

zekzek@uab.edu

Moharram Challenger
International Computer Institute

Ege University
35100 Bornova, Izmir, TURKEY

Tel: +90-232-3423232-119

challenger@engineer.com

ABSTRACT
Software agents are considered as autonomous software
components which are capable of acting to meet its design
objectives. To perform their tasks and interact with each other,
agents constitute systems called Multi-agent systems (MAS).
Although agent researchers have a great effort in MAS
metamodeling and model-driven MAS development, a significant
deficiency exists in current studies when we consider providing a
complete Domain Specific Modeling Language (DSML) for
MASs. We believe that a DSML increases the descriptive power
of a MAS metamodel, defines the system semantics and hence
supports a more fruitful methodology for the development of
MASs especially working on the new challenging environments
such as the Semantic Web. In this paper, we introduce a new
DSML for MASs with its abstract syntax, the textual concrete
syntax and the interpreter mechanism. The practical use of the
DSML is illustrated with a case study which considers the
modeling of a multi-agent based e-barter system.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory – semantics, syntax I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence – Multiagent systems

General Terms
Algorithms, Design, Languages.

Keywords
Domain Specific Modeling Language, Metamodel, Model-Driven
Engineering, Multi-agent System, Semantic Web.

1. INTRODUCTION
Software agents are considered as autonomous software
components which are capable of acting on behalf of their human
users in order to perform a group of defined tasks. Many
intelligent software agents interact with each other in a system
that we call Multi-agent Systems (MASs). The implementation of

these autonomous, responsive and proactive software systems is
naturally a complex task. In addition, internal agent behavior
model and interaction within the agent organizations become even
more complex and hard to implement when new requirements and
interactions for new agent environments such as the Semantic
Web [1] are considered. To work in a higher abstraction level is
of critical importance for the development of MASs since it is
almost impossible to observe code level details of MASs due to
their internal complexity, distributedness and openness. Within
this context, Model-Driven Engineering (MDE) [2] may provide
an infrastructure that simplifies the development of MASs.

MDE has been shown to increase productivity and reduce
development costs [3]. It provides higher levels of abstraction to
allow such users to focus on the problem, rather than the specific
solution [2]. In particular, domain-specific modeling (DSM) is a
modeling approach that provides languages, called Domain
Specific Modeling Languages (DSMLs), that fit the domain of an
end-user by offering intentions, abstractions, and visualizations
for domain concepts [4]. Therefore, the part of the success of
MDE is also dependent on the descriptive power of DSMLs [5].

Although there exists a great effort of agent researchers in MAS
metamodeling (e.g., [6, 7]) and model-driven MAS development
(e.g., [8, 9]), a significant deficiency exists in current studies
when we consider providing a complete DSML for MASs. In our
previous work, we also defined an agent metamodel [10] and have
recently presented a complete MDE process [11] for rapid
implementation of MASs on various agent software platforms.
The proposed metamodel especially supports the Semantic Web
constructs and their interactions with the traditional agent system
components to provide MDE of the Semantic Web enabled
MASs. However, similar to the above referenced studies, both
formal specification and descriptive power of the given
metamodel are not sufficient enough for the definition of the
system semantics and the verification of the MAS models
conforming to our proposed metamodel. This is a fundamental
requirement especially when we consider dynamic MAS models
describing agent behaviors and interactions both with the other
agents and the semantic web services. We believe that the
definition of a new DSML for such MASs would remove above
discussed shortages originating from the existing metamodel and
enable agent developers to use a more fruitful MDE methodology
for the development of MASs especially working on the new
Semantic Web environment. Hence, in this paper we present the
initial results of our ongoing study on defining a new DSML that
can be used during the model-driven MAS development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Based on a revised MAS metamodel, we derive an abstract syntax
and a textual concrete syntax for the proposed DSML. We also
define an interpreter mechanism that provides the automatic
generation of program codes for various MAS development
frameworks. These components of the language are discussed in
the paper with including their use in the modeling of a multi-agent
based e-barter system.

The rest of the paper is organized as follows: The abstract syntax,
the concrete syntax and the interpreter mechanism of the proposed
DSML are discussed in Sections 2, 3 and 4. Section 5 includes a
case study on the development of a MAS by using the DSML.
Related work is given in Section 6. Section 7 concludes the paper
with a brief discussion of the study.

2. THE ABSTRACT SYNTAX
It is well-known that the abstract syntax of a language describes
the vocabulary of concepts provided by the language and how
they may be combined to form models or programs. It consists of
a set of provided concepts and their relationships to other
concepts. A metamodel that describes the meta-entities and their
relationships for a domain can naturally provide a base for the
definition of such an abstract syntax. For this reason we have
revised and extended our MAS metamodel introduced in [11]
according to new requirements and provided concepts and their
attributes for the abstract syntax of the new DSML.

We call the new modeling language as SEA_ML (Semantic web
Enabled Agent Modeling Language) that supports modeling of
Semantic Web enabled MASs. In our vision, the “Semantic Web
enabled MAS” means that software agents are planned to collect
Web content from diverse sources, process the information and
exchange the results on behalf of their human users. Autonomous
agents can also evaluate semantic data within these MASs and
collaborate with semantically defined entities such as semantic
web services by using content languages. We call the software
agents with these capabilities as Semantic Web Agents.

Our metamodel for the Semantic Web enabled MASs considers
various aspects of MAS development (e.g., behavioral,
organizational and protocol) and provides both internal modeling
of a software agent and interaction of agents and semantic web
services within the environment. With more than 50 concepts and
80 relations, the exact metamodel is too big to completely discuss
in this paper. Interested readers may find the whole metamodel in
[11]. Here, we can only discuss one of the major parts of the

metamodel; the service interaction viewpoint of the metamodel in
which the interaction of agents and the semantic web services is
modeled. Figure 1 depicts this partial metamodel.

A Semantic Web Agent is an autonomous entity which is capable
of interaction with both other agents and semantic web services
within the environment. They play roles and use ontologies to
maintain their internal knowledge and infer about the
environment based on the known facts. Semantic Web Agents can
be associated with more than one Role at the same point in time
and can change roles over time. Task definitions and related task
execution processes of the Semantic Web agents are modeled
inside the Behavior entities.

A Semantic Web Service represents any service (except agent
services) whose capabilities and interactions are semantically
described. It should be noted that the association between the
semantic web agents and the services is provided over the agent
role entities in the metamodel. Because agents interact with
semantic web services depending on their roles defined inside the
MAS organization.

An ontology represents any information gathering and reasoning
resource for MAS members. Collection of the ontologies creates
the knowledgebase of the MAS that provides domain context.
Specializations of the ontology called Role Ontology and Service
Ontology are utilized by the Semantic Web Agents and Semantic
Web Services respectively. Because the Web Ontology Language
(OWL) is now both the premier and the W3C standard semantic
markup language for publishing and sharing ontologies, the
revised metamodel define ontology entities as extensions of the
OWLOntology concept defined in the OMG's Ontology Definition
Metamodel (ODM) [12].

Semantic web service modeling approaches (e.g., OWL-S [13])
mostly describe services by three semantic documents: Service
Interface, Process Model and Physical Grounding. Service
Interface is the capability representation of the service. Process
Model describes internal composition of the service. Finally,
Physical Grounding defines invocation protocol of the service.
These Semantic Web Service components are given in our
metamodel with Interface, Process and Grounding entities
respectively. Input, Output, Precondition and Effect definitions
used by the Semantic Web Service components are also defined
in the metamodel. The revised metamodel inherits OWLClass
meta-entity from ODM as the base class for these semantic
properties.

Figure 1. The partial MAS metamodel for agent-semantic web service interaction.

Semantic Web Agents apply Plans to perform their tasks. In order
to discover, negotiate and execute Semantic Web Services
dynamically, three extensions of the Plan entity are defined in the
metamodel. Semantic Service Finder Plan is a Plan in which
discovery of candidate semantic web services takes place.
Semantic Service Agreement Plan involves the negotiation on
QoS metrics of the service (e.g., service execution cost, running
time, location) and agreement settlement. After service discovery
and negotiation, the agent applies the Semantic Service Executor
Plan for executing appropriate semantic web services.

On the other hand, agents need to communicate with a service
registry in order to discover service capabilities. For this reason,
the metamodel includes a specialized agent entity, called
Semantic Service Matchmaker Agent. This meta-entity represents
the matchmaker agents that store the capability advertisements of
semantic web services within a MAS and match those capabilities
with service requirements sent by the other platform agents.

Based on the above discussed metamodel, the abstract syntax of
the SEA_ML has been defined by using the Kernel
MetaMetaModel (KM3) [14]. In addition to neat presentation of
our abstract syntax, the utilization of the KM3 notation also
enables us to employ our MAS metamodel in various model-to-
model transformations. Listing 1 shows an excerpt taken from the
abstract syntax of the SEA_ML defined in KM3 notation. The
excerpt includes definitions of the SemanticWebAgent and
SemanticWebService concepts with their relations.

class SemanticWebAgent {
 attribute name: String;
 ...
 reference apply[0-*]: Plan oppositeOf appliedBy;
 reference play: Role oppositeOf playedBy;
 reference advertisedBy[0-1]: RegistryRole
oppositeOf advertiseAgent;
}
...
class SemanticWebService {
 attribute name: String;
 ...
 reference interface: Interface oppositeOf owner;
 reference process: Process oppositeOf owner;
 reference grounding: Grounding oppositeOf owner;
 reference depend[1-*]: ServiceOntology
 oppositeOf dependedBy;
 reference advertisedBy[0-1]: RegistryRole
 oppositeOf advertiseService;
}
Listing 1. An excerpt from the abstract syntax of the SEA_ML

3. THE CONCRETE SYNTAX
While specification of abstract syntax includes the concepts that
are represented in the language and the relationships between
those concepts, concrete syntax definition provides a mapping
between meta-elements and their textual or graphical
representations. SEA_ML concrete syntax enables the agent
programmers to specify their programs textually. The main
objective is the concise and precise specifications and
comprehensible programs even for non-programmers. SEA_ML
concrete syntax consists of syntactic constructs that represent the
agent concepts. These constructs enable to translate textual agent
programs to their equivalent instance models. Textual Concrete
Syntax (TCS) [14] is used to develop SEA_ML’s concrete syntax.
Listing 2 shows an excerpt from the TCS specification of
SEA_ML. A domain user can specify a Semantic Web agent with

the role it plays. Furthermore, he can define agent plans (e.g.,
SemanticServiceFinder and SemanticServiceExecutor) and OWL
input/output classes for service interaction within a
SemanticWebAgent specification. Keywords, provided as a part
of SEA_ML concrete syntax, enable the domain user to specify
all these details in a comprehensible way

template SemanticWebAgent main context:
 “SemanticWebAgent” name “plays” plays {
 seperator=”;”}
 “knows OWLOntology” knows { seperator=”;”}
 [“SemanticServiceFinderPlan” |
 “SemanticServiceExecutorPlan”] applies
 { seperator=”;”} ;
 template Plan abstract;
 template RoleOntology addToContext: name;
 template SemanticServiceFinderPlan addToContext:
 name “discovers” interface
 “{“
 OWLClass” input “OWLClass” output
 …
 “}”

Listing 2. An excerpt from the TCS of the SEA_ML

4. THE INTERPRETER
It is not sufficient to complete the DSML definition only by
specifying the notions and their representations. The complete
definition requires that one provide semantics of language
concepts in terms of other concepts whose meaning is already
established. Therefore, the abstract syntax of the SEA_ML is
mapped into the metamodels of existing agent platforms (such as
NUIN [15]) that have well-defined and understood semantics. The
mapping is achieved through model transformations. One of the
target agent platforms we use is the NUIN platform which is a
Java framework for building belief-desire-intention (BDI) agents
[16], with a particular emphasis on Semantic Web agents. We
provided the model transformation rules based on the mappings
between the SEA_ML and NUIN concepts. Transformation rules
are written by using the AtlanMod Transformation Language
(ATL) [14]. Listing 3 presents an example ATL rule for
transforming Semantic Web Agents into the Agent concept of the
NUIN platform. This ATL rule, called
SemanticWebAgent2NUINAgent, maps name, contain, and believe
attributes of a NUIN Agent construct with the equivalent concepts
in the SEA_ML language. Determination of the Semantic Web
Agent instance and its plan components in the source pattern are
realized by three helper rules called partofPatternforWebAgents,
executorPlans and finderPlans. The context of these helpers is not
given here due to the space limitations.

create OUT : NUIN from IN : Agent;
rule SemanticWebAgent2NUINAgent {
 from
 ag: Agent!SemanticWebAgent (
 ag.partofPatternforWebAgent)
 to
 na: NUIN!NUINAgent (
 name <- ag.name,
 contain <- Sequence{ag.executorPlans,
 ag.finderPlans},
 believe <- ksdec),
 ksdec: NUIN!KnowledgestoreDeclaration
}

Listing 3. An example ATL rule for transforming Semantic
Web Agents into NUIN Agents

Moreover, considering the NUIN framework, we also provided a
model to text transformation in order to generate Nuinscripts [15]
(program codes for NUIN Agents) from the MAS models
conforming to NUIN metamodel. Agent programs written in
Nuinscripts are parsed into the Java objects used by the NUIN
platform. Hence, generated Nuinscripts are the executable
artifacts of the SEA_ML language.

5. CASE STUDY
In order to illustrate the use of the introduced language, consider
the modeling of a simple multi-agent based e-barter system. A
barter system is an alternative commerce approach where
customers meet at a marketplace in order to exchange their goods
or services without currency. In barter marketplaces, the amount
of purchased goods or services are paid by manufactured goods or
offered services. An agent-based e-barter system consists of
agents that exchange goods or services of owners corresponding
to their preferences. The Customer agents are responsible for
adding and evaluating barter proposals. The Barter Manager
agent manages all trades in the system. This agent is responsible
for collecting barter proposals, matching proper barter proposals
and tracking the bargaining process between Customer agents. In
such an e-barter system, suppose that a Barter Manager agent
needs to interact with semantic web services to match bidden and
demanded goods and determine the value of the exchange. For
instance, two customer agents (one from the automotive industry
and other from the healthcare sector) may need to exchange their
offered goods and services such that: A car manufacturer offers to
sell car spare parts to a health insurance company (e.g., for
company’s service cars) and wants to procure health insurance for
its employees. Consider that the intention of the health insurance
company is vice versa.

During the bargain between the agents of the car manufacturer
and the health insurance company, our Barter Manager agent may
use a semantic web service called Barter Service. In order to
invoke that service, Barter Manager first needs to discover the
proper semantic web service. Then, Barter Manager interacts with
the candidate service(s) and after an agreement, the exact
execution of the semantic web service is realized. Figure 2
portrays the instance MAS model conforming to the metamodel
discussed in Section 2.

Figure 2. An instance agent model for the e-barter system
conforming to the metamodel of SEA_ML

The program code of the Barter Manager agent can be provided
according to the concrete syntax defined in TCS of the SEA_ML.
Barter Manager plays the Barter Role and applies two plans called
discoverBarterService and invokeBarterService which compose
tasks for the interaction with a semantic web service. The agent
first searches for a semantic web service which can match a
“Car_Spare” OWL concept with a “Health_Insurance” OWL
concept and then execute the service to find the counterpart of a
bargained car spare part: an OWL individual for BMW 520 Tyre.
Listing 4 shows an excerpt from the program code of the Barter
Manager agent written according to the concrete syntax of
SEA_ML discussed in Section 3. The code also includes the
appropriate comments.

SemanticWebAgent BarterManager plays BarterRole
 //references for the environment members
 ref: SemanticServiceMatchmakerAgent BarterServiceMatchmaker;
 ref: SemanticWebService BarterService;
 //definitions for the semantic web service access
 interacts_with BarterService {
 //service interaction definitions

Interface BarterServiceInterface;
Process BarterServiceExecution;
Grounding BarterServiceGrounding;

 }
 //knowledgebase definitions
 knows OWLOntology BarterOntology;
 //plans to achieve agent goals
 SemanticServiceFinderPlan discoverBarterService discovers
 BarterServiceInterface {
 ...
 }
 SemanticServiceExecutorPlan invokeBarterService executes
 BarterServiceExecution uses BarterServiceGrounding {
 //access execution mechanism and invocation protocol of the service
 BarterServiceExecution 
 BarterServiceInterface->presentedBy->describedBy;
 BarterServiceGrounding 
 BarterServiceExecution->describes->supportedBy;
 //set execution parameters
 input->value BarterOntology->getOWLIndividual(“BMW520Tyre”);
 //invoke the service
 output->value  BarterServiceGrounding->callOperation(input);
 }

Listing 4. An excerpt from the program code of the Barter
Manager agent in SEA_ML concrete syntax

Now consider the implementation of the related e-barter system
on the NUIN platform. The interpreter of SEA_ML first applies
an ATL transformation onto the e-barter instance model (pictured
in Figure 2) and outputs the NUIN counterpart of that source
model (target model). Then agent program codes (Nuinscripts for
this case) are automatically generated by applying a model-to-text
transformation on the NUIN target model. Interested readers may
refer to [11] for this transformation and auto-generated sample
NUIN codes.

6. RELATED WORK
Studies on DSMLs for agents are recently emerging and those
very few studies are in their preliminary states. For instance, a
domain specific language called Agent-DSL is introduced in [17].
Agent-DSL is used to specify the agency properties that an agent
could have to accomplish its tasks. However, the proposed DSL is
presented only with its metamodel and provides just the visual

modelling of the agent systems. Likewise in [18], Rougemaille et
al. introduce two dedicated modeling languages and call those
languages as DSMLs. The languages are described by
metamodels which can be seen as representations of the main
concepts and relationships identified for each of the particular
domains introduced in [18]. In fact, the study only defines generic
agent metamodels for MDE of MASs. Hahn [19] introduces a
DSML for MAS. The abstract syntax of the DSML is derived
from a platform independent metamodel which is structured into
several aspects each focusing on a specific viewpoint of a MAS.
In order to provide the concrete syntax, the appropriate graphical
notations for the concepts and relations are defined. The
semantics of the language is also given. This study is noteworthy
because it seems to be the first complete DSML for agents with
all of its specifications. However, it supports neither the agents on
the Semantic Web nor the interaction of Semantic Web enabled
agents with other environment members such as semantic web
services. Our study contributes to aforementioned efforts by
specializing on the Semantic Web support of the MASs.

7. DISCUSSION AND FUTURE WORK
An abstract syntax, a concrete syntax and an interpreter
mechanism for a DSML for MAS development is introduced. We
examine that the defined syntax provides a clear and a formal
definition of both inner plan and communication structures of
software agents especially considering their interactions with
semantic web services on the Semantic Web. The interpreter of
the proposed DSML with its model transformation and code
generation capabilities enables the implementation of the modeled
MASs according to various agent development frameworks.

Due to the lack of formal semantics techniques for DSMLs, the
real meaning of a modeling language is available only in
associated model interpreters. In our DSML, part of the MAS
semantics is hardcoded within ATL transformation rules. Agent
programmers need to provide the rest of the semantics by
inserting new codes within generated codes (e.g., Nuinscripts).
All these scattered semantics specifications cause problems
during system maintenance, testing and analyze stages. Moreover,
specification of semantics by transformation rules is very
demanding to correctly map the constructs of the DSML into the
constructs of the target language. The underlying reason is the
mappings which are not at the same level of abstraction.

We may conclude that the DSM environments should have a
formal foundation:

 that can be used to define the dynamic semantics of a modeling
language,

 that can enable to interoperate with analysis tools and verify the
correctness of a model

 that can be used to automate the construction of modeling tools.

Although we provide the current semantics of SEA_ML by
mapping its abstract syntax into the metamodels of existing agent
platforms, our next work will be the formal representation of the
semantics by using a formal notation language. This enables us to
analyze and verify the SEA_ML programs.

8. ACKNOWLEDGMENTS
This study is partially funded by The Scientific and Technological
Research Council of Turkey (TUBITAK) under grant 109E125.

9. REFERENCES
[1] Berners-Lee, T., Hendler, J., and Lassila, O. 2001. The

Semantic Web. Scientific American. 284 (5), 34-43.

[2] Schmidt, D.C. 2006. Guest Editor's Introduction: Model-
Driven Engineering. IEEE Computer. 39 (2), 25-31.

[3] Vallecillo, A. 2008. A Journey through the Secret Life of
Models. In: Model Engineering of Complex Systems
(MECS), Dagstuhl Seminar Proceedings.

[4] Sprinkle, J., Mernik, M., Tolvanen, J.-P., and Spinellis, D.
2009. Guest Editors' Introduction: What Kinds of Nails Need
a Domain-Specific Hammer?. IEEE Software. 26(4), 15-18.

[5] Gray, J., Tolvanen, J-P., Kelly, S., Gokhale, A., Neema, S.,
and Sprinkle, J. 2007. Domain-Specific Modeling. In
Handbook of Dynamic System Modeling, CRC Press, 1-7.

[6] Bernon, C., Cossentino, M., Gleizes, M-P., Turci, P., and
Zambonelli, F. 2005. A Study of some Multi-Agent Meta-
Models. Lect. Notes Comput. Sc. 3382, 62-77.

[7] Hahn, C., Madrigal-Mora, C., and Fischer, K. 2009. A
platform-independent metamodel for multiagent systems.
Auton. Agent. Multi-Ag. 18(2), 239-266.

[8] Gracanin, D., Singh, H.L., Bohner, S. A., and Hinchey, M.
G. 2005. Model-Driven Architecture for Agent-Based
Systems. Lect. Notes Artif. Int. 3228, 249-261.

[9] Pavon, J., Gomez-Sanz, J.J. and Fuentes, R. 2006. Model
Driven Development of Multi-Agent Systems. Lect. Notes
Comput. Sc. 4066, 284-298.

[10] Kardas, G., Goknil, A., Dikenelli, O., and Topaloglu, N.Y.
2007. Modeling the Interaction between Semantic Agents
and Semantic Web Services using MDA Approach. Lect.
Notes Artif. Int. 4457, 209-228.

[11] Kardas, G., Goknil, A., Dikenelli, O., and Topaloglu, N.Y.
2009. Model Driven Development of Semantic Web Enabled
Multi-agent Systems. Int. J. Coop. Inf. Syst. 18(2), 261-308.

[12] Object Management Group. 2009. Ontology Definition
Metamodel. http://www.omg.org/spec/ODM/1.0/

[13] OWL-S Coalition. 2004. OWL-S: Semantic Markup for Web
Services. http://www.daml.org/services/owl-s/1.1/overview/

[14] Kurtev, I., Bezivin, J., Jouault, F., and Valduriez, P. 2006.
Model-based DSL Frameworks. In Proceedings of the 21st
symposium on Object-oriented Programming, Systems,
Languages, and Applications. ACM Press, 602-615.

[15] NUIN Agent Framework. http://www.nuin.org/

[16] Rao, A., and Georgeff, M. 1995. BDI Agents: From Theory
to Practice, In Proceedings of the 1st International
Conference on Multi-Agent Systems (ICMAS-95), 312-319.

[17] Kulesza, U, Garcia, A., Lucena, C., and Alencar, P. 2005. A
Generative Approach for Multi-agent System Development.
Lect. Notes Comput. Sc. 3390, 52-69.

[18] Rougemaille, S., Migeon, F., Maurel, C., and Gleizes, M-P.
2007. Model Driven Engineering for Designing Adaptive
Multi-Agent Systems. Lect. Notes Artif. Int . 4995, 318-33.

[19] Hahn, C. 2008. A Domain Specific Language for Multiagent
Systems. In Proceedings of the 7th Autonomous Agents and
Multiagent Systems Conf. AAMAS’08. ACM Press, 233-240

http://www.omg.org/spec/ODM/1.0/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.nuin.org/

	1. INTRODUCTION
	2. THE ABSTRACT SYNTAX
	3. THE CONCRETE SYNTAX
	4. THE INTERPRETER
	5. CASE STUDY
	6. RELATED WORK
	7. DISCUSSION AND FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

