


 Abstract—In this  paper, we  present  our  approach  which
aims  at  improving  the  mechanism  of  constructing  language
semantics over the interoperability of domain-specific modeling
languages (DSMLs) developed for Multi-agent Systems (MAS)
and hence providing a more efficient way of extension for the
executability of modeled agent systems on various underlying
agent platforms. Differentiating from the existing MAS DSML
studies, our proposal is based on determining entity mappings
and  building  horizontal  model  transformations  between  the
metamodels of MAS DSMLs which are in the same abstraction
level. The applicability of the approach is demonstrated in the
paper by constructing horizontal transformations between two
full-fledged agent DSMLs, called SEA_ML and DSML4MAS.
Use  of  these  transformations  has  enabled SEA_ML instance
models now to be executable on new agent platforms and that
feature has been provided with less effort comparing with the
implementation of needed transformations between SEA_ML
and those new agent platforms from scratch.    

Keywords—Metamodel; Model transformation; Domain-specific
Modeling Language; Multi-agent System

I. INTRODUCTION

Multi-agent  systems  (MASs)  are  those  systems  having
software agents within an environment where agents interact
to solve problems in a competitive or collaborative manner.
In MASs, software agents are expected to be autonomous,
mostly  through  a  set  of  reactive/proactive  behaviors
designed  for  addressing  situations  likely  to  happen  in
particular domains [1]. Both internal agent behavior model
and interactions within a MAS become even more complex
and hard to implement when taking into account the varying
requirements  of  different  agent  environments  [2].  Hence,
working  in  a  higher  abstraction  level  is  of  critical
importance for the development of MASs since it is almost
impossible to  observe  code  level  details  of  MASs due to
their internal complexity, distributedness and openness [3].

In  order  to  master  the  abovementioned  problems  of
developing  MASs,  agent-oriented  software  engineering
(AOSE) researchers define various agent metamodels (e.g.
[4-7]),  which include fundamental entities and relations of
agent  systems.  In  addition,  many  model-driven  agent
development approaches are provided such as [8-10] and by
enriching MAS metamodels with some defined syntax and
semantics (usually translational semantics [11]), researchers
also propose  domain-specific  languages  (DSLs)  /  domain-

This study is funded by the Scientific Research Projects Directorate of
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specific  modeling  languages  (DSMLs)  (e.g.  [12-20])  for
facilitating  the  development  of  MASs.  DSLs  /  DSMLs
[21-23]  have  notations  and  constructs  tailored  toward  a
particular  application  domain  (e.g.  MAS) and  help  to  the
model-driven development (MDD) of MASs. MDD aims to
change  the  focus  of  software  development  from  code  to
models [24], and hence many AOSE researchers believe that
this paradigm shift  introduced by MDD may also provide
the desired abstraction level and simplify the development
of complex MAS software [3].

In  AOSE,  perhaps  the  most  popular  way  of  applying
model-driven  engineering  (MDE)  for  MASs  is  based  on
providing DSMLs specific to agent domain with including
appropriate integrated development environments (IDEs) in
which both modelling and code generation for system-to-be-
developed  can  be  performed  properly.  Proposed  MAS
DSMLs such as [13], [17], [19] usually support modelling
both the static and the dynamic aspects  of  agent  software
from  different  MAS  viewpoints  including  agent  internal
behaviour model, interaction with other agents, use of other
environment  entities,  etc.  Within  this  context,  abstract
syntaxes of the languages are represented with metamodels
covering  those  aspects  and  required  viewpoints  to  some
extent. Following the construction of abstract and concrete
syntaxes  based  on  the  MAS  metamodels,  the  operational
semantics of the languages are provided in the current MAS
DSML  proposals  by  defining  and  implementing  entity
mappings  and  model-to-model  (M2M)  transformations
between  the  related  DSML’s  metamodel  and  the
metamodel(s)  of  popular  agent  implementation  and
execution platform(s) such as JACK1, JADE2 and JADEX3.
Finally, a series of model-to-text (M2T) transformations are
implemented  and  applied  on  the  outputs  of  the  previous
M2M  transformations  which  are  the  MAS  models
conforming to the related agent execution platforms. Hence,
agent  software  codes,  MAS  configuration  files,  etc.
pertaining  to  the  implementation  and  deployment  of  the
modeled  agent  systems  on  the  target  MAS  platform  are
generated automatically.

When  we  take  into  account  the  different  abstractions
covered  by  the  metamodels  of  MAS  DSMLs  and  the
underlying  agent  execution  platforms,  DSML metamodels
can  be  accepted  as  the  platform-independent  metamodels
(PIMMs) of agent systems while metamodels of the agent
execution  platforms  are  platform-specific  metamodels

1 http://aosgrp.com/products/jack/ (last access: June, 2016)
2 http://jade.tilab.com/ (last access: June, 2016) 
3 https://www.activecomponents.org/ (last access: June 2016)

Interoperability of MAS DSMLs via horizontal model transformations

Emine Bircan
International Computer Institute,
Ege University, 35100, Bornova,

Izmir, Turkey
eminebircanbircan@gmail.com

Moharram Challenger
International Computer Institute,
Ege University, 35100, Bornova,

Izmir, Turkey
moharram.challenger@mail.ege.edu.tr

Geylani Kardas
International Computer Institute,
Ege University, 35100, Bornova,

Izmir, Turkey
geylani.kardas@ege.edu.tr

 

Proceedings of the Federated Conference on Computer Science
and Information Systems pp. 1555–1564

DOI: 10.15439/2016F196
ACSIS, Vol. 8. ISSN 2300-5963

978-83-60810-90-3/$25.00 c©2016, IEEE 1555



 

 

 

(PSMMs) according to the OMG’s well-known Model-

driven Architecture (MDA)4 as also indicated in [5] and [9]. 

Above described methodology applied in the current 

MAS DSML development approaches for the derivation of 

operational semantics unfortunately requires the definition 

and implementation of new M2M and M2T transformations 

from scratch in order to make the DSMLs functional for 

different agent execution platforms. In other words, for each 

new target agent execution platform, MAS DSML designers 

should repeat all the time-consuming and mostly 

troublesome steps of preparing the vertical transformations 

between the related DSML and this new agent platform.      

Motivated by the similarity encountered in the abstract 

syntaxes of the available MAS DSMLs, we are quite 

convinced that both the definition and the implementation of 

M2M transformations between the PIMMs of MAS DSMLs 

would be more convenient and less laborious comparing 

with the transformations required between MAS PIMMs and 

PSMMs in the way of enriching the support of MAS 

DSMLs for various agent execution platforms. Hence, in 

this paper, we present our approach which aims at 

improving the mechanism of constructing language 

semantics over the interoperability of MAS DSMLs and 

hence providing a more efficient way of extension for the 

executability of modeled agent systems on various 

underlying agent platforms. Differentiating from the existing 

MAS DSML studies (e.g. [13], [16], [17], [19], [20]), our 

proposal is based on determining entity mappings and 

building horizontal M2M transformations between the 

metamodels of MAS DSMLs which are in the same 

abstraction level. In this paper, we also investigate the 

applicability of the proposed DSML interoperability 

approach by constructing horizontal transformations 

between two full-fledged agent DSMLs called SEA_ML 

[19] and DSML4MAS [5] respectively. 

The rest of the paper is organized as follows: In Sect. 2, 

the approach for the MAS DSML interoperability is 

presented. Applicability of the approach is discussed in Sect. 

3 by taking into consideration two MAS DSMLs. In Sect. 4, 

a case study on the development of an agent-based stock 

exchange system with using the proposed approach is given. 

Related work is given in Sect. 5. Finally, Sect. 6 concludes 

the paper and states the future work. 

II.  PROPOSED APPROACH FOR THE INTEROPERABILITY OF 

MAS DSMLS 

As indicated in the introduction, support of current MAS 

DSMLs for each agent execution platform is enabled by 

repetitively defining and implementing a chain of vertical 

M2M and M2T transformations. Available M2M and M2T 

transformations are specific for each different agent 

platform and almost all of them can not be re-used while 

extending the executability of the MAS models for a new 

agent platform. Due to the difficulty encountered on 

repeating those vertical model transformation steps, current 

MAS DSML proposals (e.g. [13-15], [17], [19]) mostly 

4 http://www.omg.org/mda/ (last access: June 2016) 

support the execution of modeled agents on just one agent 

platform. Rarely, two different platforms are supported (e.g. 

[5], [9]) and as far as we know, there is no any MAS DSML 

which provides an operational semantics for more than two 

different agent execution platforms. In order to increase the 

platform variety, we propose benefiting from the vertical 

transformations already existing between the syntax of a 

MAS DSML (let us call DSML1) and metamodels of various 

agent platforms for enabling model instances of another 

MAS DSML (let us call DSML2) executable on the same 

agent platforms by just constructing horizontal 

transformations between the PIMMs of the MAS DSMLs in 

question. Therefore, instead of defining and implementing N 

different M2M and M2T transformations for N different 

agent platforms, creation of only one single set of M2M 

transformations between DSML1 and DSML2 can be enough 

for the execution of DSML2’s model instances on these N 

different agent platforms. 

Fig. 1 depicts the construction of model transformations 

between MAS DSMLs and hence re-use of already existing 

transformations between those DSMLs and agent platforms. 

Let the abstract syntaxes of DSML1, DSML2 and DSML3 be 

the metamodels MM1, MM2 and MM3 respectively. 

Horizontal lines between these MAS DSMLs represent the 

M2M transformations between these metamodels. 

According to the figure, agent systems modeled in DSML1 

are already executable on the agent platforms A and B (due 

to the existing vertical transformations for these platforms), 

while DSML2 model instances are executable on the agent 

platforms X, Y and Z. Similarly M2M and M2T 

transformations were already provided for the execution of 

DSML3 model instances on the agent platforms α, β, θ 
respectively. If DSML1 is required to support X and Y agent 

platforms, designers should prepare new model 

transformations separately for those agent platforms (shown 

with dotted arrows in Fig. 1) in case of the absence of 

horizontal transformations between MM1 and MM2. Hence, 

construction of only one set of horizontal M2M 

transformations between DSML1 and DSML2 enables 

DSML1’s automatic support on agent platforms X, Y (and 

also Z). Conversely, same is also valid for extending the 

DSML2’s support for agent execution platforms. 

Interoperability between DSML1 and DSML2 over these 

newly defined horizontal transformations also makes 

transformation and code generation of DSML2 model 

instances for the agent platforms A and B. In addition to the 

important decrease in the number of transformations, 

construction of horizontal model transformations between 

the PIMMs of MAS DSMLs is more feasible and easier than 

the vertical transformations since the DSMLs are in the 

same abstraction level according to MDA. 

III. INTEROPERABILITY BETWEEN SEA_ML AND 

DSML4MAS 

In this section, we discuss the applicability of the 

proposed approach by taking into account the construction 

of the interoperability between two MAS DSMLs called 

SEA_ML and DSML4MAS. Both DSMLs enable the 
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Fig. 1 Interoperability of MAS DSMLs via horizontal model transformations 

modeling of agent systems according to various agent 

internal and MAS organizational viewpoints. They provide a 

clear visual syntax for MAS modeling and code generation 

for agent implementation and execution platforms. 

Moreover, both languages are equipped with Eclipse-based 

IDEs in which modeling and automatic generation of MAS 

components are possible. These features of the languages 

led us to choose them in this study. In the following 

subsections, brief introduction of these DSMLs and 

implemented model transformations between these 

languages are given. 

A. SEA_ML 

SEA_ML [19] provides a convenient and handy 

environment for agent developers to construct and 

implement software agent systems working on various 

application domains. In order to support MAS experts when 

programming their own systems, and to be able to fine-tune 

them visually, SEA_ML covers all aspects of an agent 

system from the internal view of a single agent to the 

complex MAS organization. In addition to these capabilities, 

SEA_ML also supports the model-driven design and 

implementation of autonomous agents who can evaluate 

semantic data and collaborate with semantically-defined 

entities of the Semantic Web, like Semantic Web Services 

(SWS) [25]. That feature exactly differentiates SEA_ML 

and makes unique regarding any other MAS DSML 

currently available. Within this context, it includes new 

viewpoints which specifically pave the way for the 

development of software agents working on the Semantic 

Web environment. Modeling agents, agent knowledgebases, 

platform ontologies, SWS and interactions between agents 

and SWS are all possible in SEA_ML. 

SEA_ML’s metamodel is divided into eight viewpoints, 

each of which represents a different aspect for developing 

Semantic Web enabled MASs [19]. Agent’s Internal 

Viewpoint is related to the internal structures of semantic 

web agents (SWAs) and defines entities and their relations 

required for the construction of agents. It covers both 

reactive and Belief-Desire-Intention (BDI) agent 

architectures. Interaction Viewpoint expresses the 

interactions and communications in a MAS by taking 

messages and message sequences into account. MAS 

Viewpoint solely deals with the construction of a MAS as a 

whole. It includes the main blocks which compose the 

complex system as an organization. Role Viewpoint delves 

into the complex controlling structure of the agents and 

addresses role types. Environmental Viewpoint addresses the 

use of resources and interaction between agents with their 

surroundings. Plan Viewpoint deals with an agent Plan’s 

internal structure, which are composed of Tasks and atomic 

elements such as Actions. Ontology Viewpoint addresses the 

ontological concepts which constitute agent’s 

knowledgebase (such as belief and fact). Agent - SWS 

Interaction Viewpoint defines the interaction of agents with 

SWS including the definition of entities and relations for 

service discovery, agreement and execution. A SWA 

executes the semantic service finder Plan (SS_FinderPlan) 

to discover the appropriate services with the help of a 

special type of agent called SSMatchMakerAgent who 

executes the service registration plan (SS_RegisterPlan) for 

registering the new SWS for the agents. After finding the 

necessary service, one SWA executes an agreement plan 

(SS_AgreementPlan) to negotiate with the service. After 

negotiation, a plan for service execution (SS_ExecutorPlan) 

is applied for invoking the service. 

The collection of SEA_ML viewpoints constitutes an 

extensive and all-embracing model of the MAS domain. 

SEA_ML's abstract syntax combines the generally accepted 

aspects of MAS (such as MAS, Agent Internal, Role and 

Environment) and introduces two new viewpoints (Agent-

SWS Interaction and Ontology) for supporting the 

development of software agents working within the 

Semantic Web environment [2]. 

SEA_ML can be used for both modeling MASs and 

generation of code from the defined models. SEA_ML 

instances are given as inputs to a series of M2M and M2T 

transformations to achieve executable artifacts of the 

system-to-be-built for JADEX agent platform and semantic 

web service description documents conforming to Web 

Ontology Language for Services (OWL-S) ontology5. It is 

also possible to automatically check the integrity and 

validity of SEA_ML models [26]. Complete discussion on 

SEA_ML can be found in [19]. 

5 https://www.w3.org/Submission/OWL-S/ (last access: June 2016) 
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B. DSML4MAS 

DSML4MAS [5], [13] is perhaps one of the first complete 

MAS DSMLs in which a PIMM, called PIM4Agents, 

provides an abstract syntax for different aspects of agent 

systems. Similar to SEA_ML’s viewpoints, both internal 

behavior model of agents and agent interactions in a MAS 

are covered by PIM4Agents views / aspects. Multiagent 

view contains all the main concepts in a MAS such as Agent, 

Cooperation, Capability, Interaction, Role and Environment. 

Agent view focuses on the single autonomous entity (agent), 

the roles it plays within the MAS and the capabilities it has 

to solve tasks and to reach the environment resources. 

Behavioural view describes how plans are composed by 

complex control structures and simple atomic tasks like 

sending a message and how information flows between 

those constructs. In here, a plan is a specialized version of 

behavior composed of activities and flows. Activities and 

tasks are minimized parts of the work and flows provide the 

communication between these parts. Organization view 

describes how single autonomous entities cooperate within 

the MAS and how complex organizational structures can be 

defined. Social structure in the system is defined with 

cooperation entity where agents and organizations take part 

in. The structure has its own protocol defining how the 

entities interact in a cooperation. Agents have 

“domainRoles” for the interaction and these roles are 

attached to actors by “actorBinding” entities where actors 

are representative entities within the corresponding 

interaction protocol. Role view examines the behaviour of an 

agent entity in an organization or cooperation. An agent’s 

role covers the capabilities and information to have access to 

a set of resources. Interaction view describes how the 

interaction in the form of interaction protocols takes place 

between autonomous entities or organizations. Agents 

communicate over the PIM4Agents Protocol which refers to 

actors and “messageFlows” between these actors. Finally, 

Environment view contains the resources accessed and 

shared by agents and organizations. Agents can 

communicate with the environment indirectly via using 

resources. Resources can store knowledge from BDI agents 

for changing beliefs by using Messages and Information 

flows. 

As indicated in [5], grouping modelling concepts in 

DSML4MAS allows the metamodel evolution by adding 

new modelling concepts in the existing aspects, extending 

existing modelling concepts in the defined aspects, or 

defining new modelling concepts for describing additional 

aspects of agent systems. For instance, SWS integration into 

the system models conforming to DSML4MAS is provided 

via introducing the SOAEnvironment entity [27] which 

extends the Environment entity and contains service 

descriptions. Agents use service descriptions to specify the 

Services they are searching for and then service interaction 

is realized by InvokeWS and ReceiveWS tasks which are 

inherited from Send and Receive task entities described in 

PIM4Agents. 

Similar to SEA_ML, DSML4MAS also enables the MDD 

of MAS including a concrete graphical syntax [28] based on 

the abovementioned PIMM (PIM4Agents) and an 

operational semantics for the execution of modeled agent 

systems on JACK or JADE agent platforms. Extensions to 

the language introduced in [27] provide the description of 

the services inside an agent environment according to 

specifications such as Web Services Modeling Language 

(WSML)6 or Semantic Annotation of WSDL and XML 

Schema (SAWSDL)7. Interested readers may refer to [5], 

[13] and [27] for an extensive discussion on DSML4MAS. 

C. Horizontal Model Transformations between SEA_ML 

and DSML4MAS 

We have applied the horizontal transformability approach 

described in Sect. 2 for establishing the interoperability 

between SEA_ML and DSML4MAS. As shown in Fig. 2, 

SEA_ML currently supports the MAS implementation for 

JADEX BDI architecture and SWS generation according to 

the OWL-S ontology. In order to extend its platform support 

capability, new M2M and M2T transformations should be 

prepared for each new implementation platform. For 

instance, M2M transformations are needed between the 

abstract syntax of SEA_ML and PSMM of JADE 

framework to make SEA_ML instances also executable on 

the JADE platform. It is worth indicating that definition and 

application of M2T transformations are also required for the 

code generation from the outputs of the previous SEA_ML 

to JADE transformations. Instead, we can follow the 

approach introduced in Sect. 2 by just writing the horizontal 

transformation rules between the metamodels of SEA_ML 

and DSML4MAS and running those transformations on 

SEA_ML instances for the same purpose: making SEA_ML 

models executable also on JADE platform. That is possible 

since DSML4MAS has already support on JADE and JACK 

agent platforms and SAWSDL and WSDL semantic service 

ontologies via vertical transformations between its 

metamodel and metamodels of the corresponding system 

implementation platforms. Realization of horizontal 

transformations between SEA_ML and DSML4MAS has 

extra benefits such as the execution of SEA_ML instances 

also on JACK platform and/or implementation of the 

modeled SWS according to SAWSDL or WSDL 

specifications (Fig. 2). 

Before deriving the rules of transformations, we should 

determine the entity mappings between both languages since 

the transformations are definitely based on these entity 

mappings. Comparing with the mappings we previously 

provided in [15] or [19] for the transformability of SEA_ML 

instances to MAS execution platforms, we have experienced 

that the determination of the entity mappings in this study 

was easier and took less time. We believe that the reason of 

this efficiency originates from the fact that metamodels of 

SEA_ML and DSML4MAS are in the same abstraction level 

and provide close entities and relations in similar viewpoints 

for MAS modeling. 

6 http://www.wsmo.org/wsml/ (last access: June, 2016) 
7 https://www.w3.org/TR/sawsdl/ (last access: June, 2016) 
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Fig. 2 Interoperability of SEA_ML and DSML4MAS 

Table 1 lists some of the important mappings constructed 

between first-class entities of these two languages. For 

instance, two agent types (SWA and SSMatchmakerAgent) 

defined in SEA_ML are mapped onto the autonomous entity 

Agent defined in DSML4MAS. Likewise, meta-entities 

pertaining to agent plan types (SS_RegisterPlan, 

SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan) 

required for the interaction between the semantic services 

are mapped with the Plan concept of DSML4MAS. Since 

Actor entity in DSML4MAS has access to resources and 

owns capabilities needed for agent interactions, SEA_ML’s 

Role entity is mapped onto Actor entity. 

One interesting mapping is encountered between 

SEA_ML’s SWS entity and DSML4MAS’s 

SOAEnvironment since it enables the representation of 

SEA_ML semantic services in DSML4MAS model 

instances. On the DSML4MAS side, SOAEnvironment 

entity, which is extended from Environment entity, includes 

services in general. Hence, SEA_ML SWS entity is mapped 

onto SOAEnvironment entity and SEA_ML WebService 

entities are mapped onto Service entities. In SEA_ML 

WebService definition, every service has Interface, Process 

and Grounding. Interface entity represents the information 

about service inputs, outputs and any other necessary 

information. Process entity has internal information about 

the service and finally Grounding entity defines the 

invocation protocol of the web service [19]. DSML4MAS 

services are described with Blackbox and Glassbox entities 

[27]. BlackBox is used to define a service’s functional and 

non-functional parameters while Glassbox includes the 

description of the internal service process. The Functionals 

are described in terms of service signature that are input and 

output parameters, and specifications that are preconditions 

and effects. The NonFunctionals are defined in terms of 

price, service name and developer. Hence, Interface and 

Process entities of services defined in SEA_ML are mapped 

onto DSML4MAS Functionals which have input and output 

definitions. On DSML4MAS side, agent interactions with 

services are provided by InvokeWS and ReceiveWS tasks. 

So, SEA_ML Grounding, which represents the physical 

structure of the underlying web service executed for the 

corresponding SWS, is mapped to InvokeWS. Remaining 

mappings listed in Table 1 (e.g. SEA_ML SWO to 

DSML4MAS Organization, SEA_ML Environment to 

DSML4MAS Environment) are very simple to determine 

since the related entities on both sides have similar or almost 

same functionality within the syntaxes of the languages. 

 
After determining the entity mappings between SEA_ML 

and DSML4MAS, it is necessary to provide model 

transformation rules which are applied at runtime on 

SEA_ML instances to generate DSML4MAS counterparts 

of these instances. For that purpose, transformation rules 

should be formally defined and written according to a model 

transformation language. In this study, we preferred to use 

ATL Transformation Language (ATL)8 to define the model 

transformations between SEA_ML and DSML4MAS. ATL 

is one of the well-known model transformation languages, 

specified as both metamodel and textual concrete syntax. An 

ATL transformation program is composed of rules that 

define how the source model elements are matched and 

navigated to create and initialize the elements of the target 

models. In addition, ATL can define an additional model 

querying facility which enables specifying the requests onto 

models. ATL also allows code factorization through the 

definition of ATL libraries. Finally, ATL has a 

transformation engine and an IDE that can be used as a 

plug-in on an Eclipse platform. These features of ATL 

caused us to prefer it as the implementation language for the 

horizontal transformations from SEA_ML to DSML4MAS. 

ATL is composed of four fundamental elements. The first 

one is the header section defining attributes relative to the 

transformation module. The next element is the import 

section which is optional and enables the importing of some 

existing ATL libraries. The third element is a set of helpers 

8 https://eclipse.org/atl/(last access: June, 2016) 

TABLE I. 

ENTITY MAPPINGS BETWEEN THE METAMODELS OF SEA_ML AND 

DSML4MAS 

SEA_ML MM DSML MM 

SWA (Semantic Web Agent) Agent 

SSMatchmakerAgent Agent 

Role Actor 

SWS (Semantic Web Service) SOAEnvironment 

Environment Environment 

WebService Service 

Interface Functionals 

Process Functionals 

Grounding InvokeWS 

Input Input 

Output Output 

Precondition Precondition 

SS_RegisterPlan Plan 

SS_FinderPlan Plan 

SS_AgreementPlan Plan 

SS_ExcecutorPlan Plan 

SWO (Semantic Web Organization) Organization 
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that can be viewed as the ATL equivalents to the Java 

methods. The last element is a set of rules that defines the 

way target models are generated from source models. 

Following listings include some excerpts from the written 

ATL rules in order to give some flavor of M2M 

transformations provided in this study. To this end, rule in 

Listing 1 enables the transformation of the elements covered 

by the Agent-SWS Interaction viewpoint of SEA_ML to 

their counterparts included in DSML4MAS’s Multiagent 

system viewpoint. In line 1, rule is named uniquely. In line 

2, the source metamodel is chosen and renamed as 

swsinteractionvp with “from” keyword. The target 

metamodel is indicated and renamed as pim4agents with 

“to” keyword (Line 3). In the following lines (between 4 and 

14), instances of SEA_ML SWA and SSMatchmakerAgent 

entities are selected and transformed to DSML4MAS Agent 

instances. Transformation of agent roles and plans are also 

realized by using “Set” and “allInstances” functions. It is 

worth indicating that types of Plan instances seem to be 

transformed to DSML4MAS behavior in the given listing 

although all SEA_ML Plan types are semantically mapped 

to DSML4MAS Plan as listed in Table 1. That is because 

some of the DSML4MAS meta-entities are collected with 

tag definitions in Ecore representations which take the same 

name with the related viewpoint. For instance, plans are not 

defined solely with their names; instead they are collected in 

behavior definitions. Hence, in order to provide the full 

transformations of the plans with all their attributes, ATL 

rule is written here as mapping SEA_ML plan instances to 

the DSML4MAS behaviors. Inside another helper rule, 

those behaviors are separated into the corresponding plans 

and so exact transformation of SEA_ML plan instances to 

DSML4MAS plans are realized. 
 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

rule SWSInteractionVP2MultiagentSystem { 

  from   swsinteractionvp: SWSInteraction!SWSInteractionViewpoint 

  to  pim4agent: PIM4Agents!MultiagentSystem( 

      agent <- Set{SWSInteraction!SemanticWebAgent.allInstances()}, 

      agent <- Set{SWSInteraction!SSMatchmakerAgent.allInstances()}, 

      role <- Set{SWSInteraction!Role.allInstances()}, 

      role <- Set{SWSInteraction!RegistrationRole.allInstances()}, 

      behavior <- Set{SWSInteraction!SS_AgreementPlan.allInstances()}, 

      behavior <- Set{SWSInteraction!SS_ExecutorPlan.allInstances()}, 

      behavior <- Set{SWSInteraction!SS_FinderPlan.allInstances()}, 

      behavior <- Set{SWSInteraction!SS_RegisterPlan.allInstances()}, 

      environment<-Set{SWSInteraction!SWS.allInstances()}, 

      environment<-Set{SWSInteraction!Grounding.allInstances()} ) 

} 
 

Listing 1 An excerpt from the SWSInteractionVP2MultiagentSystem rule  

Another example can be given for the transformation of 

SEA_ML SWS instances to DSML4MAS SOAEnvironment 

instances. In Listing 2, the first rule provides the related 

transformation. After controlling the name of the SWS by 

applying the helper rule “nameControl”, its attributes are 

converted to their counterparts in the abstract syntax of 

DSML4MAS. Again with using helper rules, the web 

services composed by this semantic service are determined 

and transformed to DSML4MAS Service instances. Only a 

fragment of SWS2SOAEnvironment can be given in here 

due to space limitations. The remaining part of this rule 

provides the transformation of each SEA_ML semantic 

service’s discovery, engagement and execution components 

(e.g. Interface, Process and Grounding) to their counterparts 

in DSML4MAS models according to the mappings given in 

Table 1. 

 
01 

02 

03 

04 

05 

06 

07 

 

08 

09 

10 

11 

12 

13 

rule SWS2SOAEnvironment{ 

 from  envIN: SWSInteraction!SWS(envIN.nameControl) 

 to envOUT: PIM4Agents!SOAEnvironment ( 

        name <- envIN.setName(), 

        service<-envIN.setWebServices() 

    ) 

  } 

 

 rule WebService2Service{ 

 from  webService: SWSInteraction!WebService 

 to service: PIM4SWS!Service ( 

        ID<- webService.setName() 

   ) 

 } 
 

Listing 2 Excerpts from the SWS2SOAEnvironment and 

WebService2Service rules 

In Listing 3, the helper rules used in above transformation 

rules are given. “nameControl” helper is executed on the 

SEA_ML SWS instances. It controls whether a SWS has a 

name attribute. Based on this attribute’s existence, the rules 

returns true (line 4) or false (line 5). That Boolean result is 

evaluated by the caller rule given in Listing 2. In the second 

helper rule, the name attribute of a semantic service is 

controlled. In case of the name is empty, the string given in 

line 10 is assigned as the value for the transformed service’s 

(SOAEnvironment) name attribute. Otherwise, the name of 

the source SWS is returned back to the called rule 

(SWS2SOAEnvironment) to be assigned as the name of the 

transformed SOAEnvironment instance which will be 

included in the target DSML4MAS model.  

 
01 

02 

03 

04 

05 

06 

 

07 

08 

09 

10 

11 

12 

helper context SWSInteraction!SWS  

   def: nameControl: Boolean = 

    if not (self.name.oclIsUndefined()) 

          then   true 

          else  false 

       endif; 

 

  helper context SWSInteraction!SWS  

   def: setName(): String = 

   if (self.name = '') 

         then  'SERVICE_NAME_IS_EMPTY' 

         else   self.name 

     endif; 

Listing 3 Helper rules used by the SWS2SOAEnvironment rule 

IV. CASE STUDY: AGENT-BASED STOCK EXCHANGE SYSTEM 

In this section, the interoperability of SEA_ML and 

DSML4MAS is demonstrated by applying the proposed 

horizontal model transformations for the development of an 

agent-based stock exchange system. The system is modeled 

in SEA_ML and transformed to a DSML4MAS instance to 

use the generation power of DSML4MAS language. In this 

way, the implementation of this system’s agents on JADE 

(or JACK) platform and services as SAWSDL or WSML 

ontology instances can be possible by using the operational 

semantics of DSML4MAS which is already provided for the 
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execution of agents and the generation of semantic web 

services (see Fig. 2).  

Stock trading is one of the key items in economy and 

estimating its behavior and taking the best decision in it are 

among the most challenging issues. Agents in a MAS can 

share a common goal or they can pursue their own interests. 

That nature of MASs exactly fits to the requirements of free 

market economy. Moreover, Stock Exchange Market has 

lots of services which are offered for Investors (Buyer or 

Seller), Brokers, and Stock Managers. These services can be 

represented with semantic web services to achieve more 

accurate service finding and service matching. 

When considering the structure of the system, the 

semantic web agents work within a semantic web 

organization for Stock System including sub-organizations 

for Stock Users where the Investor and Broker agents reside, 

and the Stock Market where the system’s internal agents, 

e.g. Trade Manager (a SSMatchmaker agent instance) work. 

The Stock Market organization also has two sub-

organizations, the Trading Floor and the Stock Information 

System. These organizations and sub-organizations have 

their own organizational roles. These organizations also 

need to access some resources in other environments. 

Therefore, they have interactions with the required 

environments to gain access permissions. For example, 

agents in the Stock Market sub-organization need to access 

bank accounts and some security features, so that they can 

interact with the Banking & Security environment. All of the 

user agents including Investors and Brokers cooperate with 

Trade Manager to access the Stock Market. Also, the user 

agents interact with each other. For instance, Investor 

Agents can cooperate with Brokers to exchange stock for 

which Brokers are expert. More information on developing 

such stock trading agents can be found in [29].  

To model the system in SEA_ML, Agent-SWS 

Interaction viewpoint is considered as the representative for 

SEA_ML viewpoints. This viewpoint is the most important 

aspect of MASs working in semantic web environments. 

Fig. 3 shows a screenshot from the SEA_ML’s modeling 

environment in which instances of both the semantic 

services and the agent plans required for the stock exchange 

are modeled, including their relations according to Agent-

SWS interaction viewpoint of SEA_ML. Investor and 

Broker agents can be modeled with appropriate plan 

instances in order to find, make the agreement with and 

execute the services. The services can also be modeled for 

the interaction between the semantic web service’s internal 

components (such as Process, Grounding, and Interface), 

and the SWA’s plans. It is important to indicate that the 

stock exchange system given in here was already modeled in 

the SEA_ML environment before this study and instead of 

re-modeling the whole system (e.g. in DSML4MAS), the 

existing model is intentionally adopted in here to examine 

the applicability of the proposed approach. In fact, the 

model in question is much more complicated and we can 

only consider the agent-SWS interaction aspect due to page 

limits of this paper. Discussion on the whole model can be 

found in [19] and the sources of the model are available at 

the SEA_ML’s distribution website9. 

9 SEA_ML, its modeling tool and the instance models for the case study are 

available at: http://serlab.ube.ege.edu.tr/resources.html (last access: June 

2016) 

 
Fig. 3 Instance model of the multi-agent stock exchange system in SEA_ML with including the agents, semantic web services and their relations 
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We can see from the instance model given in Fig. 3 that 

an investor agent (e.g. InvestorA) would play the Buying 

role and apply its StockFinder plan for finding an 

appropriate Trading service interface of one TradingService 

SWS in order to buy some stocks. This plan would realize 

the discovery by interacting with the TradeManager 

SSMatchmakerAgent which has registered the services by 

applying the StockRecorder plan. As InvestorA cooperates 

with Broker1 in order to receive some expert advice for its 

investment, at the next step, the Broker1 agent applies its 

StockBargaining plan for negotiating with the already 

discovered services. This negotiation would be made 

through the Trade interface of the SWS. Finally, if the result 

of the negotiation were positive, the agent would apply the 

StockOrder plan to call the TradingFloor of the SWS by 

executing its Exchange process and using its TradeAccess 

grounding with which the service would be realized. In a 

similar way, Investor agents could cooperate with Brokers 

and interact with the TradeManager in order to collect some 

information about the market, e.g. the rate of exchange for a 

currency or the fluctuation rate for a specific stock. 

The designed instance model is controlled based on the 

provided constraint rules in SEA_ML tool to check its 

validity. Then, the horizontal model transformations 

discussed in the previous section are executed on this 

SEA_ML instance model and as result, we have succeeded 

to automatically achieve the counterpart models conforming 

to DSML4MAS. To realize the transformation, the 

SEA_ML metamodel, the SEA_ML instance models for this 

case study, and the DSML4MAS metamodel are given to the 

ATL engine as input and the instance models of the case 

study in DSML4MAS are generated by the engine with 

executing our transformation rules. An excerpt of the XMI 

file containing the output DSML4MAS instance model is 

given in Fig. 4 in which the output instance can be seen in 

its Ecore tree view representation. 

The generated model conforms to the specification of 

DSML4MAS’s abstract syntax, so it can be handled with 

DSML4MAS’s graphical editor10. To visualize the instance 

10The IDE of DSML4MAS is available at: 

https://sourceforge.net/projects/dsml4mas/ (last access: June 2016) 

model in DSML4MAS, the only thing needed is to add the 

related graphical notations to the generated instance model. 

The screenshot given in Fig. 5 shows the appearance of 

output instance model in the concrete syntax of 

DSML4MAS. We can examine from the figure that the 

agents and their relations we modeled in SEA_ML are 

exactly reflected to a DSML4MAS model after execution of 

the M2M transformations proposed in this study. From now 

on, it is straightforward to automatically achieve platform-

specific executables and documents of this MAS model for 

JADE or JACK agent platforms and SAWSDL or WSML 

semantic service ontologies since DSML4MAS has already 

own a chain of M2M and M2T transformations for these 

agent execution platforms and service ontologies as 

discussed in Sect. 3.2. 

V.  RELATED WORK 

In the last decade, AOSE researchers have noteworthy 

efforts on the derivation and use of DSLs / DSMLs for 

MAS. For instance, the Agent-DSL [12] is used to specify 

the agency properties that an agent needs to accomplish its 

tasks. However, the proposed DSL is presented only with its 

metamodel and provides just a visual modeling of the agent 

systems according to agent features, like knowledge, 

interaction, adaptation, autonomy and collaboration. 

Likewise, in [30], the authors introduced two DSMLs. These 

languages are described by metamodels which can be seen 

as the representations of the main concepts and relationships 

identified for each of the particular domains again 

introduced in [30]. The study included only the abstract 

syntax of the related DSMLs and does not give the concrete 

syntax or semantics of the DSMLs. 

As previously discussed in this paper, Hahn [13] 

introduced a DSML for MAS called DSML4MAS. The 

abstract syntax of the DSML was derived from a platform 

independent metamodel [5] which was structured into 

several aspects each focusing on a specific viewpoint of a 

MAS. In order to provide a concrete syntax, the appropriate 

graphical notations for the concepts and relations were 

defined [28]. Furthermore, DSML4MAS supports the 

 
Fig. 4 An excerpt of the output in its Ecore tree view representation achieved after executing the M2M transformations on the SEA_ML instance 

 

                                                           

1562 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016



 

 

 

deployment of modeled MASs both in JACK and JADE 

agent platforms by providing an operational semantics over 

model transformations. 

Another DSML was provided for MASs in [17]. The 

abstract syntax was presented using the Meta-object Facility 

(MOF)11 , the concrete syntax and its tool was provided with 

Eclipse Graphical Modeling Framework (GMF)12, and 

finally the code generation for the JACK agent platform was 

realized with model transformations using Eclipse JET13. 

However, the developed modeling language was not generic 

since it was based on only the metamodel of one of the 

specific MAS methodologies called Prometheus. A similar 

study was performed in [14] which proposes a technique for 

the definition of agent-oriented engineering process models 

and can be used to define processes for creating both 

hardware and software agents. This study also offers a 

related MDD tool based on a specific MAS development 

methodology called INGENIAS. 

Originating from a well-formalized syntax and semantics, 

Ciobanu and Juravle defined and implemented a language 

for mobile agents in [16]. They generated a text editor with 

auto-completion and error signaling features and presented a 

way of code generation for agent systems starting from their 

textual description. A recent work conducted in [20] aimed 

at creating a UML-based agent modeling language, called 

MAS-ML, which is able to model the well-known types of 

agent internal architectures, namely simple reflex agent, 

model-based agent, reflex agent, goal-based agent and 

utility-based agent. Representation and exemplification of 

all supported agent architectures in the concrete syntax of 

the introduced language are given. MAS-ML is also 

accompanied with a graphical tool which enables agent 

modeling. However, the current version of MAS-ML does 

not support any code generation for MAS frameworks 

which prevents the execution of the modeled agent systems. 

11 http://www.omg.org/mof/ (last access: June 2016) 
12 http://www.eclipse.org/modeling/gmp/ (last access: June, 2016) 
13 https://eclipse.org/modeling/m2t/?project=jet (last access: June 2016) 

Finally, by considering our previous studies, in [15] and 

[18], we showed the derivation of a DSL for the MDE of 

agent systems working on the Semantic Web. That initial 

version of the language was refined and enriched with a 

graphical concrete syntax in [19]. This new language, called 

SEA_ML, covered an enhanced version of agent-SWS 

interaction viewpoint in which modeling those interactions 

can be elaborated as much as possible for the exact 

implementation of agent’s service discovery, agreement and 

execution dynamics. We also presented the formal semantics 

of the language [26] and discussed how the applied 

methodology can pave the way of evolutionary language 

development for MAS DSLs [2]. Moreover, qualitative 

evaluation and quantitative analysis of SEA_ML have been 

recently performed over a multi-case study protocol [31].     

The work presented in this paper contributes to the above 

mentioned MAS DSL/DSML studies by introducing the 

interoperability of the languages and hence the proposed 

MDE technique helps to facilitate the platform support of 

the MAS DSMLs comparing with the existing agent 

platform extensibility approaches which deal with the 

definition and implementation of new M2M and M2T 

transformations for each execution platform. To the best of 

our knowledge, the work herein is the first effort on the 

interoperability of the MAS DSMLs and it is the first study 

in AOSE which employs horizontal model transformations 

to enable this interoperability. It is worth indicating that 

apart from our proposal, only the work conducted in [10] 

considers the application of horizontal transformations. 

However, that study just provides the transformation 

between the metamodels of two specific AOSE 

methodologies (Prometheus and INGENIAS) to realize 

MAS implementation on exactly one agent deployment 

platform and does not consider MAS DSML interoperability 

or language extensibility on various agent platforms. 

 
Fig. 5 Partial instance model of the agent-based stock exchange system in DSML4MAS achieved after application of the defined M2M transformations 
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II.CONCLUSION

An approach for extending the execution platform support
of MAS DSMLs over language interoperability is presented
in this paper. The interoperability is  provided  by defining
and implementing horizontal M2M transformations between
the agent metamodels which constitute the syntaxes of MAS
DSMLs.  Due to being  at  the same abstraction  level,  both
mapping  the  model  entities  and  implementing  the  model
transformations  are  more  convenient  and  less  laborious
comparing  with  the  M2M and  M2T transformation  chain
required in the way of enriching the support of DSMLs for
various agent execution platforms. The applicability of the
approach  is  demonstrated  by  constructing  transformations
between two full-fledged agent DSMLs.   

As  the  future  work,  we  first  plan  to  extend  the
applicability of this interoperability approach for some other
MAS DSMLs such as MAS-ML [20]. Later, the assessment
of  the language interoperability will  be performed e.g.  by
taking  into  consideration  the  amount  and  quality  of  the
automatically generated artifacts for MAS software. For this
purpose, an improved version of the evaluation framework
described in [31] can be employed.
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