

 Abstract—In this paper, we present our approach which
aims at improving the mechanism of constructing language
semantics over the interoperability of domain-specific modeling
languages (DSMLs) developed for Multi-agent Systems (MAS)
and hence providing a more efficient way of extension for the
executability of modeled agent systems on various underlying
agent platforms. Differentiating from the existing MAS DSML
studies, our proposal is based on determining entity mappings
and building horizontal model transformations between the
metamodels of MAS DSMLs which are in the same abstraction
level. The applicability of the approach is demonstrated in the
paper by constructing horizontal transformations between two
full-fledged agent DSMLs, called SEA_ML and DSML4MAS.
Use of these transformations has enabled SEA_ML instance
models now to be executable on new agent platforms and that
feature has been provided with less effort comparing with the
implementation of needed transformations between SEA_ML
and those new agent platforms from scratch.

Keywords—Metamodel; Model transformation; Domain-specific
Modeling Language; Multi-agent System

I. INTRODUCTION

Multi-agent systems (MASs) are those systems having
software agents within an environment where agents interact
to solve problems in a competitive or collaborative manner.
In MASs, software agents are expected to be autonomous,
mostly through a set of reactive/proactive behaviors
designed for addressing situations likely to happen in
particular domains [1]. Both internal agent behavior model
and interactions within a MAS become even more complex
and hard to implement when taking into account the varying
requirements of different agent environments [2]. Hence,
working in a higher abstraction level is of critical
importance for the development of MASs since it is almost
impossible to observe code level details of MASs due to
their internal complexity, distributedness and openness [3].

In order to master the abovementioned problems of
developing MASs, agent-oriented software engineering
(AOSE) researchers define various agent metamodels (e.g.
[4-7]), which include fundamental entities and relations of
agent systems. In addition, many model-driven agent
development approaches are provided such as [8-10] and by
enriching MAS metamodels with some defined syntax and
semantics (usually translational semantics [11]), researchers
also propose domain-specific languages (DSLs) / domain-

This study is funded by the Scientific Research Projects Directorate of
Ege University under grant 16-UBE-001.

specific modeling languages (DSMLs) (e.g. [12-20]) for
facilitating the development of MASs. DSLs / DSMLs
[21-23] have notations and constructs tailored toward a
particular application domain (e.g. MAS) and help to the
model-driven development (MDD) of MASs. MDD aims to
change the focus of software development from code to
models [24], and hence many AOSE researchers believe that
this paradigm shift introduced by MDD may also provide
the desired abstraction level and simplify the development
of complex MAS software [3].

In AOSE, perhaps the most popular way of applying
model-driven engineering (MDE) for MASs is based on
providing DSMLs specific to agent domain with including
appropriate integrated development environments (IDEs) in
which both modelling and code generation for system-to-be-
developed can be performed properly. Proposed MAS
DSMLs such as [13], [17], [19] usually support modelling
both the static and the dynamic aspects of agent software
from different MAS viewpoints including agent internal
behaviour model, interaction with other agents, use of other
environment entities, etc. Within this context, abstract
syntaxes of the languages are represented with metamodels
covering those aspects and required viewpoints to some
extent. Following the construction of abstract and concrete
syntaxes based on the MAS metamodels, the operational
semantics of the languages are provided in the current MAS
DSML proposals by defining and implementing entity
mappings and model-to-model (M2M) transformations
between the related DSML’s metamodel and the
metamodel(s) of popular agent implementation and
execution platform(s) such as JACK1, JADE2 and JADEX3.
Finally, a series of model-to-text (M2T) transformations are
implemented and applied on the outputs of the previous
M2M transformations which are the MAS models
conforming to the related agent execution platforms. Hence,
agent software codes, MAS configuration files, etc.
pertaining to the implementation and deployment of the
modeled agent systems on the target MAS platform are
generated automatically.

When we take into account the different abstractions
covered by the metamodels of MAS DSMLs and the
underlying agent execution platforms, DSML metamodels
can be accepted as the platform-independent metamodels
(PIMMs) of agent systems while metamodels of the agent
execution platforms are platform-specific metamodels

1 http://aosgrp.com/products/jack/ (last access: June, 2016)
2 http://jade.tilab.com/ (last access: June, 2016)
3 https://www.activecomponents.org/ (last access: June 2016)

Interoperability of MAS DSMLs via horizontal model transformations

Emine Bircan
International Computer Institute,
Ege University, 35100, Bornova,

Izmir, Turkey
eminebircanbircan@gmail.com

Moharram Challenger
International Computer Institute,
Ege University, 35100, Bornova,

Izmir, Turkey
moharram.challenger@mail.ege.edu.tr

Geylani Kardas
International Computer Institute,
Ege University, 35100, Bornova,

Izmir, Turkey
geylani.kardas@ege.edu.tr

Proceedings of the Federated Conference on Computer Science
and Information Systems pp. 1555–1564

DOI: 10.15439/2016F196
ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1555

(PSMMs) according to the OMG’s well-known Model-

driven Architecture (MDA)4 as also indicated in [5] and [9].

Above described methodology applied in the current

MAS DSML development approaches for the derivation of

operational semantics unfortunately requires the definition

and implementation of new M2M and M2T transformations

from scratch in order to make the DSMLs functional for

different agent execution platforms. In other words, for each

new target agent execution platform, MAS DSML designers

should repeat all the time-consuming and mostly

troublesome steps of preparing the vertical transformations

between the related DSML and this new agent platform.

Motivated by the similarity encountered in the abstract

syntaxes of the available MAS DSMLs, we are quite

convinced that both the definition and the implementation of

M2M transformations between the PIMMs of MAS DSMLs

would be more convenient and less laborious comparing

with the transformations required between MAS PIMMs and

PSMMs in the way of enriching the support of MAS

DSMLs for various agent execution platforms. Hence, in

this paper, we present our approach which aims at

improving the mechanism of constructing language

semantics over the interoperability of MAS DSMLs and

hence providing a more efficient way of extension for the

executability of modeled agent systems on various

underlying agent platforms. Differentiating from the existing

MAS DSML studies (e.g. [13], [16], [17], [19], [20]), our

proposal is based on determining entity mappings and

building horizontal M2M transformations between the

metamodels of MAS DSMLs which are in the same

abstraction level. In this paper, we also investigate the

applicability of the proposed DSML interoperability

approach by constructing horizontal transformations

between two full-fledged agent DSMLs called SEA_ML

[19] and DSML4MAS [5] respectively.

The rest of the paper is organized as follows: In Sect. 2,

the approach for the MAS DSML interoperability is

presented. Applicability of the approach is discussed in Sect.

3 by taking into consideration two MAS DSMLs. In Sect. 4,

a case study on the development of an agent-based stock

exchange system with using the proposed approach is given.

Related work is given in Sect. 5. Finally, Sect. 6 concludes

the paper and states the future work.

II. PROPOSED APPROACH FOR THE INTEROPERABILITY OF

MAS DSMLS

As indicated in the introduction, support of current MAS

DSMLs for each agent execution platform is enabled by

repetitively defining and implementing a chain of vertical

M2M and M2T transformations. Available M2M and M2T

transformations are specific for each different agent

platform and almost all of them can not be re-used while

extending the executability of the MAS models for a new

agent platform. Due to the difficulty encountered on

repeating those vertical model transformation steps, current

MAS DSML proposals (e.g. [13-15], [17], [19]) mostly

4 http://www.omg.org/mda/ (last access: June 2016)

support the execution of modeled agents on just one agent

platform. Rarely, two different platforms are supported (e.g.

[5], [9]) and as far as we know, there is no any MAS DSML

which provides an operational semantics for more than two

different agent execution platforms. In order to increase the

platform variety, we propose benefiting from the vertical

transformations already existing between the syntax of a

MAS DSML (let us call DSML1) and metamodels of various

agent platforms for enabling model instances of another

MAS DSML (let us call DSML2) executable on the same

agent platforms by just constructing horizontal

transformations between the PIMMs of the MAS DSMLs in

question. Therefore, instead of defining and implementing N

different M2M and M2T transformations for N different

agent platforms, creation of only one single set of M2M

transformations between DSML1 and DSML2 can be enough

for the execution of DSML2’s model instances on these N

different agent platforms.

Fig. 1 depicts the construction of model transformations

between MAS DSMLs and hence re-use of already existing

transformations between those DSMLs and agent platforms.

Let the abstract syntaxes of DSML1, DSML2 and DSML3 be

the metamodels MM1, MM2 and MM3 respectively.

Horizontal lines between these MAS DSMLs represent the

M2M transformations between these metamodels.

According to the figure, agent systems modeled in DSML1

are already executable on the agent platforms A and B (due

to the existing vertical transformations for these platforms),

while DSML2 model instances are executable on the agent

platforms X, Y and Z. Similarly M2M and M2T

transformations were already provided for the execution of

DSML3 model instances on the agent platforms α, β, θ
respectively. If DSML1 is required to support X and Y agent

platforms, designers should prepare new model

transformations separately for those agent platforms (shown

with dotted arrows in Fig. 1) in case of the absence of

horizontal transformations between MM1 and MM2. Hence,

construction of only one set of horizontal M2M

transformations between DSML1 and DSML2 enables

DSML1’s automatic support on agent platforms X, Y (and

also Z). Conversely, same is also valid for extending the

DSML2’s support for agent execution platforms.

Interoperability between DSML1 and DSML2 over these

newly defined horizontal transformations also makes

transformation and code generation of DSML2 model

instances for the agent platforms A and B. In addition to the

important decrease in the number of transformations,

construction of horizontal model transformations between

the PIMMs of MAS DSMLs is more feasible and easier than

the vertical transformations since the DSMLs are in the

same abstraction level according to MDA.

III. INTEROPERABILITY BETWEEN SEA_ML AND

DSML4MAS

In this section, we discuss the applicability of the

proposed approach by taking into account the construction

of the interoperability between two MAS DSMLs called

SEA_ML and DSML4MAS. Both DSMLs enable the

1556 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 1 Interoperability of MAS DSMLs via horizontal model transformations

modeling of agent systems according to various agent

internal and MAS organizational viewpoints. They provide a

clear visual syntax for MAS modeling and code generation

for agent implementation and execution platforms.

Moreover, both languages are equipped with Eclipse-based

IDEs in which modeling and automatic generation of MAS

components are possible. These features of the languages

led us to choose them in this study. In the following

subsections, brief introduction of these DSMLs and

implemented model transformations between these

languages are given.

A. SEA_ML

SEA_ML [19] provides a convenient and handy

environment for agent developers to construct and

implement software agent systems working on various

application domains. In order to support MAS experts when

programming their own systems, and to be able to fine-tune

them visually, SEA_ML covers all aspects of an agent

system from the internal view of a single agent to the

complex MAS organization. In addition to these capabilities,

SEA_ML also supports the model-driven design and

implementation of autonomous agents who can evaluate

semantic data and collaborate with semantically-defined

entities of the Semantic Web, like Semantic Web Services

(SWS) [25]. That feature exactly differentiates SEA_ML

and makes unique regarding any other MAS DSML

currently available. Within this context, it includes new

viewpoints which specifically pave the way for the

development of software agents working on the Semantic

Web environment. Modeling agents, agent knowledgebases,

platform ontologies, SWS and interactions between agents

and SWS are all possible in SEA_ML.

SEA_ML’s metamodel is divided into eight viewpoints,

each of which represents a different aspect for developing

Semantic Web enabled MASs [19]. Agent’s Internal

Viewpoint is related to the internal structures of semantic

web agents (SWAs) and defines entities and their relations

required for the construction of agents. It covers both

reactive and Belief-Desire-Intention (BDI) agent

architectures. Interaction Viewpoint expresses the

interactions and communications in a MAS by taking

messages and message sequences into account. MAS

Viewpoint solely deals with the construction of a MAS as a

whole. It includes the main blocks which compose the

complex system as an organization. Role Viewpoint delves

into the complex controlling structure of the agents and

addresses role types. Environmental Viewpoint addresses the

use of resources and interaction between agents with their

surroundings. Plan Viewpoint deals with an agent Plan’s

internal structure, which are composed of Tasks and atomic

elements such as Actions. Ontology Viewpoint addresses the

ontological concepts which constitute agent’s

knowledgebase (such as belief and fact). Agent - SWS

Interaction Viewpoint defines the interaction of agents with

SWS including the definition of entities and relations for

service discovery, agreement and execution. A SWA

executes the semantic service finder Plan (SS_FinderPlan)

to discover the appropriate services with the help of a

special type of agent called SSMatchMakerAgent who

executes the service registration plan (SS_RegisterPlan) for

registering the new SWS for the agents. After finding the

necessary service, one SWA executes an agreement plan

(SS_AgreementPlan) to negotiate with the service. After

negotiation, a plan for service execution (SS_ExecutorPlan)

is applied for invoking the service.

The collection of SEA_ML viewpoints constitutes an

extensive and all-embracing model of the MAS domain.

SEA_ML's abstract syntax combines the generally accepted

aspects of MAS (such as MAS, Agent Internal, Role and

Environment) and introduces two new viewpoints (Agent-

SWS Interaction and Ontology) for supporting the

development of software agents working within the

Semantic Web environment [2].

SEA_ML can be used for both modeling MASs and

generation of code from the defined models. SEA_ML

instances are given as inputs to a series of M2M and M2T

transformations to achieve executable artifacts of the

system-to-be-built for JADEX agent platform and semantic

web service description documents conforming to Web

Ontology Language for Services (OWL-S) ontology5. It is

also possible to automatically check the integrity and

validity of SEA_ML models [26]. Complete discussion on

SEA_ML can be found in [19].

5 https://www.w3.org/Submission/OWL-S/ (last access: June 2016)

EMINE BIRCAN ET AL.: INTEROPERABILITY OF MAS DSMLS VIA HORIZONTAL MODEL TRANSFORMATIONS 1557

B. DSML4MAS

DSML4MAS [5], [13] is perhaps one of the first complete

MAS DSMLs in which a PIMM, called PIM4Agents,

provides an abstract syntax for different aspects of agent

systems. Similar to SEA_ML’s viewpoints, both internal

behavior model of agents and agent interactions in a MAS

are covered by PIM4Agents views / aspects. Multiagent

view contains all the main concepts in a MAS such as Agent,

Cooperation, Capability, Interaction, Role and Environment.

Agent view focuses on the single autonomous entity (agent),

the roles it plays within the MAS and the capabilities it has

to solve tasks and to reach the environment resources.

Behavioural view describes how plans are composed by

complex control structures and simple atomic tasks like

sending a message and how information flows between

those constructs. In here, a plan is a specialized version of

behavior composed of activities and flows. Activities and

tasks are minimized parts of the work and flows provide the

communication between these parts. Organization view

describes how single autonomous entities cooperate within

the MAS and how complex organizational structures can be

defined. Social structure in the system is defined with

cooperation entity where agents and organizations take part

in. The structure has its own protocol defining how the

entities interact in a cooperation. Agents have

“domainRoles” for the interaction and these roles are

attached to actors by “actorBinding” entities where actors

are representative entities within the corresponding

interaction protocol. Role view examines the behaviour of an

agent entity in an organization or cooperation. An agent’s

role covers the capabilities and information to have access to

a set of resources. Interaction view describes how the

interaction in the form of interaction protocols takes place

between autonomous entities or organizations. Agents

communicate over the PIM4Agents Protocol which refers to

actors and “messageFlows” between these actors. Finally,

Environment view contains the resources accessed and

shared by agents and organizations. Agents can

communicate with the environment indirectly via using

resources. Resources can store knowledge from BDI agents

for changing beliefs by using Messages and Information

flows.

As indicated in [5], grouping modelling concepts in

DSML4MAS allows the metamodel evolution by adding

new modelling concepts in the existing aspects, extending

existing modelling concepts in the defined aspects, or

defining new modelling concepts for describing additional

aspects of agent systems. For instance, SWS integration into

the system models conforming to DSML4MAS is provided

via introducing the SOAEnvironment entity [27] which

extends the Environment entity and contains service

descriptions. Agents use service descriptions to specify the

Services they are searching for and then service interaction

is realized by InvokeWS and ReceiveWS tasks which are

inherited from Send and Receive task entities described in

PIM4Agents.

Similar to SEA_ML, DSML4MAS also enables the MDD

of MAS including a concrete graphical syntax [28] based on

the abovementioned PIMM (PIM4Agents) and an

operational semantics for the execution of modeled agent

systems on JACK or JADE agent platforms. Extensions to

the language introduced in [27] provide the description of

the services inside an agent environment according to

specifications such as Web Services Modeling Language

(WSML)6 or Semantic Annotation of WSDL and XML

Schema (SAWSDL)7. Interested readers may refer to [5],

[13] and [27] for an extensive discussion on DSML4MAS.

C. Horizontal Model Transformations between SEA_ML

and DSML4MAS

We have applied the horizontal transformability approach

described in Sect. 2 for establishing the interoperability

between SEA_ML and DSML4MAS. As shown in Fig. 2,

SEA_ML currently supports the MAS implementation for

JADEX BDI architecture and SWS generation according to

the OWL-S ontology. In order to extend its platform support

capability, new M2M and M2T transformations should be

prepared for each new implementation platform. For

instance, M2M transformations are needed between the

abstract syntax of SEA_ML and PSMM of JADE

framework to make SEA_ML instances also executable on

the JADE platform. It is worth indicating that definition and

application of M2T transformations are also required for the

code generation from the outputs of the previous SEA_ML

to JADE transformations. Instead, we can follow the

approach introduced in Sect. 2 by just writing the horizontal

transformation rules between the metamodels of SEA_ML

and DSML4MAS and running those transformations on

SEA_ML instances for the same purpose: making SEA_ML

models executable also on JADE platform. That is possible

since DSML4MAS has already support on JADE and JACK

agent platforms and SAWSDL and WSDL semantic service

ontologies via vertical transformations between its

metamodel and metamodels of the corresponding system

implementation platforms. Realization of horizontal

transformations between SEA_ML and DSML4MAS has

extra benefits such as the execution of SEA_ML instances

also on JACK platform and/or implementation of the

modeled SWS according to SAWSDL or WSDL

specifications (Fig. 2).

Before deriving the rules of transformations, we should

determine the entity mappings between both languages since

the transformations are definitely based on these entity

mappings. Comparing with the mappings we previously

provided in [15] or [19] for the transformability of SEA_ML

instances to MAS execution platforms, we have experienced

that the determination of the entity mappings in this study

was easier and took less time. We believe that the reason of

this efficiency originates from the fact that metamodels of

SEA_ML and DSML4MAS are in the same abstraction level

and provide close entities and relations in similar viewpoints

for MAS modeling.

6 http://www.wsmo.org/wsml/ (last access: June, 2016)
7 https://www.w3.org/TR/sawsdl/ (last access: June, 2016)

1558 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

Fig. 2 Interoperability of SEA_ML and DSML4MAS

Table 1 lists some of the important mappings constructed

between first-class entities of these two languages. For

instance, two agent types (SWA and SSMatchmakerAgent)

defined in SEA_ML are mapped onto the autonomous entity

Agent defined in DSML4MAS. Likewise, meta-entities

pertaining to agent plan types (SS_RegisterPlan,

SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan)

required for the interaction between the semantic services

are mapped with the Plan concept of DSML4MAS. Since

Actor entity in DSML4MAS has access to resources and

owns capabilities needed for agent interactions, SEA_ML’s

Role entity is mapped onto Actor entity.

One interesting mapping is encountered between

SEA_ML’s SWS entity and DSML4MAS’s

SOAEnvironment since it enables the representation of

SEA_ML semantic services in DSML4MAS model

instances. On the DSML4MAS side, SOAEnvironment

entity, which is extended from Environment entity, includes

services in general. Hence, SEA_ML SWS entity is mapped

onto SOAEnvironment entity and SEA_ML WebService

entities are mapped onto Service entities. In SEA_ML

WebService definition, every service has Interface, Process

and Grounding. Interface entity represents the information

about service inputs, outputs and any other necessary

information. Process entity has internal information about

the service and finally Grounding entity defines the

invocation protocol of the web service [19]. DSML4MAS

services are described with Blackbox and Glassbox entities

[27]. BlackBox is used to define a service’s functional and

non-functional parameters while Glassbox includes the

description of the internal service process. The Functionals

are described in terms of service signature that are input and

output parameters, and specifications that are preconditions

and effects. The NonFunctionals are defined in terms of

price, service name and developer. Hence, Interface and

Process entities of services defined in SEA_ML are mapped

onto DSML4MAS Functionals which have input and output

definitions. On DSML4MAS side, agent interactions with

services are provided by InvokeWS and ReceiveWS tasks.

So, SEA_ML Grounding, which represents the physical

structure of the underlying web service executed for the

corresponding SWS, is mapped to InvokeWS. Remaining

mappings listed in Table 1 (e.g. SEA_ML SWO to

DSML4MAS Organization, SEA_ML Environment to

DSML4MAS Environment) are very simple to determine

since the related entities on both sides have similar or almost

same functionality within the syntaxes of the languages.

After determining the entity mappings between SEA_ML

and DSML4MAS, it is necessary to provide model

transformation rules which are applied at runtime on

SEA_ML instances to generate DSML4MAS counterparts

of these instances. For that purpose, transformation rules

should be formally defined and written according to a model

transformation language. In this study, we preferred to use

ATL Transformation Language (ATL)8 to define the model

transformations between SEA_ML and DSML4MAS. ATL

is one of the well-known model transformation languages,

specified as both metamodel and textual concrete syntax. An

ATL transformation program is composed of rules that

define how the source model elements are matched and

navigated to create and initialize the elements of the target

models. In addition, ATL can define an additional model

querying facility which enables specifying the requests onto

models. ATL also allows code factorization through the

definition of ATL libraries. Finally, ATL has a

transformation engine and an IDE that can be used as a

plug-in on an Eclipse platform. These features of ATL

caused us to prefer it as the implementation language for the

horizontal transformations from SEA_ML to DSML4MAS.

ATL is composed of four fundamental elements. The first

one is the header section defining attributes relative to the

transformation module. The next element is the import

section which is optional and enables the importing of some

existing ATL libraries. The third element is a set of helpers

8 https://eclipse.org/atl/(last access: June, 2016)

TABLE I.

ENTITY MAPPINGS BETWEEN THE METAMODELS OF SEA_ML AND

DSML4MAS

SEA_ML MM DSML MM

SWA (Semantic Web Agent) Agent

SSMatchmakerAgent Agent

Role Actor

SWS (Semantic Web Service) SOAEnvironment

Environment Environment

WebService Service

Interface Functionals

Process Functionals

Grounding InvokeWS

Input Input

Output Output

Precondition Precondition

SS_RegisterPlan Plan

SS_FinderPlan Plan

SS_AgreementPlan Plan

SS_ExcecutorPlan Plan

SWO (Semantic Web Organization) Organization

EMINE BIRCAN ET AL.: INTEROPERABILITY OF MAS DSMLS VIA HORIZONTAL MODEL TRANSFORMATIONS 1559

that can be viewed as the ATL equivalents to the Java

methods. The last element is a set of rules that defines the

way target models are generated from source models.

Following listings include some excerpts from the written

ATL rules in order to give some flavor of M2M

transformations provided in this study. To this end, rule in

Listing 1 enables the transformation of the elements covered

by the Agent-SWS Interaction viewpoint of SEA_ML to

their counterparts included in DSML4MAS’s Multiagent

system viewpoint. In line 1, rule is named uniquely. In line

2, the source metamodel is chosen and renamed as

swsinteractionvp with “from” keyword. The target

metamodel is indicated and renamed as pim4agents with

“to” keyword (Line 3). In the following lines (between 4 and

14), instances of SEA_ML SWA and SSMatchmakerAgent

entities are selected and transformed to DSML4MAS Agent

instances. Transformation of agent roles and plans are also

realized by using “Set” and “allInstances” functions. It is

worth indicating that types of Plan instances seem to be

transformed to DSML4MAS behavior in the given listing

although all SEA_ML Plan types are semantically mapped

to DSML4MAS Plan as listed in Table 1. That is because

some of the DSML4MAS meta-entities are collected with

tag definitions in Ecore representations which take the same

name with the related viewpoint. For instance, plans are not

defined solely with their names; instead they are collected in

behavior definitions. Hence, in order to provide the full

transformations of the plans with all their attributes, ATL

rule is written here as mapping SEA_ML plan instances to

the DSML4MAS behaviors. Inside another helper rule,

those behaviors are separated into the corresponding plans

and so exact transformation of SEA_ML plan instances to

DSML4MAS plans are realized.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

rule SWSInteractionVP2MultiagentSystem {

 from swsinteractionvp: SWSInteraction!SWSInteractionViewpoint

 to pim4agent: PIM4Agents!MultiagentSystem(

 agent <- Set{SWSInteraction!SemanticWebAgent.allInstances()},

 agent <- Set{SWSInteraction!SSMatchmakerAgent.allInstances()},

 role <- Set{SWSInteraction!Role.allInstances()},

 role <- Set{SWSInteraction!RegistrationRole.allInstances()},

 behavior <- Set{SWSInteraction!SS_AgreementPlan.allInstances()},

 behavior <- Set{SWSInteraction!SS_ExecutorPlan.allInstances()},

 behavior <- Set{SWSInteraction!SS_FinderPlan.allInstances()},

 behavior <- Set{SWSInteraction!SS_RegisterPlan.allInstances()},

 environment<-Set{SWSInteraction!SWS.allInstances()},

 environment<-Set{SWSInteraction!Grounding.allInstances()})

}

Listing 1 An excerpt from the SWSInteractionVP2MultiagentSystem rule

Another example can be given for the transformation of

SEA_ML SWS instances to DSML4MAS SOAEnvironment

instances. In Listing 2, the first rule provides the related

transformation. After controlling the name of the SWS by

applying the helper rule “nameControl”, its attributes are

converted to their counterparts in the abstract syntax of

DSML4MAS. Again with using helper rules, the web

services composed by this semantic service are determined

and transformed to DSML4MAS Service instances. Only a

fragment of SWS2SOAEnvironment can be given in here

due to space limitations. The remaining part of this rule

provides the transformation of each SEA_ML semantic

service’s discovery, engagement and execution components

(e.g. Interface, Process and Grounding) to their counterparts

in DSML4MAS models according to the mappings given in

Table 1.

01

02

03

04

05

06

07

08

09

10

11

12

13

rule SWS2SOAEnvironment{

 from envIN: SWSInteraction!SWS(envIN.nameControl)

 to envOUT: PIM4Agents!SOAEnvironment (

 name <- envIN.setName(),

 service<-envIN.setWebServices()

)

 }

 rule WebService2Service{

 from webService: SWSInteraction!WebService

 to service: PIM4SWS!Service (

 ID<- webService.setName()

)

 }

Listing 2 Excerpts from the SWS2SOAEnvironment and

WebService2Service rules

In Listing 3, the helper rules used in above transformation

rules are given. “nameControl” helper is executed on the

SEA_ML SWS instances. It controls whether a SWS has a

name attribute. Based on this attribute’s existence, the rules

returns true (line 4) or false (line 5). That Boolean result is

evaluated by the caller rule given in Listing 2. In the second

helper rule, the name attribute of a semantic service is

controlled. In case of the name is empty, the string given in

line 10 is assigned as the value for the transformed service’s

(SOAEnvironment) name attribute. Otherwise, the name of

the source SWS is returned back to the called rule

(SWS2SOAEnvironment) to be assigned as the name of the

transformed SOAEnvironment instance which will be

included in the target DSML4MAS model.

01

02

03

04

05

06

07

08

09

10

11

12

helper context SWSInteraction!SWS

 def: nameControl: Boolean =

 if not (self.name.oclIsUndefined())

 then true

 else false

 endif;

 helper context SWSInteraction!SWS

 def: setName(): String =

 if (self.name = '')

 then 'SERVICE_NAME_IS_EMPTY'

 else self.name

 endif;

Listing 3 Helper rules used by the SWS2SOAEnvironment rule

IV. CASE STUDY: AGENT-BASED STOCK EXCHANGE SYSTEM

In this section, the interoperability of SEA_ML and

DSML4MAS is demonstrated by applying the proposed

horizontal model transformations for the development of an

agent-based stock exchange system. The system is modeled

in SEA_ML and transformed to a DSML4MAS instance to

use the generation power of DSML4MAS language. In this

way, the implementation of this system’s agents on JADE

(or JACK) platform and services as SAWSDL or WSML

ontology instances can be possible by using the operational

semantics of DSML4MAS which is already provided for the

1560 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

execution of agents and the generation of semantic web

services (see Fig. 2).

Stock trading is one of the key items in economy and

estimating its behavior and taking the best decision in it are

among the most challenging issues. Agents in a MAS can

share a common goal or they can pursue their own interests.

That nature of MASs exactly fits to the requirements of free

market economy. Moreover, Stock Exchange Market has

lots of services which are offered for Investors (Buyer or

Seller), Brokers, and Stock Managers. These services can be

represented with semantic web services to achieve more

accurate service finding and service matching.

When considering the structure of the system, the

semantic web agents work within a semantic web

organization for Stock System including sub-organizations

for Stock Users where the Investor and Broker agents reside,

and the Stock Market where the system’s internal agents,

e.g. Trade Manager (a SSMatchmaker agent instance) work.

The Stock Market organization also has two sub-

organizations, the Trading Floor and the Stock Information

System. These organizations and sub-organizations have

their own organizational roles. These organizations also

need to access some resources in other environments.

Therefore, they have interactions with the required

environments to gain access permissions. For example,

agents in the Stock Market sub-organization need to access

bank accounts and some security features, so that they can

interact with the Banking & Security environment. All of the

user agents including Investors and Brokers cooperate with

Trade Manager to access the Stock Market. Also, the user

agents interact with each other. For instance, Investor

Agents can cooperate with Brokers to exchange stock for

which Brokers are expert. More information on developing

such stock trading agents can be found in [29].

To model the system in SEA_ML, Agent-SWS

Interaction viewpoint is considered as the representative for

SEA_ML viewpoints. This viewpoint is the most important

aspect of MASs working in semantic web environments.

Fig. 3 shows a screenshot from the SEA_ML’s modeling

environment in which instances of both the semantic

services and the agent plans required for the stock exchange

are modeled, including their relations according to Agent-

SWS interaction viewpoint of SEA_ML. Investor and

Broker agents can be modeled with appropriate plan

instances in order to find, make the agreement with and

execute the services. The services can also be modeled for

the interaction between the semantic web service’s internal

components (such as Process, Grounding, and Interface),

and the SWA’s plans. It is important to indicate that the

stock exchange system given in here was already modeled in

the SEA_ML environment before this study and instead of

re-modeling the whole system (e.g. in DSML4MAS), the

existing model is intentionally adopted in here to examine

the applicability of the proposed approach. In fact, the

model in question is much more complicated and we can

only consider the agent-SWS interaction aspect due to page

limits of this paper. Discussion on the whole model can be

found in [19] and the sources of the model are available at

the SEA_ML’s distribution website9.

9 SEA_ML, its modeling tool and the instance models for the case study are

available at: http://serlab.ube.ege.edu.tr/resources.html (last access: June

2016)

Fig. 3 Instance model of the multi-agent stock exchange system in SEA_ML with including the agents, semantic web services and their relations

EMINE BIRCAN ET AL.: INTEROPERABILITY OF MAS DSMLS VIA HORIZONTAL MODEL TRANSFORMATIONS 1561

We can see from the instance model given in Fig. 3 that

an investor agent (e.g. InvestorA) would play the Buying

role and apply its StockFinder plan for finding an

appropriate Trading service interface of one TradingService

SWS in order to buy some stocks. This plan would realize

the discovery by interacting with the TradeManager

SSMatchmakerAgent which has registered the services by

applying the StockRecorder plan. As InvestorA cooperates

with Broker1 in order to receive some expert advice for its

investment, at the next step, the Broker1 agent applies its

StockBargaining plan for negotiating with the already

discovered services. This negotiation would be made

through the Trade interface of the SWS. Finally, if the result

of the negotiation were positive, the agent would apply the

StockOrder plan to call the TradingFloor of the SWS by

executing its Exchange process and using its TradeAccess

grounding with which the service would be realized. In a

similar way, Investor agents could cooperate with Brokers

and interact with the TradeManager in order to collect some

information about the market, e.g. the rate of exchange for a

currency or the fluctuation rate for a specific stock.

The designed instance model is controlled based on the

provided constraint rules in SEA_ML tool to check its

validity. Then, the horizontal model transformations

discussed in the previous section are executed on this

SEA_ML instance model and as result, we have succeeded

to automatically achieve the counterpart models conforming

to DSML4MAS. To realize the transformation, the

SEA_ML metamodel, the SEA_ML instance models for this

case study, and the DSML4MAS metamodel are given to the

ATL engine as input and the instance models of the case

study in DSML4MAS are generated by the engine with

executing our transformation rules. An excerpt of the XMI

file containing the output DSML4MAS instance model is

given in Fig. 4 in which the output instance can be seen in

its Ecore tree view representation.

The generated model conforms to the specification of

DSML4MAS’s abstract syntax, so it can be handled with

DSML4MAS’s graphical editor10. To visualize the instance

10The IDE of DSML4MAS is available at:

https://sourceforge.net/projects/dsml4mas/ (last access: June 2016)

model in DSML4MAS, the only thing needed is to add the

related graphical notations to the generated instance model.

The screenshot given in Fig. 5 shows the appearance of

output instance model in the concrete syntax of

DSML4MAS. We can examine from the figure that the

agents and their relations we modeled in SEA_ML are

exactly reflected to a DSML4MAS model after execution of

the M2M transformations proposed in this study. From now

on, it is straightforward to automatically achieve platform-

specific executables and documents of this MAS model for

JADE or JACK agent platforms and SAWSDL or WSML

semantic service ontologies since DSML4MAS has already

own a chain of M2M and M2T transformations for these

agent execution platforms and service ontologies as

discussed in Sect. 3.2.

V. RELATED WORK

In the last decade, AOSE researchers have noteworthy

efforts on the derivation and use of DSLs / DSMLs for

MAS. For instance, the Agent-DSL [12] is used to specify

the agency properties that an agent needs to accomplish its

tasks. However, the proposed DSL is presented only with its

metamodel and provides just a visual modeling of the agent

systems according to agent features, like knowledge,

interaction, adaptation, autonomy and collaboration.

Likewise, in [30], the authors introduced two DSMLs. These

languages are described by metamodels which can be seen

as the representations of the main concepts and relationships

identified for each of the particular domains again

introduced in [30]. The study included only the abstract

syntax of the related DSMLs and does not give the concrete

syntax or semantics of the DSMLs.

As previously discussed in this paper, Hahn [13]

introduced a DSML for MAS called DSML4MAS. The

abstract syntax of the DSML was derived from a platform

independent metamodel [5] which was structured into

several aspects each focusing on a specific viewpoint of a

MAS. In order to provide a concrete syntax, the appropriate

graphical notations for the concepts and relations were

defined [28]. Furthermore, DSML4MAS supports the

Fig. 4 An excerpt of the output in its Ecore tree view representation achieved after executing the M2M transformations on the SEA_ML instance

1562 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

deployment of modeled MASs both in JACK and JADE

agent platforms by providing an operational semantics over

model transformations.

Another DSML was provided for MASs in [17]. The

abstract syntax was presented using the Meta-object Facility

(MOF)11 , the concrete syntax and its tool was provided with

Eclipse Graphical Modeling Framework (GMF)12, and

finally the code generation for the JACK agent platform was

realized with model transformations using Eclipse JET13.

However, the developed modeling language was not generic

since it was based on only the metamodel of one of the

specific MAS methodologies called Prometheus. A similar

study was performed in [14] which proposes a technique for

the definition of agent-oriented engineering process models

and can be used to define processes for creating both

hardware and software agents. This study also offers a

related MDD tool based on a specific MAS development

methodology called INGENIAS.

Originating from a well-formalized syntax and semantics,

Ciobanu and Juravle defined and implemented a language

for mobile agents in [16]. They generated a text editor with

auto-completion and error signaling features and presented a

way of code generation for agent systems starting from their

textual description. A recent work conducted in [20] aimed

at creating a UML-based agent modeling language, called

MAS-ML, which is able to model the well-known types of

agent internal architectures, namely simple reflex agent,

model-based agent, reflex agent, goal-based agent and

utility-based agent. Representation and exemplification of

all supported agent architectures in the concrete syntax of

the introduced language are given. MAS-ML is also

accompanied with a graphical tool which enables agent

modeling. However, the current version of MAS-ML does

not support any code generation for MAS frameworks

which prevents the execution of the modeled agent systems.

11 http://www.omg.org/mof/ (last access: June 2016)
12 http://www.eclipse.org/modeling/gmp/ (last access: June, 2016)
13 https://eclipse.org/modeling/m2t/?project=jet (last access: June 2016)

Finally, by considering our previous studies, in [15] and

[18], we showed the derivation of a DSL for the MDE of

agent systems working on the Semantic Web. That initial

version of the language was refined and enriched with a

graphical concrete syntax in [19]. This new language, called

SEA_ML, covered an enhanced version of agent-SWS

interaction viewpoint in which modeling those interactions

can be elaborated as much as possible for the exact

implementation of agent’s service discovery, agreement and

execution dynamics. We also presented the formal semantics

of the language [26] and discussed how the applied

methodology can pave the way of evolutionary language

development for MAS DSLs [2]. Moreover, qualitative

evaluation and quantitative analysis of SEA_ML have been

recently performed over a multi-case study protocol [31].

The work presented in this paper contributes to the above

mentioned MAS DSL/DSML studies by introducing the

interoperability of the languages and hence the proposed

MDE technique helps to facilitate the platform support of

the MAS DSMLs comparing with the existing agent

platform extensibility approaches which deal with the

definition and implementation of new M2M and M2T

transformations for each execution platform. To the best of

our knowledge, the work herein is the first effort on the

interoperability of the MAS DSMLs and it is the first study

in AOSE which employs horizontal model transformations

to enable this interoperability. It is worth indicating that

apart from our proposal, only the work conducted in [10]

considers the application of horizontal transformations.

However, that study just provides the transformation

between the metamodels of two specific AOSE

methodologies (Prometheus and INGENIAS) to realize

MAS implementation on exactly one agent deployment

platform and does not consider MAS DSML interoperability

or language extensibility on various agent platforms.

Fig. 5 Partial instance model of the agent-based stock exchange system in DSML4MAS achieved after application of the defined M2M transformations

EMINE BIRCAN ET AL.: INTEROPERABILITY OF MAS DSMLS VIA HORIZONTAL MODEL TRANSFORMATIONS 1563

II.CONCLUSION

An approach for extending the execution platform support
of MAS DSMLs over language interoperability is presented
in this paper. The interoperability is provided by defining
and implementing horizontal M2M transformations between
the agent metamodels which constitute the syntaxes of MAS
DSMLs. Due to being at the same abstraction level, both
mapping the model entities and implementing the model
transformations are more convenient and less laborious
comparing with the M2M and M2T transformation chain
required in the way of enriching the support of DSMLs for
various agent execution platforms. The applicability of the
approach is demonstrated by constructing transformations
between two full-fledged agent DSMLs.

As the future work, we first plan to extend the
applicability of this interoperability approach for some other
MAS DSMLs such as MAS-ML [20]. Later, the assessment
of the language interoperability will be performed e.g. by
taking into consideration the amount and quality of the
automatically generated artifacts for MAS software. For this
purpose, an improved version of the evaluation framework
described in [31] can be employed.

REFERENCES

[1] C. Badica, Z. Budimac, H. D. Burkhard, M. Ivanovic. 2011. Software
agents: Languages, tools, platforms, Computer Science and
Information Systems 8(2): 255-298, DOI: 10.2298/CSIS110214013B

[2] M. Challenger, M. Mernik, G. Kardas, T. Kosar. 2016. Declarative
specifications for the development of multi-agent systems, Computer
Standards & Interfaces 43: 91-115, DOI: 10.1016/j.csi.2015.08.012

[3] G. Kardas. 2013. Model-driven development of multiagent systems: a
survey and evaluation. The Knowledge Engineering Review 28(4):
479-503, DOI: 10.1017/S0269888913000088

[4] A. Omicini, A. Ricci, M. Viroli. 2008. Artifacts in the A&A meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent
Systems 17(3): 432-456, DOI: 10.1007/s10458-008-9053-x

[5] C. Hahn, C. Madrigal-Mora, K.Fischer. 2009. A Platform-Independent
Metamodel for Multiagent Systems, Autonomous Agents and Multi-
Agent Systems 18(2): 239-266, DOI: 10.1007/s10458-008-9042-0

[6] G. Beydoun, G. Low, B. Henderson-Sellers, H. Mouratidis, J. J.
Gomez-Sanz, J. Pavon, C. Gonzalez-Perez. 2009. FAML: A Generic
Metamodel for MAS Development. IEEE Transactions on Software
Engineering 35(6): 841-863, DOI: 10.1109/TSE.2009.34

[7] I. Garcia-Magarino. 2014. Towards the integration of the agent-
oriented modeling diversity with a powertype-based language.
Computer Standards & Interfaces 36: 941–952, DOI:
10.1016/j.csi.2014.02.002

[8] J. Pavon, J. Gomez-Sanz, R. Fuentes. 2006. Model driven
development of multi-agent systems, Lecture Notes in Computer.
Science 4066: 284–298, DOI: 10.1007/11787044_22

[9] G. Kardas, A. Goknil, O. Dikenelli, N.Y. Topaloglu. 2009. Model
driven development of semantic web enabled multi-agent systems,
International Journal of Cooperative Information Systems 18(2): 261-
308, DOI: 10.1142/S0218843009002014

[10] J. M. Gascuena, E. Navarro, A. Fernandez-Caballero, R. Martínez-
Tomas. 2014. Model-to-model and model-to-text: looking for the
automation of VigilAgent. Expert Systems 31(3): 199-212, DOI:
10.1111/exsy.12023

[11] B.R. Bryant, J. Gray, M. Mernik, P. J. Clarke, R. B. France, G. Karsai.
2011. Challenges and Directions in Formalizing the Semantics of
Modeling Languages. Computer Science and Information Systems
8(2): 225-253, DOI: 10.2298/CSIS110114012B

[12] U. Kulesza, A. Garcia, C. Lucena, P. Alencar. 2005. A generative
approach for multi-agent system development. Lecture Notes in
Computer Science 3390: 52–69, DOI: 10.1007/978-3-540-31846-0_4

[13] C. Hahn. 2008. A Domain Specific Modeling Language for Multiagent
Systems. 7th Int’l Conf. on Autonomous agents and Multi-agent
systems (AAMAS 2008), pp. 233-240

[14] R. Fuentes-Fernandez, L. Garcia-Magarino, A. Maria Gomez-
Rodriguez, J. Carlos Gonzalez-Moreno. 2010. A technique for
defining agent-oriented engineering processes with tool support.
Engineering Applications of Artificial Intelligence 23(3): 432-444,
DOI: 10.1016/j.engappai.2009.08.004

[15] S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, M. Mernik.
2012. SEA_L: A Domain-specific Language for Semantic Web
enabled Multi-agent Systems. 2nd Workshop on Model Driven
Approaches in System Development at FedCSIS 2012, pp. 1373-1380

[16] G. Ciobanu, C. Juravle. 2012. Flexible Software Architecture and
Language for Mobile Agents. Concurrency and Computation-Practice
& Experience 24(6): 559-571, DOI: 10.1002/cpe.1854

[17] J. M. Gascuena, E. Navarro, A. Fernandez-Caballero. 2012. Model-
Driven Engineering Techniques for the Development of Multi-agent
Systems. Engineering Applications of Artificial Intelligence 25(1):
159-173, DOI: 10.1016/j.engappai.2011.08.008

[18] S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, M. Mernik.
2013. A DSL for the development of software agents working within a
semantic web environment. Computer Science and Information
Systems 10(4): 1525-1556, DOI: 10.2298/CSIS121105044D

[19] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, T. Kosar.
2014. On the use of a domain-specific modeling language in the
development of multiagent systems. Engineering Applications of
Artificial Intelligence 28: 111-141, DOI:
10.1016/j.engappai.2013.11.012

[20] E. J. T. Goncalves, M. I. Cortes, G. A. L. Campos, Y. S. Lopes, E. S. S.
Freire, V. T. da Silva, K. S. F. de Oliveira, M. A. de Oliveira. 2015.
MAS-ML2.0: Supporting the modelling of multi-agent systems with
different agent architectures. Journal of Systems and Software 108:
77-109. DOI: 10.1016/j.jss.2015.06.008

[21] M. Mernik, J. Heering, A. Sloane. 2015. When and how to develop
domain-specific languages. ACM Computing Surveys 37(4): 316-344,
DOI: 10.1145/1118890.1118892

[22] M. Joao Varanda Pereira, M. Mernik, D. Da Cruz, P. R. Henriques.
2008. Program Comprehension for Domain-specific Languages.
Computer Science and Information Systems 5(2): 1-17, DOI:
10.2298/CSIS0802001P

[23] I. Lukovic, M. Joao Varanda Pereira, N. Oliveira, D. Carneiro da Cruz,
P. R. Henriques. 2011. A DSL for PIM specifications: Design and
attribute grammar based implementation, Computer Science and
Information Systems 8(2): 379-403, DOI: 10.2298/CSIS101229018L

[24] B. Selic. 2003. The pragmatics of model-driven development. IEEE
Software 20: 19-25, DOI: 10.1109/MS.2003.1231146

[25] K. Sycara, M. Paolucci, A. Ankolekar, N. Srinivasan. 2003. Automated
discovery, interaction and composition of Semantic Web Services.
Journal of Web Semantics, 1(1): 27-46, DOI:
10.1016/j.websem.2003.07.002

[26] S. Getir, M. Challenger, G. Kardas. 2014. The formal semantics of a
domain-specific modeling language for semantic web enabled multi-
agent systems. International Journal of Cooperative Information
Systems 23(3): 1-53, DOI: 10.1142/S0218843014500051

[27] C. Hahn, S. Nesbigall, S. Warwas, I. Zinnikus, K. Fischer, M. Klusch.
2008. Integration of Multiagent Systems and Semantic Web Services
on a Platform Independent Level. IEEE/WIC/ACM Int’l Conf. on Web
Intelligence and Intelligent Agent Technology, pp. 200-206

[28] S. Warwas, C. Hahn. 2008. The concrete syntax of the platform
independent modeling language for multiagent systems. Agent-based
Technologies and applications for enterprise interoperability

[29] G. Kardas, M. Challenger, S. Yildirim, A. Yamuc. 2012. Design and
implementation of a multiagent stock trading system. Software:
Practice and Experience 42(10): 1247-1273, DOI: 10.1002/spe.1137

[30] S. Rougemaille, F. Migeon, C. Maurel, M-P. Gleizes. 2007. Model
Driven Engineering for Designing Adaptive Multi-agent Systems,
Lecture Notes in Artificial Intelligence 4995: 318-333, DOI:
10.1007/978-3-540-87654-0_18

[31] M. Challenger, G. Kardas, B. Tekinerdogan. 2016. A systematic
approach to evaluating domain-specific modeling language
environments for multi-agent systems. Software Quality Journal,
DOI: 10.1007/s11219-015-9291-5

1564 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016

