
SEA_L: A Domain-specific Language for Semantic Web enabled Multi-agent

Systems

Sebla Demirkol
1

sebla.demirkol

@ege.edu.tr

Moharram Challenger
1

moharram.challenger

@mail.ege.edu.tr

Sinem Getir
1

sinem.getir

@ege.edu.tr

Tomaž Kosar
2

tomaz.kosar

@uni-mb.si

 Geylani Kardas
1

geylani.kardas

@ege.edu.tr

Marjan Mernik
2

marjan.mernik

@uni-mb.si

1
International Computer Institute, EGE University, Bornova, 35100 Izmir, Turkey

2
Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

Abstract— Autonomous, reactive and proactive features of

software agents make development of agent-based software

systems complex. A Domain-specific Language (DSL) can

provide the required abstraction and hence support a more

fruitful methodology for the development of Multi-agent

Systems (MASs) especially working on the new challenging

environments such as the Semantic Web. Based on our

previously introduced domain-specific metamodel, in this

paper we propose a textual concrete syntax of a DSL for MASs

working on the Semantic Web and show how the specifications

of this DSL can be utilized during the code generation of exact

MASs. The new DSL is called Semantic web Enabled Agent

Language (SEA_L). The syntax of SEA_L is supported with

textual modeling toolkits developed with Xtext. The practical

use of SEA_L is illustrated with a case study which considers

the modeling of a multi-agent based e-barter system.

Keywords— Domain-specific Languages; Metamodel; Multi-

agent Systems; Semantic Web

I. INTRODUCTION

OFTWARE agents [1] are autonomous software
components which are able to act on behalf of their users

in order to do a group of defined tasks. Many intelligent
software agents interact with each other in a system that is
called Multi-agent System (MAS). Their interactions can be
either cooperative or selfish [2]. Software agents and MASs
are recognized as both useful abstractions and effective
technologies for the modeling and building of complex
distributed systems. The implementation of these
autonomous, responsive and proactive systems is naturally a
complex task.

Additionally, Semantic Web improves World Wide Web
such that web page contents can be interpreted with
ontologies [3]. Therefore, this new generation web helps
machines to understand web content. It is apparent that the
interpretation in question will be realized by autonomous
computational entities (i.e. agents) to handle the semantic
content on behalf of their users. Surely, Semantic Web
environment has specific architectural entities and a different
semantic which must be considered to model a MAS within
this environment. Thus, Semantic Web evolution brought a

This study is funded as a bilateral project by The Scientific and

Technological Research Council of Turkey (TUBITAK) under grant

109E125 and Slovenian Research Agency (ARRS) under grant BI-TR/10-
12-004.

new vision into agent research. Software agents are planned
to collect Web content from diverse sources, process the
information and exchange the results. Autonomous agents
can also evaluate semantic data and collaborate with
semantically defined entities of the Semantic Web such as
semantic web services by using content languages. However,
considering agent interactions with Semantic Web elements
adds more complexity for designing and implementing those
systems.

On the other hand, Model Driven Development (MDD)
is one of the important software development approaches,
moving software development from code to models [4]
which increases productivity [5] and reduces development
costs [6]. Design and implementation of a MAS may become
more complex when new requirements and interactions for
new agent environments such as Semantic Web are
considered. MDD can provide an infrastructure that
simplifies the development of such MASs. To work in a
higher abstraction level is of critical importance for the
development of MASs since it is almost impossible to
observe code level details of the MASs due to their internal
complexity, distributedness and openness. Hence, such MDD
application can increase the abstraction level in MAS
development. MDD uses different approaches to realize its
goals. One of these methods is Domain Specific Language
(DSL) development [7, 8, 9, 10, 11]. DSLs are languages
which comprise a domain‟s concepts and terminologies to
supply the requirements of the domain. A DSL allows end-
user programmers (domain experts) to describe the essence
of a problem with abstractions related to a domain specific
problem space.

A domain specific metamodel for semantic web enabled
MASs is discussed in [12]. Based on this metamodel, in this
paper, we present the textual concrete syntax of a DSL and
discuss transformations required for code generation from
the specifications of this DSL. We call this new DSL as
Semantic web Enabled Agent Language (SEA_L).

The rest of this paper is organized as follows: Related
work is given in Section 2. The abstract syntax and the
textual concrete syntax of SEA_L are discussed in Sections 3
and 4 respectively. In section 5, the code generation
mechanism for new DSL is illustrated. Section 6 includes a
case study on the development of a MAS by using SEA_L.
Finally, Section 7 concludes the paper and states the future
work.

S

II. RELATED WORK

The studies on DSLs and Domain-specific Modeling
Languages (DSML) for agents are recently emerging and
those very few studies are in their preliminary states. For
instance, a DSL called Agent-DSL is introduced in [13].
Agent-DSL is used to specify the agency properties that an
agent could have in order to accomplish its tasks. However,
the proposed DSL is presented only with its metamodel and
provides just the visual modeling of the agent systems
according to agent features, such as knowledge, interaction,
adaptation, autonomy and collaboration. Likewise in [14],
the authors introduce two dedicated modeling languages and
call those languages as DSMLs. The languages are described
by metamodels which can be seen as representations of the
main concepts and relationships identified for each of the
particular domains again introduced in [14]. However, the
study obviously includes just the abstract syntax of the
related DSMLs and does not give the concrete syntax or
semantics of the DSMLs. In fact, the study only defines
generic agent metamodels for MDD of MASs.

In [15], the author introduces a DSML for MAS. The
abstract syntax of the DSML is derived from a platform
independent metamodel which is structured into several
aspects each focusing on a specific viewpoint of a MAS.
That approach resembles to our study. This study is
noteworthy because it seems to be the first complete DSML
for agents with all of its specifications. However it supports
neither the agents on the Semantic Web nor the interaction of
Semantic Web enabled agents with other environment
members such as semantic web services. Our study
contributes to aforementioned efforts by also specializing on
the Semantic Web support of the MASs. In [16], the authors
introduce their approach on integrating agents with Semantic
Web Services (SWSs) on a platform independent level. In
addition to the MAS metamodel described in [15], a new
platform independent metamodel for SWS is proposed. A
relation between these two metamodels is established in a
way that the MAS metamodel is extended with new meta-
entities in order to support SWS interoperability and it also
inherits some meta-entities from the metamodel proposed for
SWS. Instead of using two separate metamodels, SEA_L has
the built-in support for the modeling of agent and SWS
interactions by including a special viewpoint. Moreover,
semantic knowledgebase and agent internals can also be
modeled in SEA_L.

III. ABSTRACT SYNTAX

The abstract syntax of a DSL describes the concepts and
their relations without any consideration of meaning. In
terms of MDD, the abstract syntax is described by a
metamodel that defines how the models should look like.

In a Semantic Web enabled MAS, software agents can
gather Web contents from various resources, process the
information, exchange the results and negotiate with other
agents. Within the context of these MASs, autonomous
agents can evaluate semantic information and work together
with semantically defined entities like SemanticWebService
using content language.

The Platform Independent Metamodel (PIMM) which
represents the abstract syntax of SEA_L is divided into eight
viewpoints to provide clear understanding and efficient use.
These viewpoints are: Agent Internal viewpoint, MAS
viewpoint, Plan viewpoint, Role viewpoint, Interaction
viewpoint, Environment viewpoint, Ontology viewpoint and
Agent-Semantic Web Service (SWS) Interaction viewpoint.
Discussion on whole metamodel can be found in [12]. We
only concentrate on Agent Internal viewpoint as well as
Agent-SWS Interaction viewpoint throughout this paper due
to space limitations and the importance of these viewpoints.

Agent Internal viewpoint is related to the internal
structure of semantic web agents and defines entities and
their relations required for the construction of agents.

SemanticWebAgent (SWA) in the SEA_L abstract
syntax stands for each agent in Semantic Web enabled MAS.
A SemanticWebAgent is an autonomous entity which is
capable of interaction with both other agents and
SemanticWebServices within the environment.

SEA_L‟s metamodel (hence abstract syntax) supports
both reactive and Belief-Desire-Intention (BDI) agent
architectures. BDI was first proposed by Bratman [17] and
used in many agent systems. In a BDI architecture, an agent
decides about which Goals to achieve and how to achieve
them. Beliefs represent the information an agent has about its
surroundings, while Desires correspond to the things that an
agent would like to have achieved. Intentions, which are
deliberative attitudes of agents, include the agent planning
mechanism in order to achieve goals. Taking concrete BDI
agent frameworks (such as JADEX [18] and JACK [19]) into
consideration, we propose an entity called Capabilities which
includes each agent‟s Goals, Plans and Beliefs about the
surrounding.

Agent-SWS Interaction viewpoint focuses on the internal
structure of SemanticWebServices and interaction of any
SemanticWebAgent with SemanticWebServices in a MAS
organization. Concepts and their relations for appropriate
service discovery, agreement with the selected service and
execution of the service are all defined in this viewpoint.
Partial metamodel which represents this viewpoint is shown
in Fig. 1. In this figure, elements filled with light gray come
from other viewpoints which are shown on top or bottom of
the element using “<<” and “>>”. In other words, these
elements are common elements among viewpoints and they
tailor the viewpoints to each other.

A SemanticWebAgent applies Plans to perform their
Tasks. “Semantic Service Register Plan” (SS_RegisterPlan),
“Semantic Service Finder Plan” (SS_FinderPlan), “Semantic
Service Agreement Plan” (SS_AgreementPlan) and
“Semantic Service Executor Plan” (SS_ExecutorPlan) are
extensions of the Plan in this metamodel. Agents use
SS_RegisterPlan for communication with a service register
to discover service capabilities. Other Plans are used to
discover SemanticWebServices dynamically, call the
services, get agreement with them and execute them,
respectively.

SWS modeling approaches (i.e. OWL-S [20]) generally
define a service with three documents: “Service Interface”,
“Process Model” and “Physical Grounding”. “Service

Fig. 1 Agent-SWS Interaction viewpoint.

Interface” is the capability representation of the service in
which service inputs, outputs and any other necessary service
descriptions are listed. “Process Model” defines service‟s
internal combinations and service executor dynamics.
Finally, “Physical Grounding” defines the service‟s executor
protocol. These meta-entities are shown in Fig. 1 with
Interface, Process and Grounding entities respectively.
These components can use Input, Output, Precondition and
Effect which are extensions of Web Ontology Language
(OWL) Class from Object Management Group‟s (OMG)
Ontology Definition Metamodel (ODM) [21].

Considering the other viewpoints of the SEA_L, MAS
viewpoint solely deals with the construction of a MAS as an
overall aspect of the metamodel. Plan viewpoint defines a
Plan‟s internal structure. When an Agent applies a Plan, it
executes its Tasks. In addition, message transaction is
considered in this viewpoint. Role viewpoint shows distinct
types of role. Agents can use several roles at any time and
can alter these roles over the time. Interaction viewpoint
focuses on agent communications and interactions in a MAS
and defines entities and relations such as Interaction,
Message, and MessageSequence. Environment viewpoint
focuses on the relations between agents and to what they
access. Environment contains all non-Agent Resources,
Facts and Services. Ontology viewpoint brings all ontology
sets and ontological concepts together. ODM OWL [22]
Ontology from OMG is a standard for all of our ontology
sets such as Role, Organization and ServiceOntologies.

IV. TEXTUAL CONCRETE SYNTAX

The textual concrete syntax of SEA_L is provided with
Xtext [23]. In this paper, we focus only on Agent Internal
and Agent-SWS Interaction viewpoints. Xtext is a language
development framework to provide textual modeling
languages. It can be used for creating a sophisticated Eclipse-
based development environment. Xtext is based on EBNF
(Extended Backus–Naur Form) [24] rules.

If the metamodel which represents the abstract syntax for
SEA_L is considered as analysis phase of the concrete
syntax of SEA_L, the design phase will be the part in which
EBNF rules are described. One of the main advantages of
DSLs is to validate domain specific constraints. The
constraints of the language can be implemented with
“Validation Package” in Xtext which provides a dedicated
hook for validation rules. Also, other features of SEA_L‟s
textual concrete syntax are created using both manually
written code and Xtext features. Using Xtext features, the
textual concrete syntax supplies auto completion, syntax
coloring, rename refactoring, bracket matching, auto edit, an
outline view that shows the semantic structure of the model
and code formatting to properly indent the documents. By
defining EBNF rules, above discussed constraints of
SEA_L‟s metamodel are realized. With these capabilities,
the new DSL possesses both structure and static semantics of
the MAS domain. The structure is defined by the method
signatures and the semantics are defined by constraint code.

A. Textual Concrete Syntax of Semantic Web Agent

Internal Viewpoint

An Xtext grammar is structured with rules which are
identified by text to the left of a colon. There is at least one

rule for each meta-element in the textual concrete syntax.
EBNF rules are defined for Agent Internal viewpoint
according to constraints in the metamodel. The first
constraint is that all of the elements of the instance model
must be in “AgentInternalViewpoint” tag. Also, instance
model must start and end with curly brackets. Example to
another constraint is that each instance model must have at
least one SemanticWebAgent and one Capabilities meta-
entity in any order.

Each agent has at most one AgentType in the instance
model. If a user defines more than one agent type for the
SemanticWebAgent, the tool will give an error which is
provided in SemanticWebAgent rule.

According to Xtext syntax, the assignment operator, "=",
denotes a single valued feature, "+=" operator denotes a
multi valued feature and the asterisk operator, "*", denotes a
cardinality of 0..n. Also, in each rule, referring to predefined
variables is possible with „[‟ and „]‟ characters as it is shown
in Listing 1 line3.

SEA_L‟s metamodel is based on BDI [17] architecture.
Therefore, a group of meta-elements exist to supply BDI
structure. Considering this structure, a Capabilities meta-
element consists of Belief, Goal and Plan meta-elements.
User can define numerous relations by considering the Agent
Internal viewpoint. This structure is defined in Capabilities
rule which is shown in Listing 1. Developer can define
Belief, Goal and Plan meta-elements as much as needed in
any order regarding lines 4 to 7 of Listing 1.

01

02

03

04

05

06

07

Capabilities:

 'Capabilities' name = ID description = STRING';' |

 cap = [Capabilities] '{'

 ('includes' belief = [Belief]';' |

 'uses' goal = [Goal]';' |

 'applies' plan = [Plan] ';')*

 '}';

Listing 1. Capabilities‟ rule.

Fewer constraints are defined in Agent Internal viewpoint
in comparison to Agent-SWS Interaction viewpoint since
elements are generally used arbitrary and most of the
relations are independent in Agent Internal viewpoint.

Additional Xtext features are used to limit the user while
creating instance models. Due to space limitation, a small
example is given in Listing 2 which is written in the
“Validation Package” of Xtext. Listing 2 provides an error in
the editor, if the user gives an empty string to “type” attribute
of a Behavior.

01

02

03

04

05

06

07

@Check

public void checkTypeIsNotEmpty (Behavior beh) {

 if (beh.getType().isEmpty()) {

 error("behavior type empty",

 AgentInternalDSLPackage.BEHAVIOR__TYPE);

 }

}

Listing 2. Validation Package code to prevent defining an empty string.

B. Textual Concrete Syntax of Agent-Semantic Web

Service Interaction Viewpoint

Considering Agent-SWS Interaction viewpoint, all of its
instance models must be written inside a
“SWSInteractionViewpoint” tag and every command or
declaration must end with a semicolon. Otherwise, an error
will occur in the editor. According to Fig. 1, a
SemanticWebService must have relationships with
Grounding, Process and Interface. Each instance model must
contain these elements and relations between them. Part of
Xtext code to supply these relations is given in Listing 3.
Line 4 forces the user to use “described_by” relation. Lines
10 to 13 and 18 have similar meanings.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

Process:

 'Process' name=ID';'|

 process=[Process] '{'

 'described_by' sws=[SWS] ';'

 …

 '}';

Grounding:

 'Grounding' name = ID';' |

 grounding = [Grounding] '{'

 (('supports' sws=[SWS] ';')

 ('calls' service = [WebService] ';'))|

 (('calls' service = [WebService] ';')

 ('supports' sws=[SWS] ';'))

 '}';

Interface:

 'Interface' name = ID ';' |

 interface=[Interface] '{'

 'presents' sws=[SWS] ';'

 …

 '}';

Listing 3. Parts of Process, Grounding, and Interface rules.

According to Agent-SWS Interaction viewpoint, each
instance model should have at least one SemanticWebAgent
and one SemanticWebService which is supplied with
“Validation Package”. Listing 4 shows the implementation
of the “checkAtLeastOneSWS” constraint.

01

02

03

04

05

06

07

08

09

10

11

12

13

@Check

public void checkAtLeastOneSWS(

 AgentSWSInteractionViewpoint sws) {

 SWSInteractionViewpoint agent =

 EcoreUtil2.getContainerOfType(sws,

 SWSInteractionViewpoint.class);

 List<SWS> swslist =

 EcoreUtil2.getAllContentsOfType(agent, SWS.class);

 if((swslist.size()<1))

 error("There must be at least one

 SWS", AgentSWSInteractionPackage.Literals.

 SWS_INTERACTION_VIEWPOINT__NAME);

}

Listing 4. Validation Package code to supply at least one

SemanticWebService constraint.

In Listing 4, “@Check” is a keyword to define a
validation rule. Lines 4 to 8 capture SemanticWebServices

from the AgentSWSInteractionViewpoint and put them in a
list (swslist). In line 9, size of “swslist” is controlled. If there
is not any element in the list, the editor will give an error.

Some rules are written in order to provide a specific
sequence for code while another group of rules let them to be
independent of a sequence in textual instance model where it
is required. For example, lines from 10 to 13 are written to
supply the sequence independency of relations in Listing 3.

Semantic Service Plans (SS_RegisterPlan,
SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan)
and their relations must be in a specific order in the instance
models. For instance, SS_RegisterPlan must advertise an
Interface before SS_FinderPlan interacts with
SSMatchmaker Agent. These sequence restrictions are
supplied with EBNF rules. Listing 5 shows how to supply
Plan orders. According to lines 2 to 3, any general Plan or
Semantic Service Plan can be defined in the instance model.
A Plan can be defined with or without its “type”,
“description” and “priority” attributes. The „?‟ character at
the end of each statement makes it as optional. If Semantic
Service Plans are considered, the order should be as is
defined in lines 5 to 8.

Xtext can generate EBNF rules from a given metamodel
but we prefer to define EBNF rules manually to supply some
preferred syntactical restrictions and constraints such as
defining relations in a specific order (Xtext cannot extract
the order from the metamodel because metamodel has not
such an attribute by itself), defining at least one or more than
one relation, etc.

01

02

03

04

05

06

07

08

Plan returns Plan:

('Plan' name = ID (type=STRING)?

(description = STRING)?(priority=INT)? ';') | PlanSequence;

PlanSequence returns Plan:

reg =SS_RegisterPlanDef

find =SS_FinderPlanDef

agree =SS_AgreementPlanDef

exe =SS_ExecutorPlanDef ;

Listing 5. Sample Plan rules.

V. CODE GENERATION

It is not sufficient to complete the DSL definition only by
specifying the notions and their representations. The
complete definition requires that one provide semantics of
language concepts in terms of other concepts whose meaning
is already established. Therefore the syntax of the SEA_L is
mapped into the metamodels of existing agent platforms that
have well-defined, understood and executable semantics.
The mapping is provided through model transformations.
Model to code transformations follow these model
transformations and finally executable software code for
exact MAS are achieved.

Code generation for the instance models are supplied
with Xpand tool [25]. Many of model driven engineering
approaches accomplish code generation by writing strings to
text files. Xpand is a template engine which is used to make
this process easier. It allows creating textual output using
EMF [26] models. The text output can be coded in any

programming language. Xpand requires an EMF metamodel
and one or more templates to translate the model into text.
Once the requirements are provided, code generator can be
run by defining an EMF model and running the generator
[27]. Xpand supplies traversing the abstract tree of provided
model and generating the code along the way [27].

In this study, Xpand is used for generation of JADEX
[18] code, along with OWL [21] and OWL-S [20] files from
SEA_L specifications and corresponding instance models.
Again due to space limitations, only code generation of
JADEX agents from SEA_L Agent Internal viewpoint and
generation of OWL-S SWS documents from Agent-SWS
Interaction viewpoint are illustrated in this paper.

JADEX is one of the popular Application Programming
Interfaces (API) for developing software agents. JADEX
code is composed of two files: ADF (Agent Definition File),
which an agent‟s Beliefs, Goals, and Plans are defined with
XML code, The JADEX Plan File, which Agent plans are
defined with Java code. According to JADEX platform, each
agent has an ADF file. Therefore, an ADF file is generated
for each SemanticWebAgent of a SEA_L instance model in
our study. Beliefs, Goals, Plans, Behaviors and Capabilities
of SemanticWebAgents are defined in ADF with
corresponding tags, but JADEX Plan files include pure Java
code defining corresponding tasks.

In the generated code for SEA_L models, SEA_L
ontological entities such as agent knowledge-bases are coded
in OWL. Moreover, SWSs modeled in SEA_L instances are
implemented according to OWL-S specifications. Both
OWL and OWL-S are perhaps the most popular and in-use
technologies for describing ontologies and SWS definitions.

An instance model, which conforms to SEA_L
metamodel, is in fact a platform independent model. In order
to achieve its platform specific counterparts (e.g. its JADEX
counterpart), mappings between SEA_L metamodel and
metamodels of agent development frameworks (such as
JADEX, JADE [28], etc.) are needed. Since we focus on
JADEX platform in this study, we need to provide entity
mappings between SEA_L and JADEX metamodels. These
mappings are given in Table I.

As discussed in Section 3, Agent Internal viewpoint
focuses on the internal structure of every Agent in a MAS
organization. Hence, in order to generate JADEX code,
Agent Internal viewpoint is mapped to JADEX metamodel.
On the other hand, Agent-SWS Interaction viewpoint
represents the interaction between SemanticWebAgents and
SemanticWebServices. Thus, it is mapped to both JADEX
and OWL-S metamodels (see Table I). Generated ontology
files for Agent-SWS Interaction viewpoint and ADF and
Plan files for Agent Internal viewpoint are provided. Since
generation of ADF and Plan files for Agent-SWS Interaction
viewpoint is very similar to the ones for Agent Internal
viewpoint, it is not repeated here. It is also worth noting that
both mappings between SEA_L and JADEX and SEA_L and
OWL-S take place simultaneously such that SEA_L instance
elements pertaining to agent and MAS viewpoints are
transformed into JADEX instances while remaining elements
of the same SEA_L instance model, which are used to model

semantic web services, are transformed into OWL-S
instances.

Initially, metamodel namespace is imported in order to
make the meta-types known to the editor as it is shown in
line 1 of Listing 6. Next, the main template is created.

Xpand‟s keywords and meta-type references are always
enclosed in “«” and “»” characters.

TABLE I. MAPPING BETWEEN SEA_L, JADEX AND OWL-S

METAMODELS.

SEA_L JADEX OWL-S

SemanticWebAgent Agent

SSMatchmakerAgent Agent

Plan, Behavior Plan

Capabilities Capability

Goal AchieveGoal

Goal QueryGoal

Goal PerformGoal

SS_AgreementPlan Plan

SS_ExecutorPlan Plan

SS_FinderPlan Plan

SS_RegisterPlan Plan

SemanticWebService Service

Interface ServiceProfile

Process ServiceModel

Grounding ServiceGrounding

Input Input

Output Output

Precondition Condition

Effect ResultVar

01

02

03

04

05

06

07

08

09

«IMPORT org::xtext::example::mydsl::myDsl»

«DEFINE main FOR SWSInteractionViewpoint»

…

«EXPAND owlservice FOREACH service»

«EXPAND owlsprofile FOREACH service»

«EXPAND owlsmodel FOREACH service»

«EXPAND owlgrounding FOREACH service»

«EXPAND wsdl FOREACH service»

«ENDDEFINE»

Listing 6. Defining main elements and invoking templates.

In Listing 6, for each Service, “owlservice”,
“owlsprofile”, “owlsmodel”, “owlsgrounding” and “wsdl”
(Web Service Definition Language) templates are invoked
between lines 4 to 8. Each SemanticWebService is
represented in a “Service.owl” file. For example, for an
“Electronic Barter Service”, an “EBarterService.owl” file
will be produced. “Service Profile”, “Service Process” and
“Service Grounding” are described in “profile.owl”,
“process.owl” and “grounding.owl” files respectively.

According to second line of Listing 7, a “Service.owl”
file is created. The other lines of the code are added to the
end of this file. Bold keywords (“int”, “pro” and “gro”) are
predefined variables representing Interface, Process and
Grounding respectively. Lines 4, 7 and 10 are point
references to the Profile, ProcessModel and Grounding,
respectively.

Nested templates are defined to invoke input, output,
precondition and effect where they are needed. In Agent
Internal viewpoint, an ADF file is needed for each
SemanticWebAgent and a Plan file is needed for each Plan.
Therefore, Plans and SemanticWebAgent templates are
invoked in main template as it is represented in Listing 8.

Code block given in Listing 9 represents belief
definitions in the generated ADF file. Beliefs are defined in
<beliefs> tags. Attributes of a belief meta-entity are
generated using line 3, 4 and 5 of Listing 9.

01

02

03

04

05

06

07

08

09

10

11

12

«DEFINE owlservice FOR Service»

«FILE this.name + "Service.owl"»

<service:Service rdf:ID= "«this.name»">

 <service:presents rdf:resource="&«this.name_profile;#

 "«int.name»"/>

 <service:describedBy

 rdf:resource="&"«this.name»_process;#

 "«pro.name»"/>

 <service:supports

 rdf:resource="&"«this.name»_grounding;#

 "«gro.name»"/>

</service:Service>

Listing 7. A part of Xpand code to define OWL-S Service File.

01

02

03

04

05

«IMPORT org::xtext::example::agentinternal::agentInternal»

«DEFINE main FOR AgentInternalViewpoint»

«EXPAND plans FOREACH plan»

«EXPAND semanticwebagents FOREACH semanticwebagent»

«ENDDEFINE»

Listing 8. Sample template to invoke plans and semanticwebagents

templates.

01

02

03

04

05

06

07

«DEFINE beliefs FOR Belief»

<beliefs>

 name=«this.name»

 description=«this.description»

 dynamic = «this.dynamic»

</beliefs>

 «ENDDEFINE»

Listing 9. Sample Xpand code to define beliefs in ADF.

Code generation for other viewpoints including
Environment, Role, Plan and Interaction viewpoints are
provided similarly. The required code generated from those
viewpoints extend the agents‟ files, ADFs and plans, in the
same way as Agent Internal and Agent-SWS Interaction
viewpoints do.

VI. CASE STUDY: E-BARTER SYSTEM

In order to illustrate the use of the introduced DSL, we
consider the modeling of a simple multi-agent based e-barter
system. A barter system is an alternative commerce approach
where customers meet at a marketplace in order to exchange
their goods or services without currency.

An agent-based e-barter system consists of agents that
exchange goods or services of owners corresponding to their
preferences. In this application, base scenario is achieved by
the Customer, “Barter Manager” and Cargo roles assigned to
the agents. Interested readers may refer to [29] for the

detailed discussion of barter proposals and tracking the
bargaining process between Customer agents. After
finalization of bargaining, Customer agents send engagement
message to the “Barter Manager” agent. Then, the “Barter
Manager” agent notifies the Cargo agent for transporting
barter products between Customer agents. This scenario is
completed by the acceptance of all participating agents.

The following examples can be instances for the
constraint controls in this case study:

Listing 10 illustrates the use of the Xtext editor in textual
modeling of Agent-SWS Interaction viewpoint of the multi-
agent e-barter system in question. In order to infer about
semantic closeness between offered and purchased items
based on the defined ontologies, barter manager may use a
SemanticWebService called “Barter Service”.

As it is restricted in textual concrete syntax, each instance
model must have at least one SemanticWebAgent and one
SemanticWebServices. After declarations, “Barter
Manager”, which is a SemanticWebAgent, applies
SS_FinderPlan and SS_ExecutorPlan and plays Roles.
SS_FinderPlan interacts with SS_MatchmakerAgent and gets
the results of appropriate services. After this interaction,
according to the results, SS_FinderPlan discovers “Barter
ServiceInterface”.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

SWSInteractionViewPoint case2 {

 SemanticWebAgent barterManager "This is bartermanager

 agent" "Properties" ;

SWS barterService ;

SSMatchmakerAgent barterMatchAgent "Description"

 "Properties";

Grounding barterServiceGrounding;

Process barterServiceProcess;

Interface barterServiceInterface;

SS_RegisterPlan ServiceRegistertion;

SS_FinderPlan discoverBarterService;

SS_AgreementPlan Negotiating;

SS_ExecutorPlan invokeBarterService;

Role Registery;

barterManager {

 appliesPlan discoverBarterService;

 appliesPlan ServiceRegistertion ;

 playsRole Registery;}

barterMatchAgent {

 appliesPlan discoverBarterService;

 appliesPlan Negotiating;

 appliesPlan invokeBarterService;}

invokeBarterService {

 executes barterServiceProcess;

 uses barterServiceGrounding;}

barterServiceProcess {described_by barterService;}

barterServiceInterface {presents barterService;}

barterServiceGrounding {supports barterService;}

}

Listing 10. Textual modeling for Agent-SWS Interaction viewpoint of

a multi-agent e-barter system.

At the end of SS_FinderPlan, SS_ExecutorPlan starts
which executes Process and uses Grounding. Moreover, Role
interacts with SemanticWebService which is presented by

Interface, describes Process and is supported by Grounding.
Finally, SemanticWebService depends on at least one
“Service Ontology”.

After running Xpand rules for the case study, a JADEX
ADF file for barterManager agent and a plan file for each
Plan element are generated. Generated ADF file can be used
inside a JADEX platform in order to initialize the designed
barterManager agent and this agent executes the generated
Java plan codes in order to do his tasks.

 Part of generated ADF file is shown in Listing 11. In this
file, all of the meta-elements and their attributes correspond
with related tags. For example Lines 14 to 16 are generated
by the template of Listing 9.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

<agent xmlns="http://jadex.sourceforge.net/jadex"

 …

 /jadex http://jadex.sourceforge.net/jadex-2.0.xsd"

 name= "barterManager" description= "This is

 barterManager agent" properties= "properties" >

 <capabilities>

 <capability>

 name="barter" file="" description="barter capabilities"

 </capability>

 </capabilities>

 <plans> name="financialPlan"

 description="financial plan description" priority="1"

 </plans>

 <beliefs> name="systemRulesAndEnvironment"

 description="system rules & environment"

 dynamic="1"

 </beliefs>

 <goals>

 <achievegoal name="bestMatching" recur=1

 exclude="when_tried" recalculate="true" retry="true"

 exported="false" posttoall="false" recurdelay="0"

 randomselection="false"

 …

 </achievegoal>

 </goals>

</agent>

Listing 11. Part of generated ADF file from Agent Internal viewpoint of

barterManager in E-Barter System case study.

Applying Xpand rules, two ADF files, four plan files,

four OWL-S files (Service, Service Process, Service Profile,
and Service Grounding) and one WSDL file are generated
for Agent-SWS Interaction viewpoint. ADF and plan files
are similar to the one generated for Agent Internal viewpoint.
Therefore, only part of the generated OWL-S file is given as
an example in Listing 12. Lines from 1 to 6 are boilerplate
text that inserted directly from template. barterService,
barterServiceInterface, barterServiceProcess and
barterServiceGrounding names in lines 8, 17, 26 and 30 in
Listing 12 are supplied with «this.name», «int.name»,
«pro.name» and «gro.name» respectively which are
represented in Listing 7.

VII. CONCLUSION

In this paper, textual concrete syntax of a new DSL,
called SEA_L, for Semantic Web enabled MASs is
discussed. Additionally, we show how the specifications of

SEA_L can be used during the development of real MASs.
Hence, agent software developers can first design their
MASs by only taking care of the MAS domain specifications
and abstracting from the target platform constraints.
Following this domain specific design, automatic application
of predefined transformations enables developers to achieve
executable code for the agent system that is intended to be
implemented in the target platform such as JADEX. Apart
from its unique support for Semantic Web, use of SEA_L
also brings an easier way of MAS development comparing to
merely programming with JADEX or any other specific
MAS development framework.

For the concrete syntax, meta-elements are mapped to
textual notations, textual constraints are provided and
verification of these constraints is illustrated within the
instance models. In this way, we provided an interpreter
mechanism and made an automatic code generation for users
of the domain using Xtext and Xpand tools of Eclipse. For
the next step, transformations from SEA_L to other MAS
platforms, such as JADE [28] and JACK [19], are aimed.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf= "&rdf;#" xmlns:rdfs="&rdfs;#"

 xmlns:owl = "&owl;#" xmlns:service= "&service;#"

 …

 xml:base="&DEFAULT;" >

 <owl:Ontology rdf:about="">

 <rdfs:comment> "This ontology represents the OWL-S

 service description for the"+ barterService +

 "service example."

 </rdfs:comment>

 <owl:imports rdf:resource="&service;" />

 …

 </owl:Ontology>

 <service:Service rdf:ID= "barterService">

 <!-- Reference to the Profile -->

 <service:presents rdf:resource="&'barterService_profile;

 # barterServiceInterface"'/>

 …

 </service:Service>

 <!-- Inverse links -->

 <profile:Profile rdf:about=&

 "barterService_profile;# barterServiceInterface">

 <service:presentedBy rdf:resource=#"barterService"/>

 </profile:Profile>

 <process:AtomicProcess rdf:about=&

 "barterService_process;# barterServiceProcess">

 <service:describes rdf:resource=#"barterService"/>

 </process:AtomicProcess>

 <grounding:WsdlGrounding rdf:about=&

 "barterService_grounding;# barterServiceGrounding">

 <service:supportedBy rdf:resource=#"barterService"/>

 </grounding:WsdlGrounding>

</rdf:RDF>

Listing 12. Part of generated OWL-S Service file.

REFERENCES

[1] J. M. Bradshaw, “Software Agents,” MIT Press Cambridge, MA,
USA, 1997.

[2] K. Sycara, “Multi-agent Systems,” AI Magazine, vol. 19, pp. 79-92,
1998.

[3] N. Shadbolt, W. Hall, T. Berners-Lee, “The Semantic Web
Revisited,” IEEE Computer Society, vol. 21(3), pp. 96-101, 2006.

[4] D.C. Schmidt, “Guest Editor's Introduction: Model-Driven
Engineering,” IEEE Computer, vol. 39 (2), pp. 25-31, 2006.

[5] T. Kos, T. Kosar, J. Knez and M. Mernik, “From DCOM interfaces to
domain-specific modeling language: A case study on the Sequencer,”
Computer Science and Information Systems, 8(2), pp. 361-378, 2011.

[6] A. Vallecillo, “A Journey through the Secret Life of Models,” in
Perspectives Workshop: Model Engineering of Complex Systems
(MECS), 08331 in Dagstuhl Seminar Proceedings, Germany, 2008.

[7] A. Van Deursen, P. Klint, J. Visser, “Domain-specific Languages: an
annotated bibliography,” ACM SIGPLAN Notices, vol. 35(6), pp. 26-
36, 2000.

[8] M. Mernik, J. Heering, A. Sloane, “When and how to develop
domain-specific languages,” ACM Computing Surveys, vol. 37(4),
pp. 316-344, 2005.

[9] M. J. Varanda-Pereira, M. Mernik, D. Da Cruz, P. R. Henriques
“Program comprehension for domain-specific languages,” Computer
Science Information Systems, vol. 5(2), pp. 1-17, 2008.

[10] M. Fowler, “Domain-specific Languages,” Addison Wesley, 2011.

[11] S-H. Liu, A. Cardenas, M. Mernik, B. R. Bryant, J. Gray, X. Xiong,
“Introducing domain-specific language implementation using web-
service oriented technologies”, Multiagent and Grid Systems-An
International Journal, vol. 8, pp. 19-44, 2012.

[12] M. Challenger, S. Getir, S. Demirkol, G. Kardas, “A Domain
Specific Metamodel for Semantic Web enabled Multi-agent
Systems,” Lecture Notes in Business Information Processing, vol. 83,
pp. 177-186, 2011.

[13] U. Kulesza, A. Garcia, C. Lucena and P. Alencar, “A Generative
Approach for Multi-agent System Development,” Lecture Notes in
Computer Science, vol. 3390, pp. 52-69, 2005.

[14] S. Rougemaille, F. Migeon, C. Maurel, M-P. Gleizes, “Model Driven
Engineering for Designing Adaptive Multi-agent Systems,” Lecture
Notes in Artificial Intelligence, vol. 4995, pp. 318-33, 2007.

[15] C. Hahn, “A Domain Specific Language for Multi-agent Systems,” in
7th Int. Conf. on Autonomous Agents and Multi-agent Systems
(AAMAS‟08), ACM Press, pp. 233-240, 2008.

[16] C. Hahn, S. Nesbigall, S. Warwas, I. Zinnikus, K. Fischer, M. Klusch,
“Integration of Multi-agent Systems and Semantic Web Services on a
Platform Independent Level,” in IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology,
pp. 200-206, 2008.

[17] M. E. Bratman, “Intention, Plans, and Practical Reason,” Harvard
University Press: Cambridge, Massachusetts, 1987.

[18] JADEX: http://jadex-agents.informatik.uni-
hamburg.de/xwiki/bin/view/ About/Overview

[19] JACK: http://aosgrp.com/products/jack/index.

[20] OWL-S: http://www.w3.org/Submission/OWL-S/ OMG ODM:
http://www.omg.org/spec/ODM/1.0/

[21] OWL: http://www.w3.org/TR/owl-features

[22] Xtext: http://www.eclipse.org/Xtext/

[23] ISO/IEC 14977:1996 Standard, “Information technology, Syntactic
meta language - Extended BNF,”

[24] Xpand: http://wiki.eclipse.org/Xpand

[25] Eclipse EMF: http://www.eclipse.org/modeling/emf

[26] Xpand documentation: http://ditec.um.es/ssdd/xpand_reference.pdf

[27] JADE: Java Agent DEvelopment Framework, http://jade.tilab.com/

[28] S. Demirkol, S. Getir, M. Challenger and G. Kardas, “Development
of an Agent based E-barter System,” International Symposium on
Innovations in Intelligent Systems and Applications (INISTA), IEEE
Computer Society, pp. 193-198, 2011.

