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ABSTRACT
Traceability can be defined as the degree to which a re-
lationship can be established among work products of the
development process. Traceability is important to support
the consistency and likewise to ensure that a system is un-
derstandable, maintainable and reliable. Several approaches
have been proposed to model traceability elements and rea-
son about them by extending a predetermined set of possible
trace links with fixed semantics. Furthermore, they do not
cope with the need for dynamic adaptation and configura-
tion of traceability semantics. However, different project
types usually require various ways of tracing the system to
obtain richer and precise automated traceability analysis. In
this paper, we introduce a novel approach with its support-
ing platform which enables the user to rigorously configure
the system based on project-specific needs and interactively
specify the semantics of traceability elements. The seman-
tics of traceability elements are formalized using first-order
relational logic, which are used to facilitate different form of
automated analysis. The use of the proposed approach and
the corresponding tool is described within the context of an
industrial application lifecycle management process.
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1. INTRODUCTION
Development process of software-intensive systems requires
implementation, usage, and maintenance of a huge number
of work products such as specifications, models, code, and
test cases. These artefacts are usually related in different
and complex ways. Tracing the dependencies among them is
important to support the consistency and likewise to ensure
that a system is understandable, maintainable and reliable.
To support traceability, a number of different types of trace-
ability models have been used with their own tools [10, 11,
17, 19]. A traceability model defines the types of the trace
relations, such as depends-on, refines, satisfies etc. For en-
suring traceability very often a fixed traceability model is
employed by the existing tools, that define a predetermined
set of possible trace relations and their corresponding se-
mantics. For homogeneous systems with a predetermined
semantics that does not need to change, adopting a single
static traceability model is usually not a serious problem.
However, in the case of dealing with complex heterogeneous
systems, instead of a one-size-fits-all approach, it is required
to enable the adoption of different traceability models with
their own specific semantics, and herewith the correspond-
ing different traceability analysis approaches. On its turn,
this requires a platform in which the traceability model can
be easily adapted to support a customized traceability anal-
ysis. Traceability analysis can be carried out for different
purposes including consistency analysis, impact analysis and
repairing broken traces.
In this paper, we introduce a novel approach with its sup-
porting platform, Tarski1, which enables the user to rigor-
ously configure the system based on project-specific needs
and interactively specify the semantics of traceability ele-
ments. Their semantics are formalized using first-order re-
lational logic, which are used to facilitate different form of
automated analysis such as consistency checking, reasoning
about trace-relations and trace-element discovery.
The approach and the corresponding platform are described

1The platform’s name is inspired by Alfred Tarski’s founda-
tional work on the relational calculus

1607

http://dx.doi.org/10.1145/3019612.3019747


for traceability analysis within the context of application
lifecycle management (ALM) process which is a paradigm
for integrating and managing the various activities related
to the governance, development and operations of software
applications [4]. Poor traceability between artifacts which
are produced in different stages of software development will
lead to inconsistencies and affect the success of the projects.
Oftentimes, trace-links get unsynchronized since those arte-
facts evolves independently and are subject to change during
their lifetimes.
The rest of the paper is organized as follows. In section 2,
we describe the approach step by step, providing background
information and comparing our contributions with the trace-
ability literature. Section 3 briefly describes the platform
architecture, explains the platform components and gives
some availability details about the open source platform.
Section 4 describes the industrial use case on which the ap-
proach and the platform is applied. In section 5, we com-
pare Tarski platform with widely-used industrial standards
and approaches which provide automated analysis support
in Traceability. Finally section 6 presents our conclusions
and gives several remarks about the future work.

2. APPROACH

2.1 Traceability Domain Model
In order to understand the ramifications of changes over de-
velopment cycles, and to obtain the rationale of design de-
cisions, it is necessary to record the semantic relationships
between artefacts [18, 26]. To realize the reasoning about
traceability systematically and effectively, a proper abstrac-
tion is needed. To this end, in the following we describe the
basic terms that we adopt from the literature in traceability
[10, 11, 17, 19]. Using those terms we constitute a domain-
specific model in Figure 1 (using MOF [23] notation) with
some minor modifications and several contributions to the
literature.
Traceability Information. The term traceability infor-
mation applies to a wide spectrum, ranging from hand-
crafted intra-model links, such as stereotyped UML2 associ-
ations, to tool generated inter-model links relating elements
of the source and target models of an automatic transforma-
tion [19]. In the traceability framework of Tarski platform
Traceability Information represents a traceability instance
of a running platform, being corollary of the set of unique
trace-elements.
Trace-elements. We use the notion of Trace-element to
refer to all entities of traceability, which is therefore an ab-
stract concept. Technically speaking, trace-link and trace-
location are the disjoint subsets of the set of trace-element.
Trace-links. The relationships between artefacts are called
trace-links or trace-relations in the literature. We prefer us-
ing the term, trace-link, since we use the term, trace-relation
heavily after section 2.3 to denote a trace-link provided with
formal semantics. Trace-links may be defined between en-
tire artefacts (e.g., a requirements document and a design
document) or between parts of artefacts (e.g. model ele-
2http://www.omg.org/spec/UML/
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Figure 1: A conceptual model for traceability

ments, text fragments or code parts); they can be used for
many different purposes, such as impact analysis (i.e., to
identify the effect of change in one artefact onto related arte-
facts), code generation, model transformation, visualisation,
change control. The intended use of the trace-links dictates
the meaning imposed on the link. A variety of different se-
mantics can be applied to trace-links, ranging from simple
existence (i.e., there is a relationship between artefacts) to
rich semantics amenable to formal analysis [19]. In Figure
1, we specify the notion of trace-link as a construct that re-
lates trace-locations. The main significant difference about
trace-link from the literature is that our definition of link
can represent not only a binary relation but also an n-ary
relation which exists between more than two trace-locations.
In this way, the notion of trace-link turns into more expres-
sive and compact entity. Each instance of a trace-link is an
ordered list of size n, where n is the total size of the elements
each of which points to a trace-location.
The concept of trace-link in the domain model solely encap-
sulates the information necessary to relate trace-locations.
To assign further meaning to those links, the most common
way in literature is to extend the trace-link with a prede-
fined semantics. For instance, Goknil et al. [11] include
several new link types, that are requires, refines, partially
refines, conflicts and contains, in their requirement meta-
model. They additionally provide a well-defined semantics
for each of link types by using First-order Logic (FOL). The
major drawback of metamodeling approaches is that once
an update arises from the changing needs of the project,
the metamodel and/or the formalization of trace-links are
needed to be updated as well, that consequently ends up
with reimplementation of the tool.
Trace-locations. There are different traceable elements in
complex software intensive systems. These elements need to
be specified, specialised and instantiated to represent trace-
ability information specific to an organisation or a project.
There are some studies focused on requirements traceabil-
ity [11, 2], traceability between requirements & conceptual
models [9], and homogeneous models [20, 6]. However, there
are many other artefacts in the process of system develop-
ment required to be addressed. In this study, to achieve a
wider spectrum of artefact types, we introduce the notion of
trace-location which represents a traceable entity, that is an
entire or a part of an artefact.
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A trace-location may contain other trace-locations in the
sense that a requirement specification document is an arte-
fact as a whole in which individual requirements reside.
We develop four different type of built-in supported arte-
facts, namely TextLocation, FileLocation, XMILocation and
JavaLocation. This can be extended for further needs using
the API provided by the platform. A TextLocation desig-
nates the offset and the length of a text fragment, which
usually denotes an important part of a plain-text artefact
such as a particular requirement in a specification docu-
ment. FileLocation shows the relative path of the document
in the workspace. XMILocation is derived to locate the po-
sition of a model element in an XML Metadata Interchange
(XMI)3 document, oftentimes created through model-driven
engineering approaches to interchange abstract data model
of models between MOF-based tools. Finally, JavaLocation
is introduced to be able to mark a java construct such as
package, class, method, field and even a for-each loop as a
TraceLocation through parsing the program file and obtain-
ing its abstract-syntax tree (AST).
All these specializations of the trace-location capture only
the contextual information regarding the location of the ele-
ment, similar to the case we mentioned in trace-link. There
is still no semantics assigned to them for traceability analy-
sis yet. On the other hand, one can specialize a location to
create a taxonomy or to assign a special meaning on it, e.g.
creation of new concepts such as SystemRequirement and
ContractRequirement inherited from TextLocation to ana-
lyze different part of a specification document individually.
However, in a project specific setting of traceability there
might be countless number of design choices as depicted in-
side dashed-line boxes on the figure 1. Drivalos et. al. [6]
present a metamodeling approach, called Traceability Meta-
modeling Language (TML), dedicated to defining traceabil-
ity models for gaining semantically rich case-specific trace-
ability. Nevertheless, the downside of this approach is that
a traceability system created using TML does not facili-
tate the reconfiguration of the metamodel based on chang-
ing needs. To overcome these limitations of similar meta-
modeling approaches suggested in the literature we propose
to externally assign types to trace-elements derived from
the formal specification and allow them mutate preserving
structural integrity. In order to extend a base traceability
metamodel without making any modifications on it and to
systematically configure the semantics of trace-links, our ap-
proach relies on the creation of a first-order relational model
from the core Traceability Information. In the next section,
we briefly describe what a first-order model is and why such
a conversion is practical to achieve a solid approach for au-
tomated analysis of traceability.

2.2 First-order Relational Model
The platform uses the "relational logic" of Alloy [15], es-
sentially consisting of a first-order logic (FOL) augmented
with the operators of the relational calculus [24]. The inclu-
sion of transitive closure extends the expressiveness beyond
standard FOL and allows the encoding of common reachabil-
ity constraints that otherwise could not be expressed, such
as preventing cyclic dependencies between trace-locations.
3http://www.omg.org/spec/XMI/

The dot join and transpose operators ensure a uniform way
of navigation between trace-locations through trace-links in
constraints. In contrast to specification languages (such as
B [1], Z [22], and OCL4) that are based on set-theoretic log-
ics, Alloy’s relational logic was designed to have a stronger
connection to data modeling languages (such as ER [5] and
SDM [13]), a more uniform syntax, and a simpler seman-
tics [25]. Alloy also supports n-ary relations, and thus, in-
stances of traceability patterns emerging from n participat-
ing artifacts are naturally modeled as n-tuples, therefore,
sets of such pattern instances are n-ary relations. Consider-
ing those facts, instead of proposing a domain-specific lan-
guage for traceability modeling, first-order relational logic
(FORL) is chosen to be used as a basic configuration file
of the Tarski platform. However, in order to use Alloy as a
means of domain-specific language for traceability modeling,
without obscuring the language, we had to introduce some
syntactic constructs in the form of annotations for users to
provide some extra meta-information that guides the rea-
soning process. Hence, apart from this specification file, the
platform does not need any further information to dynam-
ically adapt itself to a new project setting. The details of
the annotation mechanism will be given later in section 2.3.
A first-order relational model of a specification, expressed
as a collection of declarative constraints written in FORL,
is a binding of its free variables to values that makes the
specification true or false. The values assigned to variables,
and the values of expressions evaluated in the context of a
given model, are relations. Sets are unary relations which
represents a set of atoms and scalars are singleton unary re-
lations. A relation with no tuples is empty. These relations
are first order: that is, they consist of tuples whose elements
are atoms (and not themselves relations) [16].
All structures in first-order relational models are built from
atoms and relations, corresponding to the basic entities and
the relationships between them. A relational universe con-
sists of atoms, each atom is a primitive construct which is
uninterpreted, immutable and indivisible. A relation is a
structure that relates atoms. It’s composed of a set of tu-
ples, each tuple being a sequence of atoms. The number of
atoms in each tuple of a relation must be the same, that
is called the arity of the relation. Relations with arity one,
two, and three are said to be unary, binary, and ternary. At
first glance, encoding of traceability instance can be real-
ized practically as an instance of relational model. Earlier
version of the platform in fact used the same approach, but
technical challenges in traceability forced us to adopt a do-
main specific model as shown in section 2.1.

2.3 Type Annotations and Trace-Relations
In this section we essentially describe one of our core contri-
butions, creation of a relational universe and a partial model
from traceability information. As we discussed in previous
section, in order to assign meaning to trace-elements, we
need to transform traceability information into the formal
domain to assign precise semantics. On the other side, a
traceability instance has higher-order structures formed due
to the technical challenges such that a trace-location may
compose of other trace-locations and trace-links. Therefore,
4http://www.omg.org/spec/OCL/
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Figure 2: Fragments of a traceability instance

we encode trace-elements as first-order (flat) structures so
that the trace-elements become amenable to manipulation
and automated analysis as depicted in figure 2.
A relation specification written in Alloy consists of type
declarations (signature and field definitions) and formu-
las (facts). In this section we focus on type declarations
which is used to annotate trace-locations or to form a trace-
link. Alloy types implicitly represent relations. A basic type
is introduced for each top level signature and extension sig-
nature. The signature abstract sig A {} declares a top-level
type named A whereas sig B extends A {} declares a type B
as a subtype of the type associated with A. Since a unary re-
lation represents a set of atoms, this declaration also means
that B is a disjoint subset of A. The keyword abstract is op-
tional and indicates an abstract signature which has no ele-
ments except those belonging to its extensions. In this way,
basic type declarations constitute a hierarchy that classifies
all atoms. Since universe consists of atoms, this hierarchy
takes the form of a tree (i.e. type hierarchy) where the im-
plicit type univ is at its root. A subset signature, such as
sig C in A {} which introduces a set C that is a subset of A,
can be defined. Subset signatures, unlike extension signa-
tures, are not necessarily mutually disjoint. To form a type
lattice, a signature can be declared as a subset of a union of
sets, given sig C in A + B{} every element of C belongs to
A or to B. Furthermore, A relation whose arity is greater
than one can only be declared as fields of a signature. A
binary relation type r, that is sig A {r : B}, is declared
as the product of A → B, sig A {r′ : B → C} declares a
ternary relation type r′, the product of A→ B → C and so
on. A relation can be constrained by the multiplicity key-
words lone (at most one), some (at least one), one (exactly
one), and set (any number). A declaration r : A m → n B
constrains r to associate each element of A with n elements
of B, and each element of B with m elements of A where m
and n are multiplicity keywords.
As it is seen, even this fragment of Alloy formalism is ex-
pressive enough to be used as an object modeling notation

(e.g. ECore [23]). Herewith, in Tarski, each trace-location
which is subject to formal analysis must be annotated with a
type from the hierarchy obtained from the signature decla-
rations. Once the type annotation is done for a given trace-
location, the platform introduces an atom to the traceability
universe, and then adds the atom into the set, associated
with that type. This means that, in Tarski, each atom is
mutable and interpreted. In fact, since the interpretations
of atoms are the same across universe, that is trace-location,
it makes no difference for the analysis. However, mutability
brings about several challenges in the analysis and there-
fore we investigate each state of traceability instance in the
system independently.
On the other hand, there are two ways to establish a trace-
relation. In cases, where a trace-link already exists and is
subject to formal analysis, the platform try to approximate
a suitable relation type obtained from the field declarations.
If a type is successfully assigned, the trace-link becomes a
trace-relation, then the platform creates a tuple and adds
it into the relation associated with the type. For instance,
if the source end of a trace-link has a type which conforms
to a relation type declaration, a type for the trace-link can
be determined based on the other ends of the trace-link.
In the other cases, when a trace-link does not exist, user
can create a legitimate trace-relation directly using the wiz-
ards presented to the user in the same order of relation type
declaration, accordingly the trace-link that corresponds to
trace-relation is automatically created. As a result of these
operations, an instance of the relational model is being con-
structed from the traceability instance using base and field
type declarations.
Figure 2 depicts an arbitrary snapshot of traceability in-
stance created among three types of artefact, that includes
some fragments of a requirement document, an ECore model
and a Java code file which consists of two packages. Each
box shows an entity in its own formalism, a box with dashed
outline denotes a trace-location. For instance, the element,
R1 represents the serialization of an EObject in the doc-
ument, that is an instantiation of an EClass of an ECore
model. It is associated with an XMILocation, detected from
the document’s context. The dotted lines represents trace-
links and their combination shows a trace-relation. For each
relation, an arrow is put on one of trace-locations to empha-
size the source end. In this figure, it appears that a trace
definition is probably declared from design entities EClass
to Java language constructs Package, Class, Method to rep-
resent the relationship between the design and implemen-
tation in the forward direction (REJ). On the other side,
in the backward direction, a java developer might relate his
implementation commit with a system requirement and a
design element (RJRE). The universe of traceability of the
current state is DT : {S1, E1, E2, E3, F1, M1, M2, P2}, and
the relational model under the signature ΣT : {REJ v E →
C tM tF, RJRE v F → S → E} is Mt : {S = {〈S1〉}, E =
{〈E1〉, 〈E2〉, 〈E3〉}, J = {〈F1〉, 〈M1〉, 〈M2〉, 〈P2〉}, REJ = {
〈E2, M1〉, 〈E2, M2〉, 〈E3, P2〉}, RJRE = {〈F1, S1, E1〉}}.

2.4 Formal Semantics & Automated Analysis
Tarski platform provides three types of automated analysis.
If a model derived from a given universe satisfies the con-
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straints in the specification, it is called a valid model. It
is worth emphasizing that we are not interested in check-
ing the satisfiability of a specification, that is finding a valid
model for verification purposes. Instead, the user elaborates
the model and according to his needs he changes the specifi-
cation. Subsequently, the system checks whether the model
satisfies the specification or not, that is called by the tool
as consistency checking. If the model is a partial (incom-
plete) model, the platform tries to complete the model with
respect to the semantics declared in the specification infer-
ring new trace-relations on the model, which is what we call
as the process of reasoning about trace-relations. If a de-
sycnronization occurs on one or more ends of a trace-link
probably caused by a change such as deletion of a trace-
location, we try to repair the broken link based on the
semantics and the current snapshot of the system, that is
called trace-location discovery by us.
The decision procedure of KodKod model finder is inte-
grated instead of using Alloy Analyzer since Alloy has no
notion of partial models. If a partial traceability instance is
available for a set of Alloy constraints which is usually the
case, it can only be provided to the analyzer in the form of
additional constraints. Since KodKod, that is the back-end
reasoner of Alloy Analyzer, is essentially forced to redis-
cover the partial model from the constraints, the approach
is limited in scale [25]. To overcome this limitation, we use
KodKod’s API, extracting lower bounds from each snapshot
of the trace information of running instance on the platform.
Consistency Checking. As each interaction of the user
with the visualization view of the platform mutates tuples in
the model and adds new atoms to the universe (Figure 4 Part
3), it is not guaranteed that the model satisfies the FORL
facts. However, this allows the user to manipulate traces in a
free-hand manner while the structural integrity preserved by
the type hierarchy. Due to these mutations, a mechanism
is needed to check the satisfiability of the changed model
[17, 20]. In Tarski platform, the model generated from the
user’s traceability information is automatically encoded in
KodKod using the exact bounds to check the possible incon-
sistencies and the satisfiability of the given model is reported
to the user.
Reasoning about Trace-relations. In the scope of Tarski
platform, one type of inference is the activity of deducing
new trace-relations. To realize this, user guides the platform,
providing annotations in the specification with marking the
fact(s) which holds during reasoning and indicating the re-
lation on which the reasoning is targeted. The platform
synthesizes a new specification in which the unary relations
become singletons, undesired relations become empty, and
the marked relations are not constrained. This forces the
analyzer to find new tuples on the model if exists, which is
reported back to the user as inferred relations.
Trace Elements Discovery. In addition to the reasoning
about relations, the proposed framework can reason on the
provided trace-elements to suggest missing trace-locations.
In this case, the n-ary relations are fixed and the unary re-
lations are not constrained to generate tuples on the model.
When the user accepts a suggested unary or n-ary relation
on the visualization view of Tarski platform, the relation

will be encoded as a new constraint on the model and fur-
ther reasoning will be done on this new model. This mecha-
nism will provide an evolutionary approach to elaborate the
traceability information. To specify the semantics of the
traceability, we have provided an enhanced text editor, see
Figure 4 part 1, with which the user defines the system rules
using relational logic.

3. PLATFORM ARCHITECTURE
The platform architecture of the proposed approach is de-
picted in Figure 3. Considering the functionality of the sys-
tem, the first row of figure 3 shows the configuration process.
In the second row, the traceability processes are realized in-
cluding the user-interaction, persistence, and interpretation
of trace information. Finally, in the third row, the reason-
ing mechanism is maintained over the provided model and
AST of specification. The figure shows the interaction of the
Tarski platform with the Traceability Framework and Alloy
back-end. From the user point of view, the formal specifica-
tion is loaded or updated into the system, then user carries
out interactions with the system such as creating trace ele-
ments and assigning types to them. If the extra information
is provided by the user in the specification using special an-
notations, the Tarski platform is able to determine the types
of trace elements and automatically creates trace-links. User
can analyze the traceability based on his/her provided loca-
tions and links, and the specified rules. The Tarski platform
interacts with Traceability Framework to persist trace in-
stance. Also, Tarski interacts with Alloy compiler to reuse
the type system [7] generated from the user specification.
While assigning relation names to trace-links or creating re-
lations between trace-locations, the system suggests only the
legitimate trace-locations based on semantic analysis of the
specification. As a result, the traceability information is
adapted to a first-order relational model by the user’s type
assignments to trace-locations (unary relations) and trace-
links (binary. ternary and n-ary relations). Each user func-
tion has a counter-part API method in order to create au-
tomatically those trace-elements especially in model-based
development, e.g trace creation while generating code from a
domain-specific model. Furthermore, Tarski platform pro-
vides functions such as create, delete, update and change
type of the relations with respect to type hierarchy and mul-
tiplicity constraints to enable users to elaborate further on
the formal instance.
Tarski is being exploited and extended in different industrial
use case scenarios primarily as part of two projects, namely
ModelWriter5, and ASSUME6which are labeled by the Eu-
ropean Union’s EUREKA Cluster programme ITEA (Infor-
mation Technology for European Advancement). Additional
details about the platform including data set, source codes
and screen-casts are available on the project repository7.

4. INDUSTRIAL USE CASE
The approach introduced in this paper has been applied on
the Application Lifecycle Management platform of HAVEL-
5https://itea3.org/project/modelwriter.html
6https://itea3.org/project/assume.html
7https://github.com/ModelWriter/WP3
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Figure 3: Overview of the approach and the platform

SAN8, one of the largest systems and software company in
defense industry of Turkey, to demonstrate the usability of
the approach and its supporting platform. Basically, tracing
for a typical project forms a complex directed acyclic graph.
A contract requirement should be traceable forward into the
system requirements that have been elaborated from it, and
on into the code modules that implement it, or the test
cases verify that code and even a given section on the user
manual which describes the actual functionality [3]. Sim-
ilarly, a contract-based project in HAVELSAN consists of
a set of Artifacts which can be partitioned into Specifica-
tion, Implementation and Verification. An artefact actually
is an abstraction in this particular use case to denote an el-
ement which is traceable in the user’s workspace such as a
text fragment, model element, java method or class etc. A
requirement Specification is formed of different ContractRe-
quirements which probably contains different requirements
to create a part-whole hierarchy. Each SystemRequirement
might be decomposed into different system requirements
through refines relation. Each system requirement is satis-
fied by one or more implementation methods such as Model,
Component, and Code that are verified by Simulation, Anal-
ysis or Test method. An Implementation fulfills a Contrac-
tRequirement. The classification for type annotations are
given in the following:
abstract sig Artefact {

depends : set Artefact }

-- Locate@File

8http://www.havelsan.com.tr/eng

one sig Specification extends Artefact {
contract : some ContractRequirement }

-- Locate@Text
sig ContractRequirement extends Artefact {

system : set SystemRequirement ,
contains : set ContractRequirement }

-- Locate@ReqIF
sig SystemRequirement extends Artefact {

satisfiedBy : set Implementation ,
requires : set SystemRequirement ,
refines : set SystemRequirement }

abstract sig Implementation extends Artefact {
fulfills : lone ContractRequirement }

-- Locate@Java
sig Code , Component extends Implementation {}

-- Locate@EMF
sig Model extends Implementation {

transforms , conforms : set Model ,
generates : set (Code ∪ Component )}

An example of the formalization is provided below for con-
tains relation that occurs between ContractRequirements:
-- Semantics@ContractRequirement . contains
fact {∀ c : ContractRequirement |

one c.~ contract =⇒ no c.~ contains }
fact {∀ c : ContractRequirement |

no c.~ contract =⇒ one c.~ contains }

Several facts are intentionally annotated by the user to guide
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Figure 4: Screenshot of the running platform configured with HAVELSAN’s configuration file.

the reasoning process. Reason@ keyword indicates that the
fact following the annotation will be excluded from the con-
sistency check, but included in the reasoning to infer the
given relations in the annotation following the @ sign. Sev-
eral examples from the specification are listed in the fol-
lowings. In this way, backward traceability is automatically
constructed based on the semantics defined for each relation.
-- Reason@ContractRequirement . system
fact {∀ s : SystemRequirement , s’ : s.*~ refines |

s ’.~ system = s.~ system }

-- Reason@SystemRequirement . requires
fact { ∀ s, s’ : SystemRequirement |

s’ in s. refines =⇒ s in s ’. requires }

-- Reason@Implementation . fulfills
fact {∀ i : Implementation , s : i.~ satisfiedBy

| i. fulfills = s.~ system }

In Figure 4 part 3, the inferred relations are shown on the
graph with dashed lines. The complete specification of this
use case is available online9.

5. RELATED WORK
There are several studies in the literature and some indus-
trial technologies (some of which became defacto standards)
dealing with traceability and its automated analysis. Re-
garding the former group in Paige et. al. [19], only model
9https://github.com/ModelWriter/WP3/wiki/ALM

elements are considered to be linked with semantically rich
traces. These traces are typed and conform to a case-specific
trace metamodel accompanied by a set of case-specific con-
straints, which cannot be captured by the metamodel. As
another study, Goknil et al. [11] proposed a requirements
metamodel including relation types with formal semantics
expressed in FOL. The formalization of relations was used in
a tool called TRIC to support for inference and consistency
checking. Later in [9], the work was extended to generate
and validate traces between requirements and software ar-
chitectures. Similarly, Drivalos et. al. [6] uses Traceability
Metamodeling Language to define traceability metamodels.
Sebatzadeh et. al. [20] use formal specification for traceabil-
ity of homogeneous models. All in all, unlike Tarski, none
of the above discussed studies support automated analy-
sis including dynamic configuration of semantics. Also, in
Tarski, arbitrary model and text elements are considered to
be linked with formal semantics. Regarding the industrial
tools and technologies on traceability, modeling tools such
as EMF [23] and SysML [21], requirement interchange stan-
dard (ReqIF [12]) and management tools such as RMF10

and IBM Rational DOORS [14] provide some automated or
manual means to specify and manage traceability. However,
none of them provides configuration with a formal specifi-
cation and rich semantic support for the artefacts especially
on a heterogeneous development and design environment. In
addition, there is a lack of a systematic approach to support
automated analysis of traceability in such environments.

10https://www.eclipse.org/rmf/
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6. CONCLUSION AND FUTURE WORK
In this paper a platform called Tarski has been introduced
for automated analysis of dynamically configurable trace-
ability semantics. Formal semantics of traceability can be
specified interactively based on project-specific needs using
first-order relational logic to exploit the automated analy-
sis support of the platform. Traceability between arbitrary
artefacts such as model elements and text fragments is also
maintained. The use of the approach and the corresponding
platform are described within the context of an industrial
application lifecycle management process.
Currently we can’t analyze the temporal properties of trace-
ability. Thus, we omit ordered relation declarations in Alloy
formalism, which are used to model time or state compo-
nents of a system. To deal with large scale models, as a fu-
ture work, we will identify essential fragments of first-order
relational theory which is expressive enough for traceability
to adapt SMT solvers [8] as back-end reasoners to Tarski
platform.
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