
A Model-Driven Engineering Technique for
Developing Composite Content Applications∗

Moharram Challenger1, Ferhat Erata2, Mehmet Onat3,
Hale Gezgen4, and Geylani Kardas5

1 R&D Department, UNIT IT R&D Ltd., Izmir, Turkey, and
International Computer Institute, Ege University, Izmir, Turkey
moharram.challenger@unitbilisim.com

2 R&D Department, UNIT IT R&D Ltd., Izmir, Turkey, and
International Computer Institute, Ege University, Izmir, Turkey
ferhat.erata@unitbilisim.com

3 R&D Center, Koçsistem Information and Communication Services Inc.,
Üsküdar/Istanbul, Turkey
mehmet.onat@kocsistem.com.tr

4 R&D Center, Koçsistem Information and Communication Services Inc.,
Üsküdar/Istanbul, Turkey
hale.gezgen@kocsistem.com.tr

5 International Computer Institute, Ege University, Izmir, Turkey; and
R&D Center, Koçsistem Information and Communication Services Inc.,
Üsküdar/Istanbul, Turkey
geylani.kardas@ege.edu.tr

Abstract
Composite Content Applications (CCA) are cross-functional process solutions built on top of
Enterprise Content Management systems assembled from pre-built components. Considering the
complexity of CCAs, their analysis and development need higher level of abstraction. Model-
driven engineering techniques covering the use of Domain-specific Modeling Languages (DSMLs),
can provide the abstraction in question by moving software development from code to models
which may increase productivity and reduce development costs. Hence, in this paper, we present
MDD4CCA, a DSML for developing CCAs. The DSML presents an abstract syntax, a concrete
syntax, and an operational semantics, including model-to-model and model-to-code transforma-
tions for CCA implementations. Use of the proposed language is evaluated within an industrial
case study.

1998 ACM Subject Classification D.1.7 Visual Programming, D.2.6 Programming Environ-
ments, Graphical environments, D.2.11 Software Architectures, Domain-specific Architectures

Keywords and phrases Domain-specific modelling languages, composite content applications,
model transformation, code generation

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.11

1 Introduction

An enterprise content management system (ECM) organizes documents, contacts and records
related to the processes of a commercial organization [3]. ECM aims to make the management

∗ This work is financially supported by the Scientific and Technological Research Council of Turkey (TUBI-
TAK) Technology and Innovation Funding Programs Directorate (TEYDEB) under grant no. 3110712.

© Moharram Challenger, Ferhat Erata, Mehmet Onat, Hale Gezgen, and Geylani Kardas;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 11; pp. 11:1–11:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


11:2 A Model-Driven Engineering Technique for Composite Content Applications

of corporate information easier through simplifying storage, security, version control, process
routing, and retention. However, considering all capabilities and components of ECM, its
architecture is rather huge and complex. Composite Content Applications1 (CCA) are
cross-functional process solutions (built on top of an ECM system) assembled from pre-built
components, e.g. an integration of a Customer Relation Management (CRM), Forms, ECM,
and Business Process Modelling (BPM). This integration adds more structural complexity to
the system architecture.

Considering this complexity, CCA analysis and development needs new domain engineering
and software development techniques. One possible approach to cope with this complexity
is to increase the abstraction level using models [6] [8], in other words applying Model
Driven Engineering (MDE), which moves software development from code to models [11]
and may increase productivity [5] and reduce development costs [13]. One of the approaches
to realize MDE is developing a Domain-specific Modelling Language (DSML) [7]. A DSML
allows end-user programmers (domain experts) to describe the essence of a problem with
abstractions related to a domain specific problem space.

In this paper, we present MDD4CCA, a domain specific modelling language for composite
content applications. The DSML covers abstract syntax, concrete syntax, and operational
semantics (including model-to-model and model-to-code transformations). In this study,
the target platform is Microsoft Sharepoint. Using MDD4CCA tool, a user can model the
system from various aspects, such as Form, Navigation, Content, and Workflow. As result
the functional architectural code will be generated by the tools which is fully functional in
target platform. Furthermore, the proposed language is evaluated using a real industrial use
case and the results are reported in this paper.

There are some frameworks in industry to address the difficulty of CCA development, such
as Nintex2, AgilePoint3, and K24 Frameworks. Nintex is a workflow software to automate
business processes. AgilePoint enables business users to manage their processes. K2 is a
platform for creating business applications and provides forms and workflows. However,
there is no language behind any of these frameworks. So, they can only convert the model
to code in a idiosyncratic way and they offer no semantics check and constraint control
possibilities. A DSML, not only provides the concrete syntax for elements in the language,
but also it presents abstract syntax including meta elements and their relations. Moreover,
DSML allows providing controls both in modelling and interpretation time. Having these
capabilities was our main motivations for developing MDD4CCA. In addition, the above-
mentioned frameworks mainly stress on Forms and Workflow views. However, in our approach
MDD4CCA uses various views in the form of different packages namely, Content, Navigation,
Workflow, Form, and User packages.

Rest of the paper is organized as follows: In Section 2, the methodology applied in
developing MDD4CCA is presented. In the next section, development of MDD4CCA is
elaborated. Section 4 presents the industrial use case in which MDD4CCA is used to develop
the software. Finally, the paper is concluded in Section 5.

1 http://www.gartner.com/it-glossary/composite-content-applications-ccas/
2 http://www.nintex.com/
3 http://agilepoint.com/
4 http://www.k2.com/

http://www.gartner.com/it-glossary/composite-content-applications-ccas/
http://www.nintex.com/
http://agilepoint.com/
http://www.k2.com/


M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:3

2 Methodology

To perform this study, we fulfilled three main steps: Requirement analysis, development
of the language and finally its application in a case study. The overall procedure of steps
one and two are depicted in Figure 1 and the case study is discussed in Section 4. The
DSML development procedure includes the problem space (PS) modelling, solution space
(SS) modelling, and solution space code generation [10]. PS covers issues for the modelling
the problem and related tools independent of the details of the underlying frameworks, while
SS deals with the modelling and code generation for the target framework.

Considering the requirement engineering for MDD4CCA, initially a concept dictionary is
provided including the terms of a CCA. We have used a feature model [9] as a formal method
to represent the specifications. As a tool to realize this, we have used Clafer [1] with which it
is possible to perform model checking. After checking the feature models, the feature model
is transformed into a meta-model in EMF [12] automatically by transformation rules given
in Xtend [2] and Java. The meta-model is divided into four viewpoints including: Content,
Form, Navigation, and Workflow.

The provided PS meta-model in EMF is the main input by which problem space modelling
and its tool are provided. We developed a graphical editor in GMF5 with which an end-user
can model a problem according to the related business domain. Also, we provided Form
model with an endogenous model to model transformation which is required for a composite
content model. Using the Form model, we generate entity data models using bidirectional
transformations which provides round-trip functionality and any modification in each side
can be converted to the other side automatically. In the solution space modelling, the entity
data model is generated.

Finally, from entity data model, entity classes are generated by using entity data model
tool. On the other hand, from solution space models, the codes for server side pages, and
other required files such as XML files are generated by model to text transformations via
Xpand6, Xtend, and Java. With a similar transformation, the required library code is
configured based on the solution space model.

3 Development of MDD4CCA

As depicted in Figure 1, MDD4CCA development started with the requirement engineering
providing a concept dictionary including terms (from YAWL7, UWE8, BPMN9, and so on)
and their relations with other concepts. The dictionary includes 537 concepts which are
used as CCA requirements. To present these specifications in a formal way, we mapped the
requirements into feature model. Also, to cope with the complexity and size of the resulted
feature model (considering large number of concepts and their inter-relations), the models
are divided into several viewpoints. It is worth noting that the User view is integrated in
Content model. We used Clafer to implement the feature model with which we can also use
Alloy10 to do model checking. In this way, a clean room software engineering is realized with
preventing some defects in the requirement engineering level using Alloy model checking

5 http://www.eclipse.org/gmf-tooling/
6 http://wiki.eclipse.org/Xpand
7 http://www.yawlfoundation.org/
8 https://en.wikipedia.org/wiki/UML-based_Web_Engineering
9 http://www.bpmn.org/
10 http://alloy.mit.edu/alloy/

SLATE’16

http://www.eclipse.org/gmf-tooling/
http://wiki.eclipse.org/Xpand
http://www.yawlfoundation.org/
https://en.wikipedia.org/wiki/UML-based_Web_Engineering
http://www.bpmn.org/
http://alloy.mit.edu/alloy/


11:4 A Model-Driven Engineering Technique for Composite Content Applications

Figure 1 The process of analysing and developing MDD4CCA.



M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:5

on feature model. Then, we transform feature models in Clafer format (XML-based) to
meta-model [4].

3.1 Problem Space Modelling
Modelling of PS addresses the problem independent of details inside the artefacts of target
framework. Based on the requirement analysis, the problem space modelling covers the
domain with four viewpoints discussed in the previous section. Considering the space
limitations of this paper, we focus on Content viewpoint which includes User viewpoint and
also can generate main forms of Form viewpoint. Of course, an end-user’s custom forms will
be added to the Form viewpoint to complete the modelling.

To develop a DSML for modelling the PS, i.e. MDD4CCA, there is need for an abstract
syntax. We generated the required meta-model automatically from the PS feature model.
Part of this meta-model, related to Content Viewpoint, is depicted in Figure 2. This
meta-model is used to provide the graphical editor for the Content viewpoint in MDD4CCA.

As can be seen in this figure, the features and the hierarchy structure in the feature model
is transformed to the meta-elements and the relations between them in the meta-model. For
example, a Web item can have several sub Web items and each of them can have Pages,
Lists, SiteCollections and so on.

In addition to the abstract syntax, the graphical concrete syntax is provided for the
MDD4CCA’s graphical editor. To this end, we mapped the abstract syntax elements of
MDD4CCA to the graphical notations. In this study, we have used Eclipse GMF to provide
the graphical editor of the DSML. However, the complexity of configuring GMF forced us to
use a higher level tool on top of GMF called Eclipse Epsilon11 with which we could generate
GMF components from an Ecore like language called EMF and a tool called Emfatic12. As
result, we have provided a fully functional tool for MDD4CCA.

MDD4CCA’s syntax tools can impose some restrictions/controls during the user’s model-
ling. One part of these controls comes from the PS meta-model and the remaining originates
from the graphical tool itself. These constraint controls help the end-user to design an
accurate model by presenting mistakes such as wrong element connection, avoiding empty
attribute, controlling number of required relations for a specific element, and so on. These
constraints are implemented in Epsilon Validation Language (EVL)13. Part of the contraint
control for Content Type is given in Listing 1.

3.2 Solution Space Modelling
There is a difference between modelling a CCA independent of the underlying frameworks
(PS) and its modelling based on the platforms (SS). Therefore, we needed to separate level
of modelling by providing two different meta-models for problem and solution spaces. To
prepare a meta-model for SS, we analysed the commonality and variability. The result was a
meta-model including elements from different related technologies, e.g. Entity Framework,
Server Side pages and Forms, Cache layer, and object oriented language concepts.

Finally, a (instance) model of solution space meta-model is transformed to a platform
specific code (or API) which is discussed in the next section.

11 http://www.eclipse.org/epsilon/
12 http://www.eclipse.org/epsilon/doc/eugenia/
13 http://www.eclipse.org/epsilon/doc/evl/

SLATE’16

http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/epsilon/doc/evl/


11:6 A Model-Driven Engineering Technique for Composite Content Applications

Figure 2 The Abstract Syntax of the Content Viewpoint.



M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:7

Listing 1 Constraint control for Content Type element in EVL.
import ecore : ’http :// www. eclipse .org/emf /2002/ Ecore #/’;
package modelgen : modelgen =

’http :// www. mdd4cca .com/msf/ modelgen /Modelgen ’{
...
class File{

attribute name : String [?];
attribute extension : String [?] = ’.cs ’;
attribute folderPath : String [?];

}
class EnumMProperty extends MProperty {

property enumType : EnumClass [?];
}
class MNavigationProperty {

attribute name : String [?];
property type : Cache [?];
attribute multi : Boolean [?];

}
class MClass extends File{

attribute usings : String [*] { ordered };
attribute namespace : String [?];
attribute constructorBody : String [*] { ordered };

}
...

}

Table 1 Model Transformations in MDD4CCA.

Direction Source MM Target MM Type # of Rules
Forward Problem Space Problem Space M2M 38
Forward Problem Space Solution Space M2M 71
Forward/Backward Problem Space Microsoft CSDL14 M2M 24
Forward Solution Space code and xml files M2C 204 Xpand templates

3.3 Model Transformations

It is not sufficient to complete a DSML definition by only specifying the notions and their
representations. The complete definition requires that one provides semantics of language
concepts in terms of other concepts whose meanings are already established. In this study,
four types of transformations are fulfilled to realize the mentioned methodology, see Table 1.
These transformations are Clafer to Ecore transformation (in requirement engineering phase),
Content viewpoint to Form viewpoint transformation (in problem space modelling phase),
problem space model to solution space model transformation, and finally solution space model
to target platforms’ code transformation. These transformations are used to respectively
generate CRUD forms from content models; weave and translate content and form models
into a solution space model; transform MDD4CCA content model (EDM) from/to EDMX
(Entity Framework); and code generation from the SS models. The transformations are
implemented using Java and Xpand in an integrated way.

SLATE’16



11:8 A Model-Driven Engineering Technique for Composite Content Applications

4 Industrial Use Case: TUPRAS TPY Project

Taking into account the high cost of developing a DSML, there is a need to have the Return On
Investment (ROI), balancing the expected benefits and productivity improvement against the
cost of development and future maintenance of the tools before moving to a new development
environment. Therefore, in this section we present one of the industrial projects which is
implemented using MDD4CCA for one of the corporate customers of UNIT Company. The
purpose of this section is to briefly report our experiences of developing a DSML based on
the use case.

The industrial project discussed here is called TPY (acronym for the Turkish translation
of “Tupras Project Management”). Turkish Petroleum Refineries Corporation (TUPRAS)15
is currently the biggest enterprise in Turkey according to Turkey’s Fortune 500 list16. TPY
project is for managing the newly defined projects such as designing a new refinery in Tupras.
The use case is modelled in MDD4CCA in 4 viewpoints (Content, Form, Fork-flow, and
Navigation) with many diagrams. For example, there are several diagrams modelled for
Form viewpoint considering the forms in different parts of the project, such as Activity form,
Feasibility form, and so on.

After modelling the project in different viewpoints with diagrams for each part of the
project using MDD4CCA, the transformations are applied using transformation engine of
MDD4CCA and other models are generated from which the architectural code is generated.
By adding delta code with developers, the system is fully functional. Altogether, this project
has 79 work-flows, 195 transitions in work-flows, 43 roles, 137 tasks, 107 tables of databases,
and 403 web pages for forms. The project has several important parts such as pre-feasibility,
feasibility, pre-discovery, discovery, yearly investment planing, and Progress. For instance
the screenshot of automatically generated form of the TPY’s “Feasibility Page” is shown in
Figure 3. Due to the confidentially issues, only the general parts are demonstrated in the
figure. Besides, both the interface and the content of the form are in Turkish since Tupras
aimed at using TPY only nation-wide at this stage. In the figure, feasibility study of a new
project inside the refinery is considered. In the active tab given in the figure, some of the
financial calculation values such as yearly interest for the credit, tax ratio, yearly distribution
of the new project investments are given inside the form which is achieved by the execution
of the MDD4CCA transformations.

In this case study, totally 96 model to model transformation rules and 151 model to code
transformation templates are used. The model transformation from the problem space to
the solution space is fully transformed automatically. In the scope of this case study, most of
the code also is generated automatically. The resulting architectural code is functional in
the target platform. Considering the underlying web-based content management platform,
the language generated around 65% of the code. The other 35% of the code is in fact the
part which has high variability among the projects.

The resulting software product has been used in TUPRAS since mid 2014 (about 2 years
until the time this paper was prepared). The software is used by the staff from different
TUPRAS departments. 120 workers from the project management departments of four
TUPRAS refineries are using the software. In addition, 80 engineers are benefiting from the
modeling environment of the given tool during project proposal preparation.

15 http://www.tupras.com.tr/masterpage.en.php
16 http://aa.com.tr/en/economy/tupras-tops-turkey-s-fortune-500-list/30989

http://www.tupras.com.tr/masterpage.en.php
http://aa.com.tr/en/economy/tupras-tops-turkey-s-fortune-500-list/30989


M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:9

Figure 3 The running application of TPY use case (Feasibility Page).

5 Conclusion and Future Work

In this paper, a domain specific modelling language, called MDD4CCA is developed for
Composite Content Applications. The language covers all model driven components including
the abstract syntax, the concrete syntax, model to model and model to code generation. The
language is used in the development of an industrial project which is reported as a case study
again in this paper. The result shows that utilization of the proposed model-driven technique
and MDD4CCA, the 65% of the application code is generated automatically in average. Our
next work is to continue the evaluation of the DSML by using it for the development of new
real industrial CCAs.

References

1 Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: unifying class and feature modeling. Software & Systems Modeling,
pages 1–35, 2014.

2 Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, 2013.

3 Bob Boiko. Content Management Bible. John Wiley & Sons, 2005.
4 Ferhat Erata, Moharram Challenger, Serhat Gezgin, Argün Demirbas̨, Mehmet Önat, and

Geylani Kardas. A methodology for supporting the synchronization between capability
models and metamodels in software product lines. In 8th Turkish National Software En-
gineering Symposium, volume 1221, pages 2–13, 2014.

5 Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik. From DCOM interfaces to
domain-specific modelling language: A case study. Computer Science and Information
Systems, 8(2):361–378, 2011.

SLATE’16



11:10 A Model-Driven Engineering Technique for Composite Content Applications

6 Ivan Lukovic, Vladimir Ivancevic, Milan Celikovic, and Slavica Aleksic. DSLs in action with
model based approaches to information system development. In Marjan Mernik, editor,
Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, pages
502–532. IGI Global, 2013.

7 Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316–344, December 2005.

8 Aleksandar Popovic, Ivan Lukovic, Vladimir Dimitrieski, and Verislav Djukic. A DSL for
modeling application-specific functionalities of business applications. Computer Languages,
Systems and Structures, 43(C):69–95, October 2015. doi:10.1016/j.cl.2015.03.003.

9 Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw Hill, 2000.
10 Awais Rashid, Jean-Claude Royer, and Andreas Rummler. Aspect-Oriented, Model-Driven

Software Product Lines - The AMPLE Way. Cambridge publications, 2011.
11 Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer,

39(2):25–31, February 2006.
12 Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: eclipse mod-

eling framework. Pearson Education, 2008.
13 Antonio Vallecillo. A journey through the secret life of models. In Uwe As̈mann, Jean

Bézivin, Richard Paige, Bernhard Rumpe, and Douglas C. Schmidt, editors, Perspectives
Workshop: Model Engineering of Complex Systems (MECS), number 08331 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.

http://dx.doi.org/10.1016/j.cl.2015.03.003

	Introduction
	Methodology
	Development of MDD4CCA
	Problem Space Modelling
	Solution Space Modelling
	Model Transformations

	Industrial Use Case: TUPRAS TPY Project
	Conclusion and Future Work

