
A Domain Specific Metamodel for Semantic Web
enabled Multi-agent Systems

Moharram Challenger, Sinem Getir, Sebla Demirkol and Geylani Kardas

International Computer Institute, Ege University, 35100, Bornova, Izmir, Turkey

moharram.challenger@mail.ege.edu.tr,
{sinem.getir, sebla.demirkol, geylani.kardas}@ege.edu.tr

Abstract. Autonomous, responsive and proactive nature of agents makes
development of agent-based software systems more complex than other
software systems. A Domain Specific Modeling Language (DSML) may
provide the required abstraction and hence support a more fruitful methodology
for the development of MASs especially working on the new challenging
environments such as the Semantic Web. In this paper, we introduce a domain
specific metamodel for MASs working on the Semantic Web. This new
metamodel paves the way for definition of an abstract syntax and a concrete
syntax for a future DSML of agent systems. Achieved DSML syntax is
supported with a graphical modeling toolkit.

Keywords: metamodel, domain specific modeling language, multi-agent
system, semantic web

1 Introduction

Development of intelligent software agents keeps its emphasis on both artificial
intelligence and software engineering research areas. In its widely-accepted
definition, an agent is an encapsulated computer system (mostly a software system)
situated in some environment, and that is capable of flexible autonomous action in
this environment in order to meet its design objectives [1]. These autonomous,
reactive and proactive agents have also social ability and interact with other agents
and humans in order to complete their own problem solving. They may also behave in
a cooperative manner and collaborate with other agents to solve common problems.
To perform their tasks and interact with each other, intelligent agents constitute
systems called Multi-agent systems (MAS).

Considering abovementioned characteristics, the implementation of agent systems
is naturally a complex task. In addition, internal agent behaviour model and
interaction within the agent organizations become even more complex and hard to
implement when new requirements and interactions for new agent environments such
as the Semantic Web [2] are taken into account. Semantic Web brought a new vision
into agent research. This new generation Web aims to improve World Wide Web
(WWW) such that web page contents are interpreted with ontologies. It is apparent
that the interpretation in question will be realized by autonomous computational
entities –so agents- to handle the semantic content on behalf of their human users.

Moharram Challenger, Sinem Getir, Sebla Demirkol and Geylani Kardas

Software agents are planned to collect Web content from diverse sources, process the
information and exchange the results. Autonomous agents can also evaluate semantic
data and collaborate with semantically defined entities of the Semantic Web such as
semantic web services by using content languages [3].

In [4], we discuss how domain specific engineering can provide easy and rapid
construction of Semantic Web enabled MASs and introduce a preliminary domain
specific modeling language (DSML), called Semantic web Enabled Agent Modeling
Language (SEA_ML), for model driven development of such agent systems. As a
domain specific language (DSL), SEA_ML should provide complete definitions for
its abstract syntax, concrete syntax and formal semantics.

It is well-known that the abstract syntax of a language describes the vocabulary of
concepts provided by the language and how they may be combined to form models or
programs. It consists of a set of provided concepts and their relationships to other
concepts [5]. On the other hand, a concrete syntax can be defined as a set of notations
that facilitates the presentation and construction of the language. This set of notations
can be given in a textual or visual manner. A metamodel that describes the meta-
entities and their relationships for a domain can naturally provide a base for the
definition of such an abstract syntax and also a concrete syntax. Therefore, in this
paper, we introduce a domain specific metamodel for agent systems working on the
Semantic Web and describe how it paves the way for the definition of both abstract
and visual concrete syntax of SEA_ML. A graphical modeling toolkit for SEA_ML
concrete syntax, which is based on Eclipse Graphical Modeling Framework (GMF)1,
is also discussed in this paper.

Rest of the paper is organized as follows: Section 2 discusses the metamodel and
SEA_ML's abstract syntax. Section 3 covers the SEA_ML's concrete syntax. Section
4 includes the related work and Section 5 concludes the paper.

2 Metamodel for Semantic Web enabled MASs

The platform independent metamodel, which represents the abstract syntax of
SEA_ML, focuses on both modeling the internal agent architecture and MAS
organization. Revision of our previous metamodel given in [3] and enhancement of its
modeling features have produced the brand new metamodel for SEA_ML abstract
syntax within this study. Object Management Group's Ontology Definition
Metamodel (ODM)2 has been plugged into the new metamodel to help in the
definition of ontological concepts. Besides, in addition to the reactive planning, the
new metamodel supports modeling of Belief-Desire-Intention (BDI) Agents [6] with
new meta-entities and their relations.

To provide clear understanding and efficient use, the new metamodel is divided
into six viewpoints each describing different aspects of Semantic Web enabled MASs.
These viewpoints are listed as follows:

1. Semantic Web Agent’s Internal Viewpoint: This viewpoint is related to the
internal structures of semantic web agents and defines entities and their

1 Eclipse Graphical Modeling Framework, http://www.eclipse.org/gmf (last access: Feb. 2011)
2 Ontology Definition Metamodel, http://www.omg.org/spec/ODM/1.0/ (last access: Feb. 2011)

A Domain Specific Metamodel for Semantic Web enabled Multi-agent Systems

relations required for the construction of agents. It covers both reactive and
BDI agent architectures.

2. Protocol Viewpoint: This aspect of the metamodel expresses the interactions
and communications in a MAS by taking agent’s roles and behaviours into
account.

3. MAS and Organizational Viewpoint: This viewpoint solely deals with the
construction of a MAS as a whole. It includes main blocks which compose the
complex system as an organization.

4. Role and Behaviour Viewpoint: This perspective delves into the complex
controlling structure of the agents. Agent plans and behaviours with all of their
attributes are modeled.

5. Environmental and Services Viewpoint: Agents may need to access some
resources (e.g. ontologies, knowledgebases, discovery and execution services)
in their environment. Use of resources and interaction of agents with their
surroundings are covered in this viewpoint.

6. Agent - Semantic Web Service (SWS) Interaction Viewpoint: It is probably the
most important viewpoint of the metamodel. Interaction of semantic web
agents with SWSs is described. Entities and relations for service discovery,
agreement and execution are defined. Also internal structure of SWSs is
modeled within this viewpoint.

We use Kernel MetaMetaModel (KM3) notation from ATL toolkit3 to define our
proposed metamodel (and hence SEA_ML abstract syntax) textually. A KM3 class is
provided for each entity and associations between each entity of the metamodel are
represented with “reference” labels. Role name of each model element and number of
instances are also given for every association. In addition to the neat presentation of
the abstract syntax, the utilization of the KM3 notation also enables us to employ our
MAS metamodel as source or target models in various model-to-model
transformations and provides automatic generation of the platform dependent
counterparts of the MAS models for different agent deployment platforms (see [3]
and [4] for further information). Each viewpoint of the metamodel is discussed in the
following subsections. Due to space limitations only the first and the sixth
viewpoints’ visual representations are given.

2.1 Semantic Web Agent’s Internal Viewpoint

This viewpoint focuses on the internal structure of every agent in a MAS
organization. Partial metamodel, which represents this viewpoint, is given in Fig. 1.
Semantic Web Agent in the SEA_ML abstract syntax stands for each agent in
Semantic Web enabled MAS. A Semantic Web Agent is an autonomous entity which
is capable of interaction with both other agents and semantic web services within the
environment. They play roles and use ontologies to maintain their internal knowledge
and infer about the environment based on the known facts. Semantic Web Agents can
be associated with more than one Role at the same point at any time (multiple
classification) and can change roles over time (dynamic classification). An agent can

3 Atlas Transformation Language Toolkit, http://www.eclipse.org/atl/ (last access: Feb. 2011)

Moharram Challenger, Sinem Getir, Sebla Demirkol and Geylani Kardas

play role in various environments, have various states (Agent State) and owns a type
(Agent Type) during his execution.

Fig. 1. Semantic Web Agent’s Internal Viewpoint

Metamodel supports both reactive and BDI agents. BDI was first proposed by
Bratman [6] and used in many agent systems. In a BDI architecture, an agent decides
on which Goals to achieve and how to achieve them. Beliefs represent the information
an agent has about its surroundings, while Desires correspond to the things that an
agent would like to see achieved. Intentions, which are deliberative attitudes of
agents, include the agent planning mechanism in order to achieve goals. Taking into
consideration of concrete BDI agent frameworks (such as JADEX4 and JACK5), we
propose an entity called Capabilities which includes each agent’s Goals, Plans and
Beliefs about the surrounding. Each Belief is composed of one or more Facts. For the
Semantic Web environment, each fact is an ontological entity and they are modeled as
an extension of OWLClass from ODM in the metamodel. Semantic Web Agents apply
Plans to perform their tasks. Each plan executes one or more agent Behaviours and
goals are achieved during this execution.

On the other hand, agents need to communicate with a service registry in order to
discover service capabilities. Hence, the model includes a specialized agent entity,
called SWS Matchmaker Agent. This entity represents the matchmaker agents which
store the capability advertisements of semantic web services within a MAS and match
those capabilities with service requirements sent by the other platform agents.

2.2 Protocol Viewpoint

This viewpoint focuses on agent communications and interactions in a MAS and
defines entities and relations such as Protocol, Interaction, Message and Message

4 JADEX BDI Agent, http://jadex-agents.informatik.uni-hamburg.de/ (last access: Feb. 2011)
5 JACK Autonomous Software, http://www.agent-software.com.au/ (last access: Feb. 2011)

A Domain Specific Metamodel for Semantic Web enabled Multi-agent Systems

Type. Agents communicate with each other based on their social ability. A Protocol in
a role uses several Interactions to be realized. Each interaction, by itself, consists of
some Message submissions which are triggered by agent behaviours. Each of the
messages should have a Message Type such as inform, request, and
acknowledgement. Within a behaviour definition an agent can send or receive a
message from other agents.

Protocol viewpoint supports abstraction of commonly-used MAS interaction and
messaging approaches. For instance, interactions of agents, which apply the well-
known “Contract Net Protocol” (CNP) [7], can be modeled by using this metamodel.
CNP as its own can be an instance of the Interaction entity. Each communication
between initiator and participant agents can be a Message and has Message Types
such as call-for-proposal (cfp), refuse, propose, reject, and accept. Likewise,
messages and message types, defined by IEEE Foundation for Intelligent Physical
Agents (FIPA) Agent Communication Language (ACL) specification6, can be
described in meta-level by using the entities given in this metamodel.

2.3 MAS and Organizational Viewpoint

Structure and organization of a MAS are modeled within this viewpoint. Semantic
Web Organization entity of SEA_ML metamodel is a composition of Semantic Web
Agents which is constituted according to the organizational roles of those agents. An
agent cooperates with one or more agents inside an organization and he may also
reside in more than one organization. Moreover, a Semantic Web Organization can
include several agents at any time and each organization can be composed of several
sub-organizations. A Semantic Web Organization is inconceivable without
ontologies. An ontology represents any information gathering and reasoning resource
for MAS members. Collection of the ontologies creates knowledgebase of the MAS
that provides domain context. These ontologies are represented in SEA_ML models
as Organization Ontology instances.

2.4 Role and Behaviour Viewpoint

Semantic web agents can play roles and use ontologies to maintain their internal
knowledge and infer about the environment based on the known facts. They can also
use several roles at any time and can alter these roles over time. Task definitions and
related task execution processes of Semantic Web agents are modeled with Behaviour
concepts. Role is a general model entity and it should be specialized in the metamodel
according to task definitions of architectural and domain based roles: An
Architectural Role defines a mandatory Semantic Web enabled MAS role (e.g.
registration or ontology mediator) that should be played at least one agent inside the
platform regardless of the organization context whereas a Domain Role completely
depends on the requirements and task definitions of a specific Semantic Web
Organization created for a specific business domain. Inside a domain role, an agent

6 FIPA Agent Communication Language Message Structure Specification,

http://www.fipa.org/specs/fipa00061/ (last access: Feb. 2011)

Moharram Challenger, Sinem Getir, Sebla Demirkol and Geylani Kardas

uses a Role Ontology which is defined for the related domain concepts and their
relations. An agent participates within a communication or task Scenario over the
role(s) he plays. One role includes several agent Behaviours and each Behaviour is
composed of many Tasks. Each Task also covers one or more atomic Actions (such as
sending a message to another agent or querying an ontology).

2.5 Environmental and Services Viewpoint

This viewpoint focuses on agents’ use of resources and environmental interactions.
SEA_ML’s core concepts defined for this viewpoint can be listed as follows:
Environment, Resource, Permission Table, Service, Semantic Web Service and
Service Ontology. An agent can access many Environments during his execution and
an environment can include many Resources, (e.g. database, network device) with
their access permissions in Permission Tables.

An environment also includes Semantic Web Services. A Semantic Web Service
represents any service (except agent services) whose capabilities and interactions are
semantically described within a Semantic Web enabled MAS. A Semantic Web
Service composes one or more Service entities. Each service may be a web service or
another service with predefined invocation protocol in real-life implementation. But
they should have a semantic web interface to be used by autonomous agents of the
platform. It should be noted that association between the semantic web agents and the
services is provided over the agent Role entities in the metamodel. Because agents
interact with semantic web services, depending on their roles defined inside the
organization [3]. Semantic interfaces and capabilities of Semantic Web Services are
described according to Service Ontologies.

2.6 Agent - Semantic Web Service Interaction Viewpoint

Perhaps the most important viewpoint of SEA_ML metamodel is the one which
models the interaction between agents and SWSs. Concepts and their relations for
appropriate service discovery, agreement with the selected service and execution of
the service are all defined. Furthermore, internal structure of SWSs is modeled inside
this viewpoint.

Fig. 2 portrays the agent – SWS interaction viewpoint of SEA_ML. Since,
Semantic Web Agent, Role, Registry Role, Plan, Behaviour and SWS Matchmaker
Agent concepts are imported from above discussed viewpoints, they will only be
referenced when their relations between core concepts of this viewpoint are discussed.

Semantic web service modeling approaches (e.g. OWL-S7) mostly describe
services by three semantic documents: Service Interface, Process Model and Physical
Grounding. Service Interface is the capability representation of the service in which
service inputs, outputs and any other necessary service descriptions are listed. Process
Model describes internal composition and execution dynamics of the service. Finally,
Physical Grounding defines invocation protocol of the web service. These Semantic

7 OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/ (last

access: Feb. 2011)

A Domain Specific Metamodel for Semantic Web enabled Multi-agent Systems

Web Service components are given in our metamodel with Interface, Process and
Grounding entities respectively. Input, Output, Precondition and Effect (a.k.a. IOPE)
definitions used by these Semantic Web Service components are also defined. The
metamodel imports OWLClass meta-entity from the OMG’s ODM as the base class
for the semantic properties (mainly IOPE) of the semantic web services. Since the
operational part of today’s semantic services is mostly a web service, Web Service
concept is also included in the metamodel and associated with the grounding
mechanism.

Semantic Web Agents apply Plans to perform their tasks. In order to discover,
negotiate and execute Semantic Web Services dynamically, three extensions of the
Plan entity are defined in the metamodel. Semantic Service (SS) Finder Plan is a Plan
in which discovery of candidate semantic web services takes place. SS Agreement
Plan involves the negotiation on QoS metrics of the service (e.g. service execution
cost, running time, location) and agreement settlement. After service discovery and
negotiation, the agent applies the SS Executor Plan for executing appropriate
semantic web services.

Fig. 2. Agent - Semantic Web Service Interaction Viewpoint

As discussed before, Semantic Service Matchmaker Agents represent service
registries for agents to discover service capabilities. During their executions, they
apply SS Register Plans.

3 SEA_ML’s Concrete Syntax

While specification of abstract syntax includes the concepts that are represented in the
language and the relationships between those concepts, concrete syntax definition
provides a mapping between meta-elements and their textual or graphical
representations. In this study, we propose a graphical concrete syntax for SEA_ML.
KM3 representation of SEA_ML metamodel has been converted to an Ecore

Moharram Challenger, Sinem Getir, Sebla Demirkol and Geylani Kardas

representation and graphical notation for each language concept and relation has been
chosen. Table 1 lists graphical notations for some SEA_ML concepts.

Table 1. Some of the concepts and their notations for the concrete syntax of SEA_ML

Concept Notation Concept Notation
Semantic Web Agent

Semantic Web
Organization

Role

Belief

Goal

Semantic Web Service

Plan

Agent State
Capabilities

Behaviour

After choosing the graphical notation, we used Eclipse GMF to tie the domain
concepts (supplied by the abstract syntax of SEA_ML) in Ecore format and their
notations together. Achieved artifact is a graphical editor in which agent developers
may design models for each viewpoint of required MAS conforming to the concrete
syntax of SEA_ML. Screenshot in Fig. 3 illustrates use of the editor for modeling
agent - semantic web service viewpoint of a multi-agent electronic barter (e-barter)
system.

Fig. 3. Modeling agent-SWS viewpoint of a multi-agent e-barter system

A Domain Specific Metamodel for Semantic Web enabled Multi-agent Systems

An agent-based e-barter system consists of agents that exchange goods or services
for their owners without using any currency. In our example, Barter Manager agent
(shown in Fig. 3) manages all trades in the system. This agent is responsible for
collecting barter proposals, matching proper barter proposals and tracking the
bargaining process between customer agents. In order to infer about semantic
closeness between offered and purchased items based on the defined ontologies,
barter manager may use a SWS called Barter Service. Conforming to his Barter Role
definition, Barter Manager needs to discover the proper SWS, interacts with the
candidate service and realizes the exact execution of the SWS after an agreement. Fig.
3 shows how the related interaction can be modeled by using the concrete syntax
constructs of SEA_ML. More information on this case study can be found in [4].

4 Related Work

Recent work on metamodeling of agent systems mostly considers definition of
metamodels specific for some MAS development methodologies or generation of
platform independent agent metamodels. For instance, Bernon et al. [8] give
metamodels for MAS development methodologies called ADELFE, Gaia and PASSI.
They introduce a unified metamodel composed by merging the most significant
contributions of these methodologies. A similar study [9] introduces a metamodel for
SODA agent development methodology. The study aims to model interaction and
social aspects of the SODA and defines a metamodel considering these aspects.
However, those metamodels are just formal representations for the concepts of the
related methodologies and they are not suitable for the general MAS modeling.

FAML metamodel, introduced in [10], is in fact a synthesis of various existing
metamodels for agent systems. Design time and runtime concepts for MASs are given
and validation of these concepts is provided with their use in again various MAS
development methodologies. Platform independent metamodel, proposed in [11]
groups agent modeling concepts in various viewpoints in the same manner with our
study. But neither [10] nor [11] consider a DSML specification for MAS
development.

The syntax proposed in [5] is perhaps the most related work with our study. At
first, the abstract syntax of a MAS DSML is represented by a platform independent
metamodel and then a visual concrete syntax is defined based on the given concepts
and their notations. However generated syntax does not support both agents on the
Semantic Web and the interaction of Semantic Web enabled agents with their
environment.

5 Conclusion

A metamodel for the domain of MASs working on the Semantic Web is discussed.
Taking into consideration of internal agent architectures, metamodel supports both
reactive and BDI agent structures. For MAS perspective, agent communication
protocols can be modeled with the proposed metamodel. Also interactions of agents

Moharram Challenger, Sinem Getir, Sebla Demirkol and Geylani Kardas

with each other and semantic entities such as SWS are supported. Proposed
metamodel presents an abstract syntax and causes the derivation of a graphical
concrete syntax for a DSML for Semantic Web enabled MASs, called SEA_ML.
Achieved syntax is supported with an Eclipse GMF-based toolkit. Future work
consists of the formal representation of the semantics for SEA_ML and development
of an integrated tool to support all features of SEA_ML.

Acknowledgements

This study is funded by The Scientific and Technological Research Council of Turkey
(TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG) under
grant 109E125.

References

1. Wooldrige, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.
10(2), 115--152 (1995)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284(5), 34--43 (2001)
3. Kardas, G., Goknil, A., Dikenelli, O., Topaloglu, N.Y.: Model Driven Development of

Semantic Web Enabled Multi-agent Systems. Int. J. Coop. Inf. Syst. 18(2), 261--308 (2009)
4. Kardas, G., Demirezen, Z., Challenger, M.: Towards a DSML for Semantic Web enabled

Multi-agent Systems. In: International Workshop on Formalization of Modeling Languages,
held in conjunction with the 24th European Conference on Object-Oriented Programming
(ECOOP 2010), pp. 1-5, ACM Press (2010)

5. Warwas, S., Hahn, C.: The concrete syntax of the platform independent modeling language
for multiagent systems. In: Agent-based Technologies and applications for enterprise
interoperability, held in conjunction with the 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008) (2008)

6. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press:
Cambridge, Massachusetts (1987)

7. Smith, R.G.: The Contract Net Protocol: High-level Communication and Control in a
Distributed Problem Solver. IEEE T. Comput. 29(12), 1104--1113 (1980)

8. Bernon, C., Cossentino, M., Gleizes, M-P., Turci, P., Zambonelli, F.: A Study of some
Multi-Agent Meta-Models. In: J. Odell et al. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 62-
77. Springer, Heidelberg (2005)

9. Molesini, A., Denti, E., Omicini, A.: MAS Meta-models on Test: UML vs. OPM in the
SODA Case Study. In: Pechoucek, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNAI,
vol 3690, pp. 163-172. Springer, Heidelberg (2005)

10. Beydoun, G., Low, G.C., Henderson-Sellers, B., Mouratidis, H., Gómez-Sanz, J.J., Pavon,
J, Gonzalez-Perez, C.: FAML: A Generic Metamodel for MAS Development. IEEE T.
Software Eng. 35(6), 841--863 (2009)

11. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Auton. Agent. Multi-Ag. 18(2), 239--266 (2009)

