
Abstract—Elasticsearch is a distributed RESTful search en-

gine, capable of solving growing number of use cases and can

handle petabytes of data in seconds. However, Elasticsearch

comes with a complex query language which causes a steep

learning curve for the developers and, therefore, creation of

queries can be difficult and time-consuming in many cases.

Hence, in this paper, we introduce a Domain-specific Modeling

Language (DSML), called Dimension Query Language (DQL),

to support the model-driven development of Elasticsearch

queries. Elasticsearch queries can be automatically generated

from DQL models and DQL’s IDE is capable of executing these

auto-generated Elasticsearch queries on remote repositories.

An evaluation of using DQL has been performed at the indus-

trial level with the participation of a group of developers. The

conducted evaluation showed that the use of the language sig-

nificantly decreases the development time required for creating

Elasticsearch queries. Finally, qualitative assessment, based on

the developers’ feedback, exposed how DQL facilitates the de-

velopment of Elasticsearch queries.

I. INTRODUCTION

LASTICSEARCH is a distributed RESTful search en-

gine, which is based on Lucene information retrieval

software library [1] and is capable of solving growing num-

ber of use cases. Many types of searches (e.g. structured, un-

structured, geo, metric) can be prepared and combined. It

works in clusters, and according to some tests performed by

its developers (namely, Elastic Team), it is reported that

Elasticsearch can handle petabytes of data in seconds [2].

E

Elasticsearch differs from classical relational database

management systems (RDBMS) in many ways: Elastic-

search’s primary database model is a search engine and it

stores documents instead of key-values. Each document in

Elasticsearch is a JavaScript Object Notation (JSON) object,

and hence it does not use Scripted Query Language (SQL).

Queries are provided with its own language based on JSON.

A given search can be performed not only in a form of a

query; filters can also be used for document search which is

faster than the queries. Finally, it is schema-free, i.e. two do-

cuments of the same type can have different sets of fields [3]

However, such kind of powerful engine comes with a

very complex query language which causes a steep learning

curve for the query developers. Moreover, there are numer-

ous types of queries and scripts combinable with each other

whose creation and use can be difficult and time consuming

in many cases.

There exists a tool for visualizing Elasticsearch data,

called Kibana, which is also developed by the Elastic Team

[4]. It works on top of the content indexed on an Elastic-

search cluster and it can directly connect to an Elasticsearch

server to be used for generating visualizations and reports;

but again, the users must have prior knowledge about how

Elasticsearch works and need to be experienced in dealing

with its complex query language.

 The paradigm shift introduced by model-driven develop-

ment (MDD) [5, 6] in which the focus changes from code to

models, leverages the abstraction level and promotes the

software development for various application domains (e.g.

[7-13]). Moreover, domain-specific languages (DSLs) / do-

main-specific modeling languages (DSMLs) [14-18] which

have notations and constructs tailored toward a particular ap-

plication domain, assist to the developers during execution

of MDD processes by providing first a user-friendly syntax

for modeling systems (mostly in a visual manner) and then a

translational semantics for generating application software

and any other artifacts automatically [19].

Abovementioned features and benefits of applying MDD

and using DSMLs in other domains conduce toward produc-

ing a MDD framework also for Elasticsearch. Hence, in this

paper, we introduce a DSML which can be used inside this

MDD framework to facilitate the query writing process re-

quired for the Elasticsearch. Although many efforts exist in

model-driven database processing and query generation (e.g.

[20-23]), they do not consider the specifications of Elastic-

search and do not support generating queries, structured ac-

cording to Elasticsearch which differs from the traditional

databases.

Originating from a metamodel of Elasticsearch, which is

also derived in this study, the proposed language provides a

graphical concrete syntax for modeling queries within its in-

tegrated development environment (IDE). Models of the

queries, visually prepared in this IDE, are automatically

translated into corresponding Elasticsearch structures which

are ready to be executed. If the developer requests execution

Berkay Akdal*†, Zehra Gül Çabuk Keskin*, Erdem Eser Ekinci*, Geylani Kardas†

*Galaksiya Information Technologies, Ege Technopark, 35100, Bornova, Izmir, Turkey

Email: {berkayakdal, zehragulcabuk, erdemeserekinci}@galaksiya.com

†International Computer Institute, Ege University, 35100, Bornova, Izmir, Turkey

Email: geylani.kardas@ege.edu.tr

Model-driven Query Generation for Elasticsearch

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 853–862

DOI: 10.15439/2018F218

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 853

of these queries, it is also possible to execute those modeled

and automatically generated queries on Elasticsearch

storages. In this paper, we also discuss the use of this DSML

for the industrial applications and give the results of

evaluating its use inside a software company specialized for

developing commercial Big Data applications.

The rest of the paper is organized as follows: In Section 2,

the proposed query language is discussed with including its

metamodel, fundamental elements and built-in query

transformation process. Section 3 demonstrates the use of

the language. Evaluation of the language and results of this

evaluation are discussed in Section 4. Related work is given

in Section 5. Finally, Section 6 concludes the paper.

II. DIMENSION QUERY LANGUAGE

When we think of the three-dimensional space we are in,

every object has coordinates to locate their position and

hypothetically, it is possible to list and create reports for

each object’s or living creature’s position on earth. Such
report would have three fields for the coordinates linked

with the name of the related object or person. To find an

entry on the report, we would have needed to know the

related entry’s name and coordinates.
Mathematics and physics define dimension as the

minimum number of points required to know an object’s
position and velocity on the space they belong. By this

definition, we can say that our hypothetical report is a four-

dimensional space, containing entries with four dimensions.

Originated from this, we named our Elasticsearch query

model as Dimension Model (DM) and the proposed

Elasticsearch DSML as Dimension Query Language (DQL).

In DM, each dimension corresponds to a field of data that

must be included within the query.

In the following subsections we first define the

fundamental elements and the relations inside DQL which

compose the abstract syntax on the DSML for Elasticsearch.

Then, we discuss how constraint checks and query

validations are performed inside DQL’s IDE before

automatically transforming prepared query models into

Elasticsearch queries. Finally, query transformation process

is discussed.

A. Fundamental DQL Elements

Our transformation service (that will be discussed later)

accepts Dimension Query (DQ) instances and generates

Elasticsearch queries. The users can choose to view the

transformed queries or directly execute them to view a table

report over the underlying Elasticsearch storage. These DQ

instances are created by conforming a metamodel which

defines fundamental elements and their relations required for

Elasticsearch queries. The metamodel, which leads to the

generation of DQL syntax, is depicted in Fig. 1. Elements

and properties of the metamodel are written in bold in the

following text.

Elasticsearch storages, namely indexes, are a collection of

documents that have similar characteristics [24]. Documents

belonging to the same index may have relations with each

other. On Elasticsearch, there are two types of relations.

“Parent-child relation” links two documents by marking one

as parent while marking the other one as child. “Nested

relation” simply writes the whole document into another

one.

On query transformation, one of the required properties is

the name of the document on the top level, defining the

document without a parent document. This needs to be

specified as the type field in the Dimension Query. Another

required field is the index, which is the name of the index to

execute the query on. Finally, on the dimensions field,

requested dimensions are expected. Along with these, there

are some optional fields that a query can uphold, such as

expected result size as size and offset as from.

B. Dimension Types

 Dimensions vary in three types; Data Dimensions, Filter

and Not Have Dimensions. Data dimensions are used to

represent the fields to be retrieved upon the execution of the

query and filter dimensions, by their name and hence they

are used to filter the retrieved data based on some

conditions. However, independently from its type, each

Fig. 1. DQL Metamodel

854 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

dimension must have two main fields; function and

belongs.

The function field is used to specify which operation

must be performed on the data. With this field; dimensions

can be grouped, summed, counted and their average or

percentage over their sum may be calculated. belongs field

represents the name of the Elasticsearch document of the

index in which the dimension data are located.

Data and filter dimensions must also have a field called

property. This field represents the name of the data to be

retrieved or filtered. The data dimensions may also have an

additional orderby field to indicate which dimension must

be used on ordering the query results.

If the query designers want to filter data on certain fields,

filter dimensions may be used to meet this requirement.

These dimensions will filter the data instead of creating

another field on the result set. They are different from the

data retrieval dimension by having additionally one field

called values, indicating the values to apply with the filter.

Filters can also be applied to specific data retrieval

dimensions as well as they can be applied on the query.

When used in this way, they affect only the dimension they

are getting applied to.

The filtering criterion does not always have to be based on

some values. For example, on a customer-invoice database,

we may want to list the customers who did not place an

order between some dates. To handle this case, there is an

additional type of dimension called “Not Have Dimension”.

This dimension can be used to filter certain fields, which

does not have any relations to the given Elasticsearch

document. Considering the customer-invoice example, let us

think we have an index with two documents, customer and

invoice, and assume that there is a parent-child relation,

customer as parent and invoice as child. Creating a “not have

dimension” with “belongs” field as {belongs:

'invoice'} will allow us to list the customers without an

invoice on the whole Elasticsearch index. However, we may

want to see the results based on another filter, such as a date

interval. On this case, since the “not have dimension”s can

also have filters, we can define a filter and add it to our “not

have dimension”.

C. Post Operations

Calculations and value formatting is a common thing to

do on report generation. When needed, Post Operations may

be used to tinker with the retrieved data and they can be

elaborated in two types; one for calculating new data, called

calculate operation, and one for modifying existing data,

called modify operation.

A post-operation must have the following fields: result,

operation and type. They are common for each operation

type, where the result field is the name of the data field

which the post operation will be affecting. For calculation

operations, this field will be used as the calculated field’s
name. For modify operations, it is the name of the field on

which the modification operation works on. operation field

is the name of the operation to process, such as sum, divide,

absolute, floor, ceil. Finally, the type field is the indicator of

the type of the post-operation itself. It can be whether

"calculateOperation" or "modifyOperation".

Calculate operations have two more additional fields. The

first one the "columns" which holds the dimensions involved

in the calculation operation and the second one is the

"fixDecimal" which is to specify the number of the digits

that should be displayed if the calculated value is a decimal

number. Usable calculate operations are essential arithmetic

functions; sum, subtract, multiply, divide.

Modify operations have only one additional field called

"param"; which is the additional required parameter(s) to

apply the operation and may not always be necessary.

Modify operations, which can be used by the developers, are

listed below:

Fix Decimal: To limit the number of the decimals to show

of a decimal number. The param field must be the number of

the digits.

Floor: To get the floor value of a decimal number.

Ceil: To get the ceiling value of a decimal number.

Abs: To get the absolute value of a number.

Replace: To replace some specific values of a dimension

in the result set. A serialized JSON array string, which has

objects as elements containing "from" and "to" values, is

required as the "param" field.

D. Constraints and Query Validations

Our motivation is to simplify the query generation for the

Elasticsearch without needing to know its query formulation

details. However, there are also lots of syntactic controls and

additional semantic constraints which should also be taken

into account while writing Dimension Queries. Based on the

metamodel elements and their relations discussed in the

previous section, a modeling environment has been

developed to use language constructs and features of DQL.

Query developers may use our DSML’s graphical syntax

and all required constraint checks and hence query

validations can be realized automatically according to the

Elasticsearch specifications.

Fig. 2 shows a screenshot taken from web-based IDE of

the proposed Elasticsearch DQL. On the left side of the

screen, the indexes on the system are listed with a combo

box. After an index gets chosen, its metadata are shown

directly under the index selector. The users then can start to

create a DQ by simply dragging and dropping the fields they

want to include in the query. The DQ gets automatically

updated on the backstage each time the user drops a new

field, updates or removes an existing one. The query can be

tracked from the query panel at the top side of the screen

dynamically.

BERKAY AKDAL ET AL.: MODEL-DRIVEN QUERY GENERATION FOR ELASTICSEARCH 855

Filters and post operations are listed on the panel at the

right side of the screen. Users can create new filters and post

operations by clicking the add button (+) near them and can

include filters to the query by simply dragging and dropping

them into either on a data dimension or into the query

directly.

After the users finish choosing the fields, the DQ can be

sent to the backing server in order to be transformed to the

Elasticsearch query. At this point, the users can choose to

simply view the transformed query or the results generated

with the execution of the transformed DQ.

There are lots of constraints needed to be followed while

writing an Elasticsearch query. To be able to generate valid,

executable Elasticsearch queries, we have also put some

constraints on DQL and hence the IDE warns the user or

prints an error message if a constraint gets violated.

Filters are for filtering data; they do not cause a field to be

included within the result set. Therefore, filters cannot

contain filters. Appending filters to other filters will have no

effect on the generated query.

Since they affect the set of all results, the “not have

dimension”s can only be used within the query, not within

other dimensions.

Fields from different documents with parent-child relation

cannot get queried without performing an operation over

them. Because, for a member of the parent document, it is

possible to have more than one value on the child document

and it will not possible to create a result set without making

some groupings on the parent document.

Mathematical processes such as number formatting,

numerical calculations and digit rounding, can only be

performed on numeric dimensions as well as date format

operation can only be performed on date dimensions.

Applying group function to a dimension causes an

aggregation to get started on Elasticsearch query. On

Elasticsearch queries, when an aggregation gets started, all

remaining fields must be included into that aggregation in

some way. So, when the grouping function is applied over a

dimension in the DQ, all remaining dimensions need to have

a function value.

Each dimension of the query must be unique. If there is

more than one dimension created with the same field of the

same document -having also the same function-, one of the

dimensions must have a filter different than the other one's

filters at least. Semantic definitions on DQL, make all above

constraint checks possible inside the IDE.

E. Query Transformation Stage

There are four stages of a query transformation which are

all automatized within DQL’s IDE. First one is called the

Reducing stage where the dimensions in the DQ get

inspected and grouped by their respective nested documents

on the Elasticsearch index. By doing this, it is possible to

make fewer aggregations on the Elasticsearch query,

therefore, it increases query execution performance by

preventing same nested documents to get aggregated over

and over. The requirement for two dimensions to be grouped

is that they must be in the same document on Elasticsearch

and they must have exactly same filters getting applied to

them.

After dimensions are reduced, they get Sorted according

to their documents and the relations between their

documents on the index.

Two rules are applied while sorting the dimensions:

1) For multiple dimensions on the same document, if the

document has a nested object, its own dimensions have

priority than the nested object's dimensions. For instance,

Fig. 2. IDE for the proposed Elasticsearch DSML

856 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

considering the metadata given in Fig. 3, dimensions of

Document A have a higher priority than dimensions of the

Nested Object B. Likewise, Document C over Nested Object

C1 and Nested Object C1 over Nested Object C1.1 have

priorities.

2) Finally, calculation dimensions like sum, average,

percentage, and count have the lowest priority so they take

place at the end of the sorted dimensions list.

Analyzing stage is the one where the Elasticsearch query

gets started to be created in pieces. On this stage, each

dimension is converted to proper Elasticsearch query

fragment and gathered up on a temporary list. This phase is

crucial because, during aggregation generation, it is decided

whether the aggregations will be linked with a nested

relation or parent-child relation. “Not have dimension”s also

will be included to the query on this stage.

The final stage of the query transformation is the

Generation stage. On this stage, the query at hand is already

has been reduced (for optimization), sorted and analyzed.

The dimensions have been converted to aggregation blocks

and relations between these aggregation blocks have been

determined.

The list that's holding the aggregation blocks get iterated

and linked with respect to their flags set from the previous

stage of query transformation. Aggregation link is

established with respect to the metadata of the index. That

means, aggregation blocks will be linked to the others either

as siblings or children according to their dimensions’
"belongs" field.

III. USE OF DQL DURING QUERY GENERATION

The Dimension Queries may be grouped into four main

types corresponding to the types of the result sets they will

generate upon the execution of the transformed Elasticsearch

queries. This section will briefly explain these types. For a

better comprehension, queries are represented in their textual

notation during the following discussion, which are achieved

automatically by using DQL and its graphical modeling

environment.

In the first type, the query aims at getting direct results

without making any grouping or filtering. If that’s the case,
there is only one constraint: As stated on the constraints

section, the fields on the query must be on the same

Elasticsearch document.

When the created query is in this type (see Fig. 4),

dimensions must have three main fields. Function field of

the dimensions must have a static value of “include” (shown

in lines 6, 9, 12). Additionally, orderby field (line 5) may be

added to one dimension to sort the results.

The corresponding translation (see Fig. 5) may seem

simple because the translated query is obviously small and

easy to write. However, the real power of the Dimension

Queries, comes to stage when groupings and functions get

involved with the query.

If the created query aims to fetch fields from different

related documents (see “belongs” properties in Fig. 6 on
lines 4, 7 and 10), the second type of query comes in. This

type of query groups fields so different documents may be

included in the result set. Again, on this type of query (Fig.

6), there is only one constraint: If a grouping, namely

aggregation, starts with a dimension, all remaining

dimensions must have a function applied on them.

Fig. 3. Sample Index Metadata

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

{ index:"indexName",

 type: "doc",

 dimensions: [

 {property: "prop_1",

 belongs: "doc", orderby: "asc",

 function: "include" },

 {property: "prop_2",

 belongs: "doc",

 function: "include" },

 {property: "prop_3",

 belongs: "doc",

 function: "include"}

],

 from: 0,

 size: 50 }

Fig. 4. Dimension Query without Groupings

01

02

03

04

05

06

07

08

09

10

11

{ from: 0, size: 50,

 query: { bool: { disable_coord: false,

 adjust_pure_negative: true,

 boost: 1 }

 },

 _source: {

 includes: ["prop_1","prop_2","prop_3"],

 excludes: []

 },

 sort: [{property_1.sort: {order: "asc"}}]

}

Fig. 5. Transformed Elasticsearch Query without Aggregations

BERKAY AKDAL ET AL.: MODEL-DRIVEN QUERY GENERATION FOR ELASTICSEARCH 857

While grouping the results, users may also want to do

some calculations to see the summarized result. For

example, let us consider a report to list the total invoice price

for each customer. To do that, first an aggregation needs to

be set up on customers (“function” field on line 5 in Fig. 6)

then another summarization can be used on other

dimensions. The reason for this aggregation requirement is,

Elasticsearch needs to make some groupings to calculate

summarized results such as sum and avg. Functions can only

be applied when a grouping gets applied to the query.

Dimensions on this type of query must have same fields

as the ones within the previous query, except the function

field values may be “agg”, “count”, “sum”, “avg” and
“percentage” instead of “include” (see lines 5, 8 and 11 in
Fig. 6). Fully generated Elasticsearch query for this DQ type

can not be shown here due to space limitations. However,

aggregations part of the generated query can be seen in Fig.

7.

If the users want to filter their data, they may create filter

dimensions. Different usages of different filters are given in

Fig 8. Applying a filter directly to the query is the case when

the filters will be inserted within the query field of the

transformed Elasticsearch query; thus affecting the whole

result set as mentioned before. The filter (lines between 17 –

20 in Fig. 8) on this sample is for listing the results by the

prop_3 field of the doc_2 with a value greater than 1000.

Applying filter to specific dimensions (lines between 13 –

14 in Fig. 8) will cause sub-query blocks to be created and

inserted as filters to related aggregations. When this

happens, the filters will be applied on only the related

aggregation and, if there is any, to its sub aggregations.

Finally, the usage of “not have dimension” is shown
between the lines 16 – 19 in Fig 8. In this example, a sample

filter has been added to the “not have dimension”. Before the
“not have” filter gets applied, its inner filter will be applied

first to narrow down the results.

An excerpt from the generic filter of the generated

Elasticsearch query is given in Fig 9. On the transformed

query, prop_2 on line 4 is the name of the field to which the

filter applies. It corresponds to the property field’s value on
the dimension query (see Fig. 8, line 14). The field called

from (Fig 9, line 5) is the value of the value field previously

indicated in Fig. 8, line 19. Finally, the type field in the line

14 (Fig. 9) is the name of the Elasticsearch document,

containing the related fields. It corresponds to the belongs

field (Fig. 8, line 18) in the Dimension Query filter.

01

02

03

04

05

06

07

08

09

10

11

12

13

{index: "indexName",

 type: "topLevelDocName",

 dimensions: [{

 property: "prop_1", belongs: "doc_1",

 orderby: "asc", function: "agg"

 }, {

 property: "prop_2", belongs: "doc_2",

 function: "sum"

 }, {

 property: "prop_3", belongs: "doc_2",

 function: "sum"

 }],

 from: 0, size: 50}

Fig 6. Dimension Query with Functions

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

...

{aggregations: {

 prop_1_doc_1_agg: {

 terms: { field: "prop_1.keyword",

 missing: "null", size: 2147483647,

 min_doc_count: 1, shard_min_doc_count:0,

 show_term_doc_count_error: false,

 order: { _term: "asc" } },

 aggregations: {

 prop_2_doc_2_sum: {

 children: { type: "documentName_2" },

 aggregations: {

 prop_2_doc_2_sum: {

 sum: { field: "prop_2" } } } },

 prop_name_3_doc_2_sum: {

 children: { type: "doc_2" },

 aggregations: {

 prop_3_doc_2_sum: {

 sum: { field: "prop_3" } } }

} } } } }

...

Fig. 7. An excerpt from transformed Elasticsearch Query with Functions

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

{index: "indexName",

 type: "topLevelDocName",

 dimensions: [{

 property: "topLevelDocName",

 belongs: "prop_1",

 orderby: "asc", function: "agg" },

 {property: "doc_1",

 belongs: "prop_2", function: "avg" },

 {property: "doc_1",

 belongs: "prop_3", function: "avg",

 filters: [{

 property: "doc_1", belongs: "prop_4",

 function: "lt", values: [3000]}] },

 {property: "prop_2", belongs: "doc_1",

 function: "gt", values: [1000] },

 {belongs: "doc_2", function: "nothave",

 filters: [{

 property: "prop_4", belongs: "doc_2",

 function: "gt", values: [10000]}]

 }],

 from: 0, size: 50}

Fig. 8. Dimension Query with Dimension Filters

858 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Depending on the function of the filter in the DQ,

Elasticsearch query filter properties have different usages.

On Fig 9. line 5, to field is used as the upper limit when the

DQ function is either less than or range. On the given

example include_upper field is true since it is a greater

than filter and the upper value limit is infinity.

include_lower field acts like the same when the filter

function is less than. The same fields get used when the

filter is less than or equal to and greater than or equal to.

Part on the aggregations included in the same transformed

query is given in Fig. 10. Aggregation names (bold texts on

lines 3, 16 and 20 in Fig. 10) are generated by combining

property, belongs and function fields on dimensions. The

dimension specific inner filter (Fig. 11) is inserted in place

of the bold filters text in line 19 of Fig. 10. The transformed

“not have dimension” is given in Fig 12. Note that the inner
filter is nearly the same as the one in Fig. 10. The must not

keyword in line 2 determines the purpose of the filter.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

...

{"has_child": { "query": { "bool": {

 "must": [{ "range": {

 "prop_2": {

 "from": 1000, "to": null,

 "include_lower": false,

 "include_upper": true,

 "boost": 1.0

 } }

 }],

 "disable_coord": false,

 "adjust_pure_negative": true, "boost": 1.0

 } },

 "type": "doc_1",

 "score_mode": "sum", "min_children": 0,

 "max_children": 2147483647,

 "ignore_unmapped": false, "boost": 1.0

} }

...

Fig. 9. An excerpt from transformed Elasticsearch Query’s Generic
Filter

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

...

{"aggregations": {

 "prop_1_topLevelDocName_agg": {

 "terms": {

 "field": "prop_1.keyword",

 "missing": "null",

 "size": 2147483647,

 "min_doc_count": 1,

 "shard_min_doc_count": 0,

 "show_term_doc_count_error": false,

 "order": { "_term": "asc" }

 },

 "aggregations": {

 "prop_2_doc_1_avg": {

 "children": { "type": "doc_1" },

 "aggregations": { "prop_2_doc_1_avg": {

 "avg": { "field": "prop_2" } },

 "prop_3_doc_1_avg_filters_prop_4_lt_4000":

 { "filters" },

 "prop_3_doc_1_avg_filters_prop_4_lt_4000":

 { "avg": { "field": "prop_3" } }

} } } } } }

...

Fig. 10. An excerpt from transformed Elasticsearch Query’s
Aggregations

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17z

{"filters": { "filters": [{

 "bool": { "filter": [{ "range": {

 "prop_4": {

 "from": null,

 "to": 4000,

 "include_lower": true,

 "include_upper": false,

 "boost": 1.0

 } } }],

 "disable_coord": false,

 "adjust_pure_negative": true,

 "boost": 1.0

 }

 }],

 "other_bucket": false,

 "other_bucket_key": "_other_"

} }

Fig 11. An excerpt from transformed Elasticsearch Query’s Inner Filter

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

...

{"bool": { "must_not": [{ "has_child": {

 "query": { "bool": { "filter": [{

 "range": { "prop_4": {

 "from": 10000, "to": null,

 "include_lower": false,

 "include_upper": true,

 "boost": 1.0

 } } }],

 "disable_coord": false,

 "adjust_pure_negative": true,

 "boost": 1.0 } },

 "type": "doc_2",

 "score_mode": "sum",

 "min_children": 0,

 "max_children": 2147483647,

 "ignore_unmapped": false,

 "boost": 1.0

 } }],

 "disable_coord": false,

 "adjust_pure_negative": true,

 "boost": 1.0 } }

...

Fig. 12. An excerpt from transformed Elasticsearch Query’s “Not
Have” Filter

BERKAY AKDAL ET AL.: MODEL-DRIVEN QUERY GENERATION FOR ELASTICSEARCH 859

IV. EVALUATION

An evaluation of using DQL has been performed at the

industrial level with the participation of a group of

developers from Galaksiya Information Technologies

(http://galaksiya.com/). Galaksiya is a software company,

located in Izmir, Turkey and its business domain mainly

consists of Big Data and its applications. In some of their

software solutions, the developers in the company recently

started to work on Elasticsearch and related data storage.

At the beginning of the evaluation, we have determined

the logistics as the target domain and created a logistics

database for our case study. The main reason for choosing

that domain is logistics datasets are very large in volume

thus making them hard to query. Considering an end-user

scenario to create a report over a logistics dataset to view the

latest activities around the world, we have created a sample

database by using the most active 51 ports on the world, 82

random selected shipping company names, distributed to 19

random countries. Each company on the dataset has random

amount of ships with a total of 5000. The dataset has around

4750 auto-generated voyages with randomly selected goods.

Total number of goods in the system is 50000, again all

randomly generated.

Fig. 2 also shows a DQL instance model prepared for this

evaluation. In the query panel residing at the upper middle of

the IDE, there exist model items correspond to the required

data dimensions in the query, namely Company, Market

Value, Vessel, MMSI, IMO, Departure Port, Shipment Item

and Amount. On the right panel under the filters, the Vessel

and the Company are the defined filters which can be used in

the query. Once dropped on a dimension or to the query,

they will be transformed into filters within the related

dimension or into a filter dimension depending where they

are being applied.

As being an instance of DQL, the created query aims at

listing the amount of the goods on each shipment with the

information of departure ports, vessel details and company

information. In addition, the same query model leads to

prepare the query results inside a report grouping the data by

the companies, vessels and departure ports.

For the qualitative assessment of DQL usage, five

software developers became volunteer and agreed on being

an evaluator. All of these evaluators has B.Sc. in computer

science / software engineering and two of them are M.Sc.

students in computer related fields at the time of this

evaluation performed. Evaluators possessed the experience

of developing software in industrial scale considering Big

Data and/or Linked Open Data applications for different

business domains (3 years on the average). Although they

were skilled with creating database queries and working

with data storages, they had no or very little knowledge on

the query language required for Elasticsearch. After a brief

introduction of DQL and its IDE, the evaluators were

requested to create the same report given in Fig. 2. Upon

completion their modeling session, a questionnaire including

the following open-ended questions was given to the

evaluators and their responses were gathered:

1. How does DQL and its IDE make writing

Elasticsearch queries easier?

2. Did you encounter any difficulties while modeling

queries and creating reports with using DQL? If

any, please provide your suggestions to fix them.

3. Do you think DQL is easy to learn and use?

All the evaluators agreed on the biggest advantage of

DQL that it eliminates the syntax errors which may be

encountered while creating a query since there is no query

writing process. They also agreed that the use of the DQL

removed hardcoding the Elasticsearch queries hereafter. And

most of them indicated that it is possible to create

Elasticsearch queries without writing a single line of code.

One of the evaluators stated that DQL’s graphical syntax is
comprehensive enough to cover all Elasticsearch domain and

accompanying IDE helped them for determining and

visualizing the details of queries from scratch. Some of the

evaluators found the model panel residing on the left side of

the DQL IDE (see Fig. 2) very helpful by means of

dynamically showing the whole data model pertaining to the

query under development.

For the second question, some of the evaluators stated that

applying a filter to the report directly or using it separately

on dimensions is a little bit confusing at the first time but

after using the editor for a while, it gets simpler. Based on

the feedbacks gained from the evaluators, visual concrete

notations required for query modeling and organization of

them inside the IDE were also re-arranged since some of the

evaluators found the arrangement of these components a bit

complicated.

Finally, for the last question, everyone agreed that even

end-users with no knowledge on Elasticsearch would be able

to use DQL for Elasticsearch query design and

implementation after a small training. Most of the evaluators

confirmed that there is no need to know any kind of syntax

and programming (or querying) language for a person to use

DQL and its IDE. They also added that little knowledge

about basic query logic is enough for a user before using

DQL. However, all of the evaluators also answered the third

question by indicating there is still a learning curve to get

used to the DQL editor, but with a short training session it

becomes easy to learn and design reports.

In order to measure whether the use of DQL speeds up

query creation, each evaluator’s query design with using
DQL has been recorded. The evaluators completed the

generation of the Elasticsearch query required for the above

logistics case study around 30 mins. on the average. The

evaluators were also requested to create the same query

again but this time without using DQL. They just used

Elasticsearch query syntax and the result was amazing: It

took around 6.5 hours to complete writing the same query on

the average. Although that measurement was achieved from

860 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

only a single case study, we believe that the speedup gain

obtained with using DQL in here is promising since the

experts in the company confirmed that the query handled in

here is complex enough comparing with the exact queries

created in their commercial applications for datasets which

are almost same size with the logistics dataset used in the

case study.

V. RELATED WORK

Like other domains, in order to master the problems of

creation, management and evolution of databases and

querying on these databases, the researchers investigate the

ways of applying MDD principles and/or proposing the use

of DSLs / DSMLs. For instance, MDSheet is proposed in

[25] for model-driven engineering of spreadsheets. End-

users can build sheets within MDSheet framework via its

tool. The framework is enriched with a model-driven query

language [20] which supports most of the SQL standards.

The language is also structured as a DSL and the related

MDE framework is integrated with Google Query function

in [26]. Similarly, FDL [27] is a description language for

spreadsheets, which is empowered with visualization and

analysis tool for constructing the separation between the

input of formulas and the output of calculation results.

Although these studies provide a good MDD framework for

spreadsheets, it gets very difficult to extract information on a

single potentially large matrix in an effective way inside

spreadsheets and this deficiency may cause spreadsheets a

weak alternative for databases, especially the ones as being

Elasticsearch storages.

Ristic et al. [21] define a model-driven database reverse

engineering mechanism through a chain of model-to-model

transformations. These transformations are applied between

physical database schema and generic relational schema. A

similar model-to-model transformation approach is followed

in [22] for automatically achieving a form type data model

again from a generic database schema. Hence, the form type

specification represents a platform independent prescription

model of both future screens and report forms which can be

generated later for a complete application. Popovic et al.

[23] propose a DSL, called IIS*CFuncLang, to specify

application-specific functionalities of business applications

for different domains at the platform-independent model

level. The DSL enables modeling the system to be

developed and generalization of the required executable

codes is realized via some model transformations. Hence,

specifications defined with the DSL can be converted into

executable PL/SQL program codes. These studies bring

valuable MDD solutions on database processing, query

generation and reverse engineering of databases. However,

the metamodels, the transformations and the DSLs defined

in these studies do not consider the Elasticsearch engines

and hence, deriving an MDD framework for generating

queries, structured according to Elasticsearch specifications

on various query types, is not covered in these studies.

Research on Elasticsearch has been recently emerged due

to novelty brought into query structures. Kononenko et al.

[3] discuss how Elasticsearch differs from the traditional

relational databases and give some concrete applications of

using Elasticsearch queries. In addition, they give their

assessment on the strengths and the weaknesses of

Elasticsearch for querying new software repositories.

Elasticsearch’s inverted index capabilities are used in [28]

for implementing an optimized intelligent search algorithm.

Query optimization with using this algorithm is employed in

the retrieval of medicine data. Finally, a social media

analysis system is introduced [29] in which features of

Elasticsearch are used on analyzing Big Data. Two ways of

giving Twitter data as input to Elasticsearch are defined and

their performances are compared by means of consuming

hardware resources and the capacity of processing tweets.

Our work contributes to the research on Elasticsearch by

introducing a DSML and its supporting IDE which can be

used to facilitate and expedite the creation of Elasticsearch

queries by following a MDD process.

VI. CONCLUSION

A DSML, called DQL, for supporting MDD of

Elasticsearch queries has been introduced in this paper.

Based on the derived metamodel of Elasticsearch queries, a

graphical concrete syntax is provided for query modeling

inside the IDE of the language. All required constraint

checks and query validations are automatically performed on

the models prepared inside this IDE and Elasticsearch

queries are generated from these models. Furthermore, IDE

is capable of executing these auto-generated Elasticsearch

queries on remote repositories and creating reports covering

the execution results. The conducted evaluation showed that

the use of the language significantly decreases the

development time required for creating Elasticsearch

queries. Finally, qualitative assessment, based on the

developers’ feedback, exposed how DQL facilitates the

development of Elasticsearch queries.

In the future work, our aim is to extend DQL’s coverage
on different types of Elasticsearch use cases. Also, we plan

to enrich DQL’s query modeling environment with
improved visualization components especially for reporting

Elasticsearch results. In order to determine how these new

components enable more feasible query generation, the

evaluation performed on DQL will be improved and

experiment settings will be structured with including some

sort of hypothesis testing as being considered in similar

efforts like [30-32].

ACKNOWLEDGMENT

We would like to thank software developers from

Galaksiya Information Technologies for their cooperation

and valuable feedbacks. This work was supported by Yaşar
Group (http://yasar.com.tr/en/).

BERKAY AKDAL ET AL.: MODEL-DRIVEN QUERY GENERATION FOR ELASTICSEARCH 861

REFERENCES

[1] A. Bialecki, R. Muir, G. Ingersoil. 2012. “Apache Lucene 4”, in Proc.

SIGIR 2012 Workshop on Open Source Information Retrieval,

Portland, Oregon USA, pp. 17–24.

[2] Elasticsearch BV. 2014. “Elasticsearch - The Heart of the Elastic

Stack”, available at: https://www.elastic.co/products/elasticsearch

(last access: July 2018)

[3] O. Kononenko, O. Baysal, R. Holmes, M. W. Godfrey. 2014. Mining

modern repositories with elasticsearch. In Proc. 11th Working

Conference on Mining Software Repositories (MSR 2014),

Hyderabad, India, pp. 328–331, DOI: 10.1145/2597073.2597091.

[4] Elasticsearch BV. 2015. “Kibana - Your Window into the Elastic

Stack”, available at: https://www.elastic.co/products/kibana (last

access: July 2018)

[5] B. Selic. 2003. The pragmatics of model-driven development. IEEE

Software 20: 19-25, DOI: 10.1109/MS.2003.1231146

[6] J. Poruban, M. Bacikova, S. Chodarev, M. Nosal. 2014. “Pragmatic

Model-Driven Software Development from the Viewpoint of a

Programmer: Teaching Experience”, in Proc. 3rd Workshop on

Model Driven Approaches in System Development

(MDASD@FedCSIS’14), Warsaw, Poland, pp. 1647–1656, DOI:

10.15439/2014F266.

[7] M. Brambilla, J. Cabot, M. Wimmer. 2017. Model Driven Software

Engineering in Practice, Second Edition, Morgan & Claypool, DOI:

10.2200/S00751ED2V01Y201701SWE004

[8] J. Whittle, J. Hutchinson, M. Rouncefield. 2014. The state of practice

in model-driven Engineering. IEEE Software, 31(3):79-85, DOI:

10.1109/MS.2013.65.

[9] G. Kardas. 2013. Model-driven development of multi-agent systems: a

survey and evaluation. The Knowledge Engineering Review, 28(4):

479-503, DOI: 10.1017/S0269888913000088

[10] S. Mustafiz, X. Sun, J. Kienzle, H. Vangheluwe. 2008. Model-driven

assessment of system dependability. Software & Systems Modeling,

7(4): 487-502, DOI: 10.1007/s10270-008-0084-1.

[11] H. B. Saritas, G. Kardas. 2014. A model driven architecture for the

development of smart card software. Computer Languages, Systems

& Structures, 40(2): 53-72, DOI: 10.1016/j.cl.2014.02.001.

[12] A. Harbouche, N. Djedi, M. Erradi, J. Ben-Othman, A. Kobbane.

2017. Model driven flexible design of a wireless body sensor

network for health monitoring. Computer Networks, 129(2): 548-571,

DOI: 10.1016/j.comnet.2017.06.014.

[13] F. Erata, C. Gardent, B. Gyawali, A. Shimorina, Y. Lussaud, B.

Tekinerdogan, G. Kardas, A. Monceaux. 2017. “ModelWriter: Text

& Model-Synchronized Document Engineering Platform”, in Proc

32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE 2017), Urbana-Champaign, Illinois, USA, pp. 907-

912.

[14] M. Mernik, J. Heering, A. Sloane. 2005. When and how to develop

domain-specific languages. ACM Computing Surveys, 37(4): 316-

344, DOI: 10.1145/1118890.1118892.

[15] M. J. Varanda Pereira, M. Mernik, D. da Cruz, P. Rangel Henriques.

2008. Program Comprehension for Domain-specific Languages.

Computer Science and Information Systems, 5(2): 1-17, DOI:

10.2298/CSIS0802001P.

[16] I. Lukovic, M. J. Varanda Pereira, N. Oliveira, D. da Cruz, P. Rangel

Henriques. 2011. A DSL for PIM specifications: Design and attribute

grammar based implementation. Computer Science and Information

Systems, 8(2): 379-403, DOI: 10.2298/CSIS101229018L.

[17] T. Kosar, M. Mernik, J. Gray, T. Kos. 2014. Debugging measurement

systems using a domain-specific modeling language. Computers in

Industry, 65(4): 622-635, DOI: 10.1016/j.compind.2014.01.013.

[18] B. Bryant, J-M. Jezequel, R. Lammel, M. Mernik, M. Schindler,

F. Steinmann. 2015. “Globalized Domain Specific Language

Engineering”, in Globalizing Domain-Specific Languages.

B. Combemale, B. Cheng, R. France, J-M. Jezequel, B. Rumpe (eds).

Lecture Notes in Computer Science, 9400: 43-69, DOI: 10.1007/978-

3-319-26172-0_4.

[19] G. Kardas, B. T. Tezel, M. Challenger. 2018. Domain-specific

modelling language for belief-desire-intention software agents. IET

Software, DOI: 10.1049/iet-sen.2017.0094.

[20] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, J. Saraiva. 2013.

“Querying model-driven spreadsheets”, in Proc. 2013 IEEE

Symposium on Visual Languages and Human Centric Computing

(VL/HCC 2013), San Jose, CA, USA, pp. 83-86, DOI:

10.1109/VLHCC.2013.6645247.

[21] S. Ristic, S. Aleksic, M. Celikovic, V. Dimitrieski, I. Lukovic. 2014.

Database reverse engineering based on meta-models. Central

European Journal of Computer Science, 4(3): 150-159, DOI:

10.2478/s13537-014-0218-1.

[22] S. Ristic, S. Kordic, M. Celikovic, V. Dimitrieski, I. Lukovic. 2016..

“A Model-to-Model Transformation of a Generic Relational

Database Schema into a Form Type Data Model”, in Proc. 4rd

Workshop on Model Driven Approaches in System Development

(MDASD@FedCSIS’16), Gdansk, Poland, pp. 1577–1580, DOI:

10.15439/2016F408.

[23] A. Popovic, I. Lukovic, V. Dimitrieski, V. Djukic. 2015. A DSL for

modeling application-specific functionalities of business

applications. Computer Languages, Systems & Structures, 43: 69-95,

DOI: 10.1016/j.cl.2015.03.003.

[24] Elasticsearch BV. 2015. “Elastic Stack and Product Documentation”,

available at: https://www.elastic.co/guide/index.html (last access:

July 2018)

[25] J. Cunha, J. P. Fernandes, J. Mendes, J. Saraiva. 2012. “MDSheet: A

framework for model-driven spreadsheet engineering”., in Proc. 34th

International Conference on Software Engineering (ICSE 2012),

Zurich, Switzerland, pp. 1395-1398, DOI:

10.1109/ICSE.2012.6227239.

[26] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, J. Saraiva. 2015.

“Design and Implementation of Queries for Model-Driven

Spreadsheets”, in Central European Functional Programming

School. V. Zsok, Z. Horvath, L., Csató (eds). Lecture Notes in

Computer Science, 8606: 459-478, DOI: 10.1007/978-3-319-15940-

9_13.

[27] Y. Horry. 2017. Financial information description language and

visualization/analysis tools. Computer Languages, Systems &

Structures, 50, 31-52, DOI: 10.1016/j.cl.2017.05.005.

[28] C. Bhadane, H. A. Mody, D. U. Shah, P. R. Sheth. 2014. Use of

Elastic Search for Intelligent Algorithms to Ease the Healthcare

Industry. International Journal of Soft Computing and Engineering,

3(6), 222-225.

[29] P. P. I. Langi, Widyawan, W. Najib, T. B. Aji. 2015. in Proc. 2015

International Conference on Information, Communication

Technology and System (ICTS 2015), Surabaya, Indonesia, pp. 181-

186, DOI: 10.1109/ICTS.2015.7379895.

[30] F. Haser, M. Felderer, R: Breu. 2016. Is business domain language

support beneficial for creating test case specifications: A controlled

experiment. Information and Software Technology, 79, 52-62, DOI:

10.1016/ j.infsof.2016.07.001.

[31] A. N. Johanson, W. Hasselbring. 2017. Effectiveness and efficiency of

a domain-specific language for high-performance marine ecosystem

simulation: a controlled experiment. Empirical Software

Engineering, 22(4), 2206-2236, DOI: 10.1007/s1066.

[32] T. Kosar, S. Gaberc, J. C. Carver, M. Mernik. 2018. Program

comprehension of domain-specific and general-purpose languages:

replication of a family of experiments using integrated development

environments. Empirical Software Engineering, DOI:

10.1007/s10664-017-9593-2.

862 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

