
Improving the Usability of a MAS DSML

Tomás Miranda1, Moharram Challenger2, Baris Tekin Tezel2,3, Omer Faruk
Alaca2, Ankica Barǐsić1, Vasco Amaral1, Miguel Goulão1, and Geylani Kardas2

1 NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal
2 International Computer Institute, Ege University, Izmir, Turkey

3 Department of Computer Science, Dokuz Eylul University, Izmir, Turkey
tr.miranda@campus.fct.unl.pt, baris.tezel@deu.edu.tr,

omerfarukalaca@gmail.com, {moharram.challenger,
geylani.kardas}@ege.edu.tr, a.barisic@campus.fct.unl.pt, {vma,

mgoul}@fct.unl.pt

Abstract. Context: A significant effort has been devoted to the de-
sign and implementation of various domain-specific modeling languages
(DSMLs) for the software agents domain.
Problem: Language usability is often tackled in an ad-hoc way, with
the collection of anecdotal evidence supporting the process. However,
usability plays an important role in the productivity, learnability and,
ultimately, in the adoption of a MAS DSML by agent developers.
Method: In this chapter, we discuss how the principles of The “Physics”
of Notations (PoN) can be applied to improve the visual notation of a
MAS DSML, called SEA ML and evaluate the result in terms of usabil-
ity.
Results: The evolved version of the language, SEA ML++, was per-
ceived as significantly improved in terms of icons comprehensibility, ad-
equacy and usability, as a direct result of employing the principles of
PoN. However, users were not significantly more efficient and effective
with SEA ML++, suggesting these 2 properties were not chiefly con-
strained by the identified shortcomings of the SEA ML concrete syntax.

Keywords: Usability · Multi-Agent Systems · Domain Specific Modeling Lan-
guage · Physics of Notations · SEA ML

1 Introduction

Software agents with the capability of both being autonomous and performing
reactive/proactive behaviors, interact with each other in a Multi-agent system
(MAS) to solve problems in a competitive or collaborative manner within an en-
vironment. To eliminate the complexity and the difficulty of MAS development,
the researchers in agent-oriented software engineering (AOSE) field have signif-
icant efforts on design and implementation of various domain-specific modeling
languages (DSMLs) such as DSML4MAS [19], FAML [4], SEA ML [7], MAS-
ML [10], and JADEL [3]. Those DSMLs are specific to the agent domain and

T. Miranda et al.

provide appropriate integrated development environments (IDEs) in which both
modelling and code generation for system-to-be-developed can be performed
properly [25].

To be effective, the proposed agent DSMLs need to meet the various stake-
holder concerns and the related quality criteria for the corresponding MASs.
Unfortunately, very often the evaluation of the DSML, especially covering the
language components and the use of the DSML during design and implemen-
tation of agent-based systems, is completely missing or has been carried out
with an idiosyncratic approach [8]. Specifically, the usability, which plays an
important role on the adoption of a MAS DSML by agent developers, needs to
be taken into consideration preferably during language design and improved to
better align the DSML with developer expectations. Hence, in this chapter, we
focus on the usability of DSMLs for MAS and propose an approach for promot-
ing the usability of such languages by applying the principles of The “Physics”
of Notations (PoN) [30]. For this purpose, the visual notation of a MAS DSML,
called SEA ML [7], is evaluated and its usability is improved by employing each
principle of PoN. Hence, it is possible to enrich SEA ML’s visual notation and its
correlation to the linked semantic constructs. A comparative assessment of the
improved language is also performed with 2 different experiments using end-users
that are defined by the domain experts. SEA ML is an open source language and
it is easy to achieve both abstract and concrete syntax specifications. Moreover,
reflecting the changes according to the conducted PoN experiments and gener-
ating the new version of the language become much easier since the required
source code is available online. These are the main reasons of selecting SEA ML
as the application language in our work.

The rest of the chapter is organized as follows: Section 2 and Section 3 discuss
SEA ML and the principles of PoN respectively. The analysis of SEA ML and
improving its visual notation by using PoN principles are given in Section 4.
Comparative evaluation of the new language is discussed in Section 5. Related
work is given in Section 6 and Section 7 concludes the chapter.

2 SEA ML

SEA ML [7] is a MAS modeling language which enables the developers to model
agent systems in a platform independent level and then automatically gener-
ate codes and related documents required for the execution of the modeled
MAS on target MAS implementation platforms. In addition to these capa-
bilities, SEA ML also supports the model-driven design and implementation
of autonomous agents who can evaluate semantic data and collaborate with
semantically-defined entities of the Semantic Web [35], like Semantic Web Ser-
vices (SWSs). Within this context, it includes new viewpoints which specifically
pave the way for the development of software agents working on the Semantic
Web environment. Modeling agents, agent knowledge-bases, platform ontologies,
SWS and interactions between agents and SWS are all possible in SEA ML.

Improving the Usability of a MAS DSML

To support MAS experts when programming their systems, and to be able
to fine-tune them visually, SEA ML covers all aspects of an agent system from
the internal view of a single agent to the complex MAS organization.

To this end, SEA ML’s metamodel is divided into 8 viewpoints, each of which
represents a different aspect for developing Semantic Web enabled MASs.

– Agent’s Internal Viewpoint is related to the internal structures of semantic
web agents (SWAs) and defines entities and their relations required for the
construction of agents.

– Interaction Viewpoint expresses the interactions and the communications in
a MAS by taking messages and message sequences into account.

– MAS Viewpoint solely deals with the construction of a MAS as a whole. It
includes the main blocks which compose the complex system as an organi-
zation.

– Role Viewpoint delves into the complex controlling structure of the agents
and addresses role types.

– Environmental Viewpoint describes the use of resources and interaction be-
tween agents with their surroundings.

– Plan Viewpoint deals with an agent Plan’s internal structure, which is com-
posed of Tasks and atomic elements such as Actions.

– Ontology Viewpoint addresses the ontological concepts which constitute
agent’s knowledge-base (such as belief and fact).

– Agent-SWS Interaction Viewpoint defines the interaction of agents with
SWS including the definition of entities and relations for service discov-
ery, agreement and execution. A SWA executes the semantic service finder
Plan (SS FinderPlan) to discover the appropriate services with the help of
a special type of agent called SSMatchMakerAgent who executes the ser-
vice registration plan (SS RegisterPlan) for registering the new SWS for the
agents. After finding the necessary service, one SWA executes an agreement
plan (SS AgreementPlan) to negotiate with the service. After negotiation,
a plan for service execution (SS ExecutorPlan) is applied for invoking the
service.

Appendix A lists the important SEA ML concepts (meta-entities) and their
brief descriptions for the comprehension of the corresponding visual notations
used in the diagrams throughout this chapter.

SEA ML instances are given as inputs to a series of modelto-model and
model-to-text transformations to achieve executable artifacts of the system-to-
be-built for JADEX [33] agent platform and semantic web service description
documents conforming to Web Ontology Language for Services (OWL-S) ontol-
ogy [28].

To demonstrate the modeling and implementation environment provided by
SEA ML, let us consider the development of a MAS for stock exchange software
in which Investor (Buyer and/or Seller), Broker and Stock Trade Manager agents
take role in a computerized stock trading system. All of the user agents including
investors and brokers cooperate with stock trade manager agent to access the
stock market. Also, the user agents interact with each other, for instance, investor

T. Miranda et al.

A and investor B can cooperate with a broker in order to exchange the stock
for which the broker is an expert. Figure 1 is a screenshot taken from SEA ML
modeling environment which shows the modeling of such a stock exchange MAS
which is composed of 6 semantic web agent instances, 1 trade manager, 2 bro-
kers, and 3 investors. The given model only considers the overview of the system
from SEA ML MAS viewpoint. However, it is also possible to model all specifi-
cations and components of the system considering the other SEA ML viewpoints
again inside the same IDE. Interested readers may refer to [7] for an extensive
discussion on SEA ML and [24] for complete design and implementation of this
agent-based stock exchange system with SEA ML.

Fig. 1: MAS and Organization diagram for Stock Exchange System in SEA ML

3 Physics of Notations

The Physics of Notations (PoN) [30] is a design theory which focuses on the
perceptual (physical) properties of notations rather than their semantic (logical)
properties. It is based on a set of 9 principles which form a prescriptive theory for
designing cognitively effective visual notations, defined (and measured) as the

Improving the Usability of a MAS DSML

Table 1: PoN principles

Principle Comment

Semiotic Clarity There should be a 1:1 correspondence between semantic
constructs and graphical symbols

Perceptual Discriminability Different symbols should be clearly distinguishable from
each other

Semantic transparency The appearance of visual representations should suggest
their meaning

Complexity management Explicit mechanisms for dealing with complexity should
be included

Cognitive integration There should be explicit mechanisms to support the
integration of information from different diagrams

Visual expressiveness The full range of capacities and visual variables should
be used

Dual coding Text should be used to complement graphics
Graphic economy The number of symbols presented in the notation may

affect the handling of the tool
Cognitive fit Different dialects should be used for different tasks and

audiences.

speed, ease, and accuracy with which a given representation can be processed by
the human mind. This principles can be used to evaluate, compare and ultimately
enhance the communication properties of a given language when designing its
visual concrete syntax.

The principles were synthesized from theory and empirical evidence about
cognitive effectiveness of visual representations. Each principle was defined by
its Name (named in a positive sense) and Semantic (theoretical) definition (A
imperative statement of what it means), listed in Table 1. Further, each principle
contains Operational (empirical) definition, which gives evaluation procedures
and/or metrics; Design strategies, Exemplars and Counter exemplars.

4 Applying Physics of Notations Principles to SEA ML

We proposed notation improvements for all 8 viewpoints of SEA ML by follow-
ing 9 PoN principles given in Table 1. These improvements are employed in the
development of the new version of SEA ML, called SEA ML++. Table 2 syn-
thesizes the conclusions derived from review of PoN principles which is detailed
in [29]. Plus (+) refers that SEA ML currently conforms to the presented prin-
ciple, while a minus (-) refers that SEA ML has room for improvement under
that principle.

SEA ML notation conforms to Semiotic Clarity as for each SEA ML view-
point, different symbols are presented, representing a different semantic con-
struct. There is no such case where two symbols represent the same semantic
construct, or when they are not connected to a semantic construct.

T. Miranda et al.

Table 2: Review of SEA ML visual notation according to each principle of PoN
Principle Room for Improvement

Semiotic Clarity +

Perceptual Discriminability -

Semantic Transparency -

Complexity Management +/-

Cognitive Integration +

Visual Expressiveness -

Dual Coding -

Graphic Economy +

Cognitive Fit -

+ OK — - can be improved

Based on Perceptual Discriminability principle, SEA ML can be improved, as
some symbols only differ by a label, which is proven to be cognitively ineffective.
The distance between visual symbols is too short, as predefined by the language
editor when generating the tool.

Regarding Semantic Transparency principle we identify 19 visual notations
of SEA ML that could represent better intended meaning and provided improve-
ment suggestions for each symbol (see [29]).

Complexity Management is not applicable, as SEA ML does not have any
direct mechanism for dealing with the complexity of the viewpoints.

SEA ML conforms to Cognitive Integration principle, as it requires a name for
every diagram and label used during the modelling. Every procedure is verified
to be connected to some entity.

SEA ML presents similar colours and symbols to similar semantic constructs.
Some semantic figures are only differentiated by a letter, which is not conforming
to Visual Expressiveness principle since the icons should be presented using
different visual variables to automatically distinguish each semantic construct
only looking to visual notation.

Based on the Dual Coding principle, SEA ML has eleven visual notations that
are only differentiated through letters or textual differences that are difficult to
see, which are impossible to differentiate without it.

The user is presented with a palette of icons which are allowed to be used on
each viewpoint, therefore conforming to the Graphic Economy principle.

Regarding Cognitive Fit, some of the proposed visual notation can be im-
proved in order to have a better relation with other similar symbols presented
on the SEA ML language, which may turn the language easier to understand
and to be worked for novice users.

Some SEA ML visual notations were not modified as these notations reflect
correctly its semantic constructs and they conform to PoN principles. Of the 43
symbols (44 including the symbol for arrows that relate each entity), 32 symbols
were modified (see Figure 2 for the current (SEA ML) and new (SEA ML) no-
tations). With respect to the proposed SEA ML++ notation, the justification
for each new symbol is defined below:

Improving the Usability of a MAS DSML

Fig. 2: SEA ML vs SEA ML++ notations

1. Goal - The new notation adds color to the target, making it more appropriate to
be selected when using viewpoints that use this semantic construct;

2. Capability - The current visual notation may induce users wrong. The new no-
tation reflects that users have a set of capabilities in order to solve their problems;

3. Fact - The current notation is similar to other notations present in SEA ML. The
new notation (check mark) reflects something that is correct and concrete;

4. Plan - The notation addresses a plan to reach a goal from X to Y;

5. Semantic Service Register Plan (SSRP) - The current notation has 4 similar
symbols, being distinguished through different letters. The new notation adds the
SWS notation and a person registering to a customer’s list;

6. Semantic Service Finder Plan (SSFP) - The current notation has 4 similar
symbols, being distinguished through different letters. The new notation adds the
”Semantic Web Services” notation and a magnifying glass;

7. Semantic Service Agreement Plan (SSAP) - The current notation has 4
similar symbols, being distinguished through different letters. The new notation
adds the ”Semantic Web Services” notation and a handshake between 2 people;

8. Semantic Service Executor Plan (SSEP) - The current notation has 4 similar
symbols, being distinguished through different letters. The new notation adds the
”Semantic Web Services” notation and a ”Play” icon;

9. Send - It is not clear what the current notation is addressing. The new notation
states clearly that the message is going to be sent elsewhere;

T. Miranda et al.

10. Receive - It is not clear what the current notation is addressing. The new notation
states clearly that the message is going to be received;

11. Action - Removed the round border. The clapperboard is enough to understand
the semantic construct;

12. Message - The new notation attempts to be similar to the new notations adopted
in ”Message Sequence”, ”Send” and ”Receive”;

13. Message Sequence - Similar to the notations presented in ”Send” and ”Receive”,
the new notation hints a sequence of message being transmitted by those parties;

14. ODMOWLClass - The new notation is similar to the previous ”Plan” symbol.
It tries to remove two similar element from the visual notation (as the ”Plan”
symbol is totally different from the original one);

15. DomainRole - The current visual notation does not have any relation with a do-
main. The metaphor tried on the new notation aims at reflecting the web domains,
inserting its roles on a web browser window;

16. Agent State - The current visual notation does not have any relation with an
Agent State. The new notation attempts to add a ”Secret Agent” to a typical
rounded ”State Icon” that appears on some loading screens;

17. Resource - The new notation reflects a box full of resources, which reflects more
what the semantic construct is;

18. Web Service - The new notation adds a gear to an icon that relates to the web;

19. Grounding - Proposed by the MAS developers having experience on MAS and
SWS;

20. Process - Proposed by the MAS developers having experience on MAS and SWS;

21. Interface - Proposed by the MAS developers having experience on MAS and SWS;

22. Precondition - Proposed by the MAS developers having experience on MAS and
SWS;

23. Effect - The current visual notation does not have any direct relation with Effect.
The new notation tries to adapt the ”Magic” metaphor for an effect cause;

24. Architecture Role - The current visual notation does not have any direct relation
with an ”ArchitectureRole”. The new icon adds the ”Role” symbol to a common
architecture plan;

25. Ontology Mediator Role - Proposed by the MAS developers having agent pro-
gramming experience;

26. Semantic Web Organization (SWO) - The current visual notation does not
have any direct relation with a SWO. The new symbol adds that relation;

27. Role Ontology - The new visual notation adapts to the new ODMOWLClass
proposed above;

28. Organization Ontology - The new visual notation adapts to the new ODMOWL-
Class and ”Semantic Web Services” proposed above;

29. Service Ontology - The new notation adapts to the new ODMOWLClass pro-
posed above;

30. Interaction - Although it is perceptible what the current visual notation proposes,
there is room for improvement by adding a clearer symbol;

31. Behavior - The current visual notation does not have any relation with the ”Be-
havior” semantic construct. The new symbol tries to apply a metaphor related to
the human behavior;

32. Agent Type - Proposed by the MAS developers having agent programming ex-
perience.

Improving the Usability of a MAS DSML

5 Evaluation

5.1 Experiment planning

Goals Broadly, we aim to compare the impact of using the evolved version
of the MAS DSML (SEA ML++) when contrasted with the previous version
(SEA ML), focusing, one at a time, in different quality criteria for the language
assessment. We present our evaluation goals following the GQM research goals
template [2], which is shared among all our goals, with the exception of the term
concrete quality criterion , which varies from one goal to the next.

In general, our goal is to analyse the effect of evolving from SEA ML to
SEA ML++, for the purpose of evaluation, with respect to the semantics
transparency of the symbols used in the concrete syntax, from the viewpoint
of researchers, in the context of an experiment conducted with participants
with limited or no experience with MAS at Universidade Nova de Lisboa (UNL)
in Portugal and EGE University in Turkey.

More specifically, our first goal is concerned about the comprehensibility
of the symbols used on the concrete syntax, leading to the following formu-
lation: Our first goal (G1) is to analyse the effect of evolving from SEA ML
to SEA ML++, for the purpose of evaluation, with respect to the compre-
hensibility of the symbols used in the concrete syntax, from the viewpoint of
researchers, in the context of an experiment conducted with participants with
limited or no experience with MAS at UNL and EGE University. Our second goal
(G2) is concerned about the perceived usability of the concrete syntax. Our
third goal (G3) is concerned about the effectiveness of the concrete syntax.
Finally, our fourth goal (G4) is concerned about the efficiency .

All materials for the conducted evaluation, including experiment setup, result
sets and statistics are also available in this chapter’s online repository1.

Tasks To achieve (G1), (1) each participant read and signed a consent letter
regarding the data collected in the experiment. This letter was only used for
the purpose of this study. All participants remained anonymous. Then (2) each
participant selected the symbol (s)he found more suitable for each of the 33
SEA ML++ concepts identified in the PoN assessment reported in Section 4.
Finally, (3) participants filled in a background questionnaire.

We recruited a different, non-intersecting, group of participants for the re-
maining tasks. Again, (1) each participant read and signed a consent letter re-
garding the data collected, similar to the letter used in the other experiment.
Then (2) each participant completed 4 exercises, 2 covering SEA ML and 2 cov-
ering SEA ML++. Each exercise ended with the user filling in a questionnaire
about it. We had a crossover design with 4 possible sequences, as represented
in Table 3. The goal was to mitigate any potential learning effects and balance
the number of participants working with each example in each of the possible
sequence positions. Finally, (3) participants filled in a background questionnaire.

1 https://doi.org/10.5281/zenodo.1288390

https://doi.org/10.5281/zenodo.1288390

T. Miranda et al.

Table 3: Experimental design. Key: MT = Music Trading; EF = Expert Finder

Sequence Task 1 Task 2 Task 3 Task 4

Group 1 MT/SEA ML++ MT/SEA ML++ EF/SEA ML EF/SEA ML
Group 2 EF/SEA ML EF/SEA ML MT/SEA ML++ MT/SEA ML++
Group 3 MT/SEA ML MT/SEA ML EF/SEA ML++ EF/SEA ML++
Group 4 EF/SEA ML++ EF/SEA ML++ MT/SEA ML MT/SEA ML

Experimental material We provided each participant with a consent letter
and a background questionnaire, which were the same for both experiments.
In the symbol selection experiment, the participant also received a question-
naire where (s)he was asked to match each concept definition with the symbol
that would best represent its concrete syntax. For the second experiment, the
participants received 4 different scenarios with a corresponding challenge, each
followed by a questionnaire about the notation they had just used. 2 of those
scenarios were related with music trading among software agents, while the other
2 involved an agent-based expert finding system. Each of these scenarios had 2
versions, one with SEA ML and the other with SEA ML++. Each participant
received 2 different scenarios for each concrete syntax.

Participants Johnson [23] suggests that six individuals per subset of the pop-
ulation are the minimum required for a controlled experiment. It is sensible to
take a larger number, but the costs should be kept to a minimum. Regarding the
usability study, Nielsen [32] claims that testing with 5 people lets us find almost
as many usability problems as by using many more test participants. However,
when performing the quantitative studies, Nielsen suggests testing at least 20
users to get statistically significant numbers.

All the participants in our studies have formal University training in Infor-
matics. For the symbol selection experiment, 25 participants (all undergraduate
students) were involved. All of these participants are current or former students
at Universidade Nova de Lisboa (UNL). 11 of those had some basic knowledge
of MAS (in the context of a course), but not of SEA ML++. For the evaluation
experiment, a total of 36 participants were included. That experiment was run
in 2 replicas: The first one was conducted at UNL with 24 participants, including
12 with some basic knowledge of MAS. The second one was conducted at EGE
University with 12 participants, all graduate students with some basic knowledge
of MAS. All participants were selected through convenience sampling.

It is worth noting that the domain of agents interacting with SWSs is not an
established professional occupation field and we could have limited number of
researchers in the evaluation. Such professional evaluators are familiar with the
concepts and their relations which makes the development and subsequently the
evaluation more real. Because of this shortcoming, we have a small size society
for the evaluation.

Improving the Usability of a MAS DSML

Hypotheses, parameters and variables Overall, we hypothesize that the
proposed SEA ML++ has a better concrete syntax than SEA ML. In order to
make this more concrete, we anchor our formalized hypotheses on the research
goals defined in Section 5.1, as presented in Table 4. For each of the high-level
goals, we define the null (H0Gi) and alternative (H1Gi) hypotheses (where i
denotes the specific goal).

Table 4: Hypotheses

H0G1 The concrete syntax of SEA ML++ is as comprehensible as
the one of SEA ML.

H1G1 The concrete syntax of SEA ML++ is more comprehensible than
the one of SEA ML.

H0G2 The concrete syntax of SEA ML++ is perceived as usable as
the one of SEA ML.

H1G2 The concrete syntax of SEA ML++ is perceived as more usable
than the one of SEA ML.

H0G3 The concrete syntax of SEA ML++ is as effective as
the one of SEA ML.

H1G3 The concrete syntax of SEA ML++ is more effective than
the one of SEA ML.

H0G4 The concrete syntax of SEA ML++ is as efficient as
the one of SEA ML.

H1G4 The concrete syntax of SEA ML++ is more efficient than
the one of SEA ML.

For all hypotheses, the independent variable is the concrete syntax, which
can be SEA ML++ or SEA ML. The dependent variables are different for each
of the tested hypothesis.

Comprehensibility. Graphical symbols’ comprehensibility can be assessed
by measuring hit rates, i.e., the percentage of correct responses [21, 22]. In this
case, we measure the hit rate (percentage of answers where the correct symbol
was chosen) for each concept in each of the concrete syntaxes.

Perceived Usability. In order to assess the perceived usability we asked
our participants to fill in a System Usability Scale [5] questionnaire. This ques-
tionnaire consists of 10 questions, each with 5 response options, ranging from
“Strongly Disagree” to “Strongly Agree”. The scores are then converted to a scale
of 0-100. The threshold of 68 points is considered as the “average usability” [5].
Lower scores indicate below average usability, while higher scores are considered
above average. In addition, we asked our participants to classify the following 3
statements:

– S1: The symbols on the user interface (UI) were easy to understand.

T. Miranda et al.

– S2: The symbols on the UI are adequate to the MAS constructions they
are linked to.

– S3: The symbols on the UI helped me solve the exercise in less time.

We deliberately used the term “symbols on the UI” (User Interface) rather
than “concrete syntax”, as a simplification for our participants, who were not
necessarily familiar with the notion of “concrete syntax”. For each of these sen-
tences, the participants had to select from a five-point ordinal scale, ranging
from 1 “Strongly Disagree” to 5 “Strongly Agree”.

Effectiveness. We use the correctness of the answers of our participants to
measure how effectively they were able to solve the exercises.

Efficiency. We recorded the duration of the working sessions to measure
how fast our participants were able to complete their assigned tasks.

5.2 Analysis

Descriptive statistics In this section, we present descriptive statistics for the
metrics collected to answer our research questions (Table 5). For each data row,
we identify the corresponding goal (ranging from G1 to G4), the dependent
variable (the quality focus for a particular goal), the independent variable, i.e.
the concrete syntax followed by the descriptive statistics: the mean, standard de-
viation (SD), skewness (Skew), kurtosis (Kurt) and the p-value for the Shapiro-
Wilk normality test (S-W). In most of these variables, the assumption of nor-
mality is not reasonable (p−value < 0.05), as confirmed by the visual inspection
of boxplots in Figure 3, Q-Q plots and kernel density plots, omitted for the sake
of brevity.

Table 5: Selection rate descriptive statistics

Goal Dependent Independent Mdn. Mean S.Dev. Skew. Kurt. S-W

G1 Preference SEA ML++ .44 .45 .14 -.10 .07 .457
SEA ML .16 .19 .14 .20 -1.18 .018

G2 SUS SEA ML++ 61.25 59.38 19.97 -.20 -.24 .409
SEA ML 57.50 54.17 20.62 -.20 .19 .268

Understandability SEA ML++ 4 3.96 1.09 -1.15 .83 .000
SEA ML 3 2.92 1.25 -.04 -.98 .001

Adequacy SEA ML++ 4 3.65 1.02 -.10 -1.10 .000
SEA ML 3 2.96 1.03 -.16 -.11 .001

Speed SEA ML++ 4 3.83 1.10 -.86 .23 .000
SEA ML 3 2.85 1.29 -.09 -.95 .000

G3 Correctness SEA ML++ 1.00 .84 .32 -1.763 1.724 .000
SEA ML 1.00 .80 .32 -1.509 1.096 .000

G4 Duration SEA ML++ 11:51 13:20 06:12 1.520 2.434 .000
SEA ML 12:24 14:48 09:32 2.784 8.463 .000

Improving the Usability of a MAS DSML

SEA_MLSEA_ML++

S
U

S
 S

co
re

100

80

60

40

20

0 95

96

Page 1

(a) SUS score

SEA_MLSEA_ML++

A
g

re
em

en
t

le
ve

l

5

4

3

2

1

12

13

24

17

Page 1

(b) Understandability

SEA_MLSEA_ML++

A
g

re
em

en
t

le
ve

l

5

4

3

2

1

Page 1

(c) Adequacy

SEA_MLSEA_ML++

A
g

re
em

en
t

le
ve

l

5

4

3

2

1

Page 1

(d) Speed

Fig. 3: Perceived Usability of SEA ML vs SEA ML++

Hypotheses testing We now present the results of our hypotheses tests.

G1: RQ1: Are participants more likely to select the correct elements from the
PoN-based concrete syntax of SEA ML++ or the baseline SEA ML concrete syn-
tax elements? A Wilcoxon Signed-Ranks test was run and the output indicated
that SEA ML++ scores (Mdn = .44) were statistically significantly higher than
SEA ML scores (Mdn = .16), Z = 4.573, p < .001, r = .83. This supports our
hypothesis that participants were more likely to select the SEA ML++ elements.

G2: RQ2: Do participants using SEA ML++ perceive it as more usable than
SEA ML? In order to answer this question, we look at this from 2 different
perspectives. We use a standard usability test – the System Usability Scale
(SUS) – and a set of 3 questions to gather more detailed feedback (Figure 3).

SUS: Is SEA ML++ perceived as more usable than SEA ML? The usability
did not differ significantly, according to Welch’s t test, t(141.854) = 1.539, p =
.126 from SEA ML++ (M = 59.38, SD = 19.97) to the usability of SEA ML
(M = 54.17, SD = .20.62) (Figure 3a).

T. Miranda et al.

Understandability: The symbols on the user interface (UI) were easy to under-
stand. Because the data was skewed for both variables, a Wilcoxon Signed-Ranks
Test was run and the output indicated that SEA ML++ scores (Mdn = 4), were
statistically significantly higher than SEA ML scores (Mdn = 3), Z = 3.683,
p < .001, r = .53 (Figure 3b).

Adequacy: The symbols on the UI are adequate to the constructs they are
linked to. Because the data was skewed for both variables, a Wilcoxon Signed-
Ranks Test was run and the output indicated that SEA ML++ scores (Mdn =
4) were statistically significantly higher than SEA ML scores (Mdn = 3), Z =
2.939, p < .003, r = .42. These results suggest that participants found SEA ML++
more adequate than SEA ML to the constructs they were linked to (Figure 3c).

Speed: The symbols on the UI helped me solve the exercise in less time. Be-
cause the data was skewed for both variables, a Wilcoxon Signed-Ranks Test was
run and the output indicated that SEA ML++ scores (Mdn = 4) were statisti-
cally significantly higher than SEA ML scores (Mdn = 3), Z = 3.324, p < .001,
r = .48 (Figure 3d). These results suggest that participants perceived using
SEA ML++ had helped them solving the exercise faster than using SEA ML.

G3: We applied the Welch t-test, which is robust to deviations from nor-
mality within groups and when variance homogeneity among groups may not be
assumed. The correctness does not differ significantly, according to Welch’s t-
test, t(141.968) = .417, p = .519 from the SEA ML (M = .80, SD = .32) to the
SEA ML++ (M = .84, SD = .32) concrete syntax. These results suggest that
there was no difference between the 2 concrete syntaxes, in terms of complexity.

G4: As in G3, we applied the Welch t-test. The duration does not differ
significantly, t(122.030) = 1.180, p = .280 from the SEA ML (M = 14 : 48, SD =
09 : 32) to SEA ML++ (M = 13 : 20, SD = 06 : 12) concrete syntax. These
results suggest that there was no difference between the 2 concrete syntaxes, in
terms of duration.

5.3 Discussion

Evaluation of the results and implications By using the PoN to guide a
redesign of the concrete syntax of SEA ML, we proposed SEA ML++. We found
that (RQ1) the participants in our study were better at correctly identifying the
symbols with SEA ML++. They found the SEA ML++ syntax (RQ2) easier
to understand, more adequate to the MAS constructs it represents and helpful
for performing faster, when compared to the the SEA ML syntax. However, in
practice, (RQ3) participants were neither significantly able to use the language
more correctly, (RQ4) nor significantly faster using it. So, overall, although the
perception of language usage has improved with the new concrete syntax (and,
with it, the developer experience), its implications for the actual usage of the
language in agent development did not translate into improved effectiveness or
efficiency (the small improvements observed were not significant). While it was
certainly the case that there was room for improvement of the concrete syntax,
the PoN-based improvements only took us as far as improving the perceived
developer experience. Other alternative techniques, such as the sign production

Improving the Usability of a MAS DSML

technique used successfully with other languages, such as i* [6], could potentially
further improve the developer experience. That said, it seems more likely that the
effectiveness and efficiency in using SEA ML++ are mostly constrained by the
semantics of the language. Further research is ongoing to explore this hypothesis.

Threats to validity The selection of participants is a potential threat. They
are mostly representative of practitioners who are relatively inexperienced with
MAS and, therefore, a good match for the main target population of this study.
Most of the participants have less than 1 year experience on software agent
development and only 5 participants in EGE University can be said experienced
with having more than 3 years of MAS knowledge and implementation. As with
many other languages, experts will cope better with the peculiarities of a given
concrete syntax than newbies. The results obtained in the 2 replications were
very similar, which increases our confidence on their external validity for other
inexperienced MAS developers.

A second validity threat concerns the representativeness of the models used
for this evaluation. While these models are good representatives of the com-
plexity one would discuss with inexperienced MAS developers in the course of
a training activity, further empirical evaluations with models of different com-
plexities will increase the representativeness of this evaluation.

6 Related Work

In the last decade, several MAS modeling languages and DSMLs [4,9,11,14,17]
were proposed to support development of MASs. For example, DSML4MAS [19]
introduces a general MAS metamodel with various viewpoints that enable the
development of MAS for many application domains. As another example study,
in [20], the authors develop a DSML and its supporting tool, called ERE ML,
for MAS working in emergency response environments. However, most of these
DS(M)Ls proposed for MASs have been evaluated by just providing a case study
demonstrating how the related language can be used for design and implementa-
tion of MAS. A quantitative analysis and/or qualitative evaluation considering
e.g. the development time performance, generation performance, and/or the us-
ability of the language are not considered in these studies.

In [8], an evaluation framework is proposed which provides the systematic
assessment of both the language constructs and the use of agent DSMLs accord-
ing to various dimensions and criteria. The study also provides an assessment of
SEA ML [7], however, it does not take into account the usability of the language,
i.e. usefulness regarding the needs of language users. This evaluation framework
is adopted in [26], [24] and [12] for the assessment of the proposed MAS DSMLs.
Another MAS DSML evaluation feature exists in [3] for a textual DSL, JADEL,
providing 4 abstractions, namely agents, behaviours, communication ontologies,
and interaction protocols to JADE agent development framework. However, the
study only evaluates JADEL’s code generation performance.

T. Miranda et al.

The mentioned studies evaluate their MAS DS(M)Ls to some extent with
or without using a structured evaluation framework. However, none of them
addresses the usability of the MAS DS(M)Ls considering both the end-user per-
spective and the improvement of the visual language notation which, we argue
that, is critical for the adoption of such languages in AOSE. In this sense, this
study contribute to the literature by assessing the usability of an available MAS
DSML, namely SEA ML, and improving its new version.

In general, despite the fact that it is usually claimed that DSLs are more
usable and leading to productivity gains, in [13] it has been identified a gen-
eralized lack of practice of reporting their usability assessment. The Software
Language Engineering community has been seeking for adequate and systematic
approaches to evaluating the usability of DSLs [1]. Work was reported [31] on
how i* concrete syntax was evaluated using PoN and a new symbol set was
proposed for it. In the sequence of this, in [6], it is compared the proposed con-
crete syntax with alternatives produced by novices (a stereotype and a prototype
concrete syntaxes) and the standard i* concrete syntax.

Several modelling languages, for example, BPMN 2.0 [16], Use Case Maps
[15], WebML [18], and misuse cases [34], use PoN to evaluate and identify im-
provement opportunities. It is possible to observe consistently similar conclusions
concerning the challenges in most visual notations from a PoN perspective [30].
Other studies assess the i* and KAOS modelling languages [27], using interviews,
creation of models, and evaluation of those models and the modelling language
and found clarity problems in the semantics definition of those languages.

7 Conclusion and Future Work

There are many modeling languages and DSMLs for MAS. Although there are
a few studies addressing the evaluation of MAS DSMLs and their performances,
the usability of these DSMLs is not investigated in a systematic way. In this
study, the principles of The “Physics” of Notations are applied on a MAS DSML,
called SEA ML. By applying 9 principles, 43 notations of SEA ML are evalu-
ated and 32 of them are modified which are used in the development of the new
version of SEA ML called, SEA ML++. In this way the notations in the graph-
ical concrete syntax of the DSML are improved leading to the improvement
of SEA ML++. This hypothesis is examined under 4 research goals covering
comprehensiveness, usability, effectiveness, and efficiency. The experiment con-
ducted by the participants shows that the participants were more likely to select
the SEA ML elements and the symbols were easy to understand. However, the
results show that there was no significant difference between the 2 concrete syn-
tax, in terms of complexity and duration. Finally, it is worth indicating that this
study mainly focuses on evaluating the use of notations/symbols in the DSML
and does not cover the other issues (e.g. diagram complexity, scalability) which
PoN can be utilized. These can be addressed in the future work.

Improving the Usability of a MAS DSML

Acknowledgment
The authors would like to thank the followings: i) the Scientific and Techno-
logical Research Council of Turkey (TUBITAK) under grant 115E591, and ii)
Portuguese grants NOVA LINCS Research Laboratory (Grant: FCT/MCTES
PEst UID/ CEC/04516/2013) and DSML4MA Project (Grant: FCT/MCTES
TUBITAK/0008/2014).

References

1. Barǐsić, A., Amaral, V., Goulão, M.: Usability Driven DSL development with USE-
ME. Computer Languages, Systems and Structures (ComLan) 51, 118–157 (2017).
https://doi.org/10.1016/j.cl.2017.06.005

2. Basili, V., Caldiera, G., Rombach, H.: Goal Question Metric Paradigm. Encyclo-
pedia of Software Eng. 1, 528–532 (2001)

3. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven devel-
opment for jade with the jadel programming language. Comput Lang Syst Str 50,
142–158 (2017)

4. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J.J.,
Pavon, J., Gonzalez-Perez, C.: Faml: a generic metamodel for mas development.
IEEE T Software Eng 35(6), 841–863 (2009)

5. Brooke, J.: Sus-a quick and dirty usability scale. Usability evaluation in industry
189(194), 4–7 (1996)

6. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: To-
wards user comprehensible requirements engineering notations. In: RE’13. pp. 115–
124. IEEE (2013)

7. Challenger, M., Demirkol, S., Getir, S., Mernik, M., Kardas, G., Kosar, T.: On
the use of a domain-specific modeling language in the development of multiagent
systems. Eng Appl Artif Intel 28, 111–141 (2014)

8. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating
domain-specific modeling language environments for multi-agent systems. Software
Qual J 24(3), 755–795 (Sep 2016)

9. Ciobanu, G., Juravle, C.: Flexible software architecture and language for mobile
agents. Concurr Comp-Pract E 24(6), 559–571 (2012)

10. Da Silva, V.T., Choren, R., De Lucena, C.J.: Mas-ml: a multiagent system mod-
elling language. IJAOSE 2(4), 382–421 (2008)

11. Demirkol, S., Challenger, M., Getir, S., Kosar, T., Kardas, G., Mernik, M.: Sea l: a
domain-specific language for semantic web enabled multi-agent systems. In: Com-
puter Science and Information Systems (FedCSIS), 2012 Federated Conference on.
pp. 1373–1380. IEEE (2012)

12. Faccin, J., Nunes, I.: A tool-supported development method for improved bdi plan
selection. Eng Appl Artif Intel 62, 195–213 (2017)

13. Gabriel, P., Goulão, M., Amaral, V.: Do software languages engineers evaluate
their languages? In: Proceedings of the XIII Congreso Iberoamericano en ”Software
Engineering” (CIbSE’2010) (2011)

14. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering
techniques for the development of multi-agent systems. Eng Appl Artif Intel 25(1),
159–173 (2012)

15. Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the
ucm visual notation. In: International Workshop on System Analysis and Modeling.
pp. 221–240 (2010)

https://doi.org/10.1016/j.cl.2017.06.005

T. Miranda et al.

16. Genon, N., Heymans, P., Amyot, D.: Analysing the cognitive effectiveness of the
bpmn 2.0 visual notation. In: Proceedings of the Third International Conference
on Software Language Engineering. pp. 377–396 (2010)

17. Gonçalves, E.J.T., Cortés, M.I., Campos, G.A.L., Lopes, Y.S., Freire, E.S.,
da Silva, V.T., de Oliveira, K.S.F., de Oliveira, M.A.: Mas-ml 2.0: Supporting
the modelling of multi-agent systems with different agent architectures. J Syst
Software 108, 77–109 (2015)

18. Granada, D., Vara, J.M., Brambilla, M., Bollati, V., Marcos, E.: Analysing the
cognitive effectiveness of the webml visual notation. Softw Syst Model 16(1), 195–
227 (2017)

19. Hahn, C.: A domain specific modeling language for multiagent systems. In: Pro-
ceedings of the 7th international joint conference on Autonomous agents and mul-
tiagent systems-Volume 1. pp. 233–240 (2008)

20. Hosein Doost, S., Adamzadeh, T., Zamani, B., Fatemi, A.: A model-driven frame-
work for developing multi-agent systems in emergency response environments.
Softw Syst Model pp. 1–28 (2017)

21. ISO: Standard graphical symbols: Safety colours and safety signs–registered safety
signs (iso 7010: 2003). International Standards Organisation (ISO): Geneva,
Switzerland (2003)

22. ISO: Iso standard graphical symbols: Public information symbols (iso 7001:2007).
International Standards Organisation (ISO): Geneva, Switzerland (2007)

23. Johnson, P.: Human computer interaction: psychology, task analysis, and software
engineering. McGraw-Hill (1992)

24. Kardas, G., Bircan, E., Challenger, M.: Supporting the platform extensibility for
the model-driven development of agent systems by the interoperability between
domain-specific modeling languages of multi-agent systems. Comput Sci Inf Syst
14(3), 875–912 (2017)

25. Kardas, G., Gomez-Sanz, J.J.: Special issue on model-driven engineering of multi-
agent systems in theory and practice. Comput Lang Syst Str 50, 140–141 (2017)

26. Kardas, G., Tezel, B.T., Challenger, M.: Domain-specific modelling language for
belief-desire-intention software agents. IET Softw 12(4), 356–364 (2018)

27. Matulevičius, R., Heymans, P.: Comparing goal modelling languages: An experi-
ment. In: International Working Conference on Requirements Engineering: Foun-
dation for Software Quality. pp. 18–32 (2007)

28. McGuinness, D.L., van Harmelen, F.: Owl web ontology language overview. w3c
(2004)

29. Miranda, T.R.: Software Language Engineering : Interaction and Usability Model-
ing of Language Editors. MSc thesis, Universidade Nova de Lisboa, Faculdade de
Ciências e Tecnologia, Monte Caparica, Portugal (2017)

30. Moody, D.: The “physics” of notations: toward a scientific basis for constructing
visual notations in software engineering. IEEE T Soft Eng 35(6), 756–779 (2009)

31. Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving
the cognitive effectiveness of the i* visual notation. Requir Eng 15(2), 141–175
(2010)

32. Nielsen, J.: How many test users in a usability study. Nielsen Norman 4(06) (2012)
33. Pokahr, A., Braubach, L., Walczak, A., Lamersdorf, W.: Jadex-engineering goal-

oriented agents. Developing multi-agent systems with JADE pp. 254–258 (2007)
34. Saleh, F., El-Attar, M.: A scientific evaluation of the misuse case diagrams visual

syntax. Inform Software Tech 66, 73–96 (2015)
35. Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intell

Syst 21(3), 96–101 (2006)

Icon. Concept Description

Semantic Web Agent

(SWA)

Semantic web agent in the SEA_ML stands for each agent which is a

member of semantic web-enabled MAS. It is an autonomous entity

which can interact with both the other agents and the semantic web

services, within the environment.

Semantic service

matchmaker agent

(SSMatchmakerAgent)

It is a SWA extension. This meta-element represents matchmaker

agents which store the SWS’ capabilities list in a MAS and compare it

with the service capabilities required by the other agents, in order to

match them.

Belief

Beliefs represent the informational state of the agent, in other words

its knowledge about the world (including itself and other agents).

Goal

A goal is a desire that has been adopted for active pursuit by the

agent.

Role

An agent plays different roles to realize different behaviors in various

situations, such as organizations, or domains.

Capability

Taking BDI agents into consideration, there is an entity called

Capability which includes each agent’s Goals, Plans and Beliefs about

the surroundings.

Fact

The statement about the agent’s environment which can be true.

Agents can decide based on these facts.

Plan

Plans are sequences of actions that an agent can perform to achieve

one or more of its intentions.

Semantic service register

plan

(SS_RegisterPlan)

The Semantic Service Register Plan (SS_RegisterPlan) is the plan used

to register a new SWS by SSMatchmakerAgent.

Semantic service finder

plan

(SS_FinderPlan)

Semantic Service Finder Plan (SS_FinderPlan) is a Plan in which

automatic discovery of the candidate semantic web services take place

with the help of the SSMatchmakerAgent.

Semantic service

agreement plan

(SS_AgreementPlan)

Semantic Service Agreement Plan (SS_AgreementPlan) is a concept

that deals with negotiations on quality of service (QoS) metrics (e.g.,

service execution cost, duration and position) and contract

negotiation.

Semantic service

executor plan

(SS_ExecutorPlan)

After service discovery and negotiation, the agent applies the

Semantic Service Executor Plan (SS_ExecutorPlan) to invoke

appropriate semantic web services.

Send

An action to transmit a message from an agent to another. This can be

based on some standard such as FIPA_Contract_Net

Receive

An action to collect a message from an agent. This can be based on

some standard such as FIPA_Contract_Net

Task Tasks are groups of actions which are constructing a plan in an agent.

Action An action is an atomic instruction which constitutes a task.

Message

A package of information to be send from an agent to another;

possibly to deliver some information or instructions. Two special

types of actions, namely Send and Receive, are used to handle these

messages.

Improving the Usability of a MAS DSML

Appendix A. Descriptions of the Selected SEA ML
Concepts

Agent state

This concept refers to certain conditions in which agents are present at

certain times. An agent can only have one state (Agent State) at a time,

e.g., waiting state in which the agent is passive and waiting for

another agent or resource.

Resource

It refers to the system resources that the MAS is interacting with. For

example, the database.

Service Any computer-based service presented to the users.

Web

Service
Type of service which is presented via web.

Semantic Web Service

Semantically defined web services which can be interpreted by

machines.

Process

It describes how the SWS is used by defining a process model.

Instances of the SWS use the process via described_by to refer to the

service’s ServiceModel.

Interface

This document describes what the service provides for prospective

clients. This is used to advertise the service, and to capture this

perspective, each instance of the class Service presents a Service

Interface.

Grounding

In this document, it is described how an agent interact with the SWS.

A grounding provides the needed details about transport protocols.

Instances of the class Service have a supports property referring to a

Service Grounding.

Input Defines the inputs for processes and interfaces of a SWS.

Output Defines the output for processes and interfaces of a SWS.

Precondition Defines the pre-conditions for processes and interfaces of a SWS.

Effect

Defines the post-conditions or effects for processes and interfaces of a

SWS.

Semantic web

organization
Refers to an organized group of semantic web agents (SWAs).

Interaction

For communication and collaboration of agents, they can use series of

messages via a message sequence which results to an agent

interaction.

Environment

The agent’s surroundings including digitized resources, fact, and

services.

Registration Role

A specialized type of architectural role which is used to register SWSs

in the multi agent systems.

Behavior

In re-active agents, a behavior is a re-action of an agent towards an

external or internal stimulus.

Agent type

The agents in a multi-agent system can have different types taking

various responsivities and representing various stakeholders.

	Improving the Usability of a MAS DSML

