
Abstract—Elasticsearch is a distributed RESTful search en-

gine, capable of solving growing number of use cases and can

handle  petabytes  of  data  in  seconds.  However,  Elasticsearch

comes  with  a  complex  query  language  which  causes  a  steep

learning curve for  the developers and,  therefore,  creation of

queries  can  be  difficult  and  time-consuming  in  many  cases.

Hence, in this paper, we introduce a Domain-specific Modeling

Language (DSML), called Dimension Query Language (DQL),

to  support  the  model-driven  development  of  Elasticsearch

queries. Elasticsearch queries can be automatically generated

from DQL models and DQL’s IDE is capable of executing these

auto-generated  Elasticsearch  queries  on  remote  repositories.

An evaluation of using DQL has been performed at the indus-

trial level with the participation of a group of developers. The

conducted evaluation showed that the use of the language sig-

nificantly decreases the development time required for creating

Elasticsearch queries. Finally, qualitative assessment, based on

the developers’ feedback, exposed how DQL facilitates the de-

velopment of Elasticsearch queries.

I. INTRODUCTION

LASTICSEARCH is a distributed RESTful search en-

gine,  which is based on Lucene information retrieval

software library [1] and is capable of solving growing num-

ber of use cases. Many types of searches (e.g. structured, un-

structured,  geo,  metric)  can be prepared  and combined.  It

works in clusters, and according to some tests performed by

its  developers  (namely,  Elastic  Team),  it  is  reported  that

Elasticsearch can handle petabytes of data in seconds [2]. 

E

Elasticsearch  differs  from  classical  relational  database

management  systems  (RDBMS)  in  many  ways:  Elastic-

search’s primary database model is a search engine and it

stores documents instead of key-values. Each document in

Elasticsearch is a JavaScript Object Notation (JSON) object,

and hence it does not use Scripted Query Language (SQL).

Queries are provided with its own language based on JSON.

A given search can be performed not only in a form of a

query; filters can also be used for document search which is

faster than the queries. Finally, it is schema-free, i.e. two do-

cuments of the same type can have different sets of fields [3]

However,  such  kind of  powerful  engine  comes  with a

very complex query language which causes a steep learning

curve for the query developers. Moreover, there are numer-

ous types of queries and scripts combinable with each other

whose creation and use can be difficult and time consuming

in many cases.

There  exists  a  tool  for  visualizing  Elasticsearch  data,

called Kibana, which is also developed by the Elastic Team

[4].  It  works on top of the content indexed on an Elastic-

search cluster and it can directly connect to an Elasticsearch

server to be used for generating visualizations and reports;

but again, the users must have prior knowledge about how

Elasticsearch works and need to be experienced in dealing

with its complex query language.

 The paradigm shift introduced by model-driven develop-

ment (MDD) [5, 6] in which the focus changes from code to

models,  leverages  the  abstraction  level  and  promotes  the

software development for various application domains (e.g.

[7-13]). Moreover, domain-specific languages (DSLs) / do-

main-specific modeling languages (DSMLs) [14-18] which

have notations and constructs tailored toward a particular ap-

plication domain, assist to the developers during execution

of MDD processes by providing first a user-friendly syntax

for modeling systems (mostly in a visual manner) and then a

translational  semantics  for  generating  application software

and any other artifacts automatically [19].

Abovementioned features and benefits of applying MDD

and using DSMLs in other domains conduce toward produc-

ing a MDD framework also for Elasticsearch. Hence, in this

paper, we introduce a DSML which can be used inside this

MDD framework to facilitate the query writing process re-

quired for the Elasticsearch. Although many efforts exist in

model-driven database processing and query generation (e.g.

[20-23]), they do not consider the specifications of Elastic-

search and do not support generating queries, structured ac-

cording to Elasticsearch which differs  from the traditional

databases.

Originating from a metamodel of Elasticsearch, which is

also derived in this study, the proposed language provides a

graphical concrete syntax for modeling queries within its in-

tegrated  development  environment  (IDE).  Models  of  the

queries,  visually  prepared  in  this  IDE,  are  automatically

translated into corresponding Elasticsearch structures which

are ready to be executed. If the developer requests execution
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of these queries, it is also possible to execute those modeled 

and automatically generated queries on Elasticsearch 

storages. In this paper, we also discuss the use of this DSML 

for the industrial applications and give the results of 

evaluating its use inside a software company specialized for 

developing commercial Big Data applications. 

The rest of the paper is organized as follows: In Section 2, 

the proposed query language is discussed with including its 

metamodel, fundamental elements and built-in query 

transformation process. Section 3 demonstrates the use of 

the language. Evaluation of the language and results of this 

evaluation are discussed in Section 4. Related work is given 

in Section 5. Finally, Section 6 concludes the paper. 

II. DIMENSION QUERY LANGUAGE 

When we think of the three-dimensional space we are in, 

every object has coordinates to locate their position and 

hypothetically, it is possible to list and create reports for 

each object’s or living creature’s position on earth. Such 
report would have three fields for the coordinates linked 

with the name of the related object or person. To find an 

entry on the report, we would have needed to know the 

related entry’s name and coordinates. 
Mathematics and physics define dimension as the 

minimum number of points required to know an object’s 
position and velocity on the space they belong. By this 

definition, we can say that our hypothetical report is a four-

dimensional space, containing entries with four dimensions. 

Originated from this, we named our Elasticsearch query 

model as Dimension Model (DM) and the proposed 

Elasticsearch DSML as Dimension Query Language (DQL). 

In DM, each dimension corresponds to a field of data that 

must be included within the query. 

In the following subsections we first define the 

fundamental elements and the relations inside DQL which 

compose the abstract syntax on the DSML for Elasticsearch. 

Then, we discuss how constraint checks and query 

validations are performed inside DQL’s IDE before 

automatically transforming prepared query models into 

Elasticsearch queries. Finally, query transformation process 

is discussed.   

A. Fundamental DQL Elements 

Our transformation service (that will be discussed later) 

accepts Dimension Query (DQ) instances and generates 

Elasticsearch queries. The users can choose to view the 

transformed queries or directly execute them to view a table 

report over the underlying Elasticsearch storage. These DQ 

instances are created by conforming a metamodel which 

defines fundamental elements and their relations required for 

Elasticsearch queries. The metamodel, which leads to the 

generation of DQL syntax, is depicted in Fig. 1. Elements 

and properties of the metamodel are written in bold in the 

following text. 

Elasticsearch storages, namely indexes, are a collection of 

documents that have similar characteristics [24]. Documents 

belonging to the same index may have relations with each 

other. On Elasticsearch, there are two types of relations. 

“Parent-child relation” links two documents by marking one 

as parent while marking the other one as child. “Nested 

relation” simply writes the whole document into another 

one. 

On query transformation, one of the required properties is 

the name of the document on the top level, defining the 

document without a parent document. This needs to be 

specified as the type field in the Dimension Query. Another 

required field is the index, which is the name of the index to 

execute the query on. Finally, on the dimensions field, 

requested dimensions are expected. Along with these, there 

are some optional fields that a query can uphold, such as 

expected result size as size and offset as from. 

B. Dimension Types 

 Dimensions vary in three types; Data Dimensions, Filter 

and Not Have Dimensions. Data dimensions are used to 

represent the fields to be retrieved upon the execution of the 

query and filter dimensions, by their name and hence they 

are used to filter the retrieved data based on some 

conditions. However, independently from its type, each 

Fig. 1. DQL Metamodel 
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dimension must have two main fields; function and 

belongs.  

The function field is used to specify which operation 

must be performed on the data. With this field; dimensions 

can be grouped, summed, counted and their average or 

percentage over their sum may be calculated. belongs field 

represents the name of the Elasticsearch document of the 

index in which the dimension data are located.  

Data and filter dimensions must also have a field called 

property. This field represents the name of the data to be 

retrieved or filtered. The data dimensions may also have an 

additional orderby field to indicate which dimension must 

be used on ordering the query results. 

If the query designers want to filter data on certain fields, 

filter dimensions may be used to meet this requirement. 

These dimensions will filter the data instead of creating 

another field on the result set. They are different from the 

data retrieval dimension by having additionally one field 

called values, indicating the values to apply with the filter. 

Filters can also be applied to specific data retrieval 

dimensions as well as they can be applied on the query. 

When used in this way, they affect only the dimension they 

are getting applied to. 

The filtering criterion does not always have to be based on 

some values. For example, on a customer-invoice database, 

we may want to list the customers who did not place an 

order between some dates. To handle this case, there is an 

additional type of dimension called “Not Have Dimension”. 

This dimension can be used to filter certain fields, which 

does not have any relations to the given Elasticsearch 

document. Considering the customer-invoice example, let us 

think we have an index with two documents, customer and 

invoice, and assume that there is a parent-child relation, 

customer as parent and invoice as child. Creating a “not have 

dimension” with “belongs” field as {belongs: 

'invoice'} will allow us to list the customers without an 

invoice on the whole Elasticsearch index. However, we may 

want to see the results based on another filter, such as a date 

interval. On this case, since the “not have dimension”s can 

also have filters, we can define a filter and add it to our “not 

have dimension”. 

C. Post Operations 

Calculations and value formatting is a common thing to 

do on report generation. When needed, Post Operations may 

be used to tinker with the retrieved data and they can be 

elaborated in two types; one for calculating new data, called 

calculate operation, and one for modifying existing data, 

called modify operation.  

A post-operation must have the following fields: result, 

operation and type. They are common for each operation 

type, where the result field is the name of the data field 

which the post operation will be affecting. For calculation 

operations, this field will be used as the calculated field’s 
name. For modify operations, it is the name of the field on 

which the modification operation works on. operation field 

is the name of the operation to process, such as sum, divide, 

absolute, floor, ceil. Finally, the type field is the indicator of 

the type of the post-operation itself. It can be whether 

"calculateOperation" or "modifyOperation". 

Calculate operations have two more additional fields. The 

first one the "columns" which holds the dimensions involved 

in the calculation operation and the second one is the 

"fixDecimal" which is to specify the number of the digits 

that should be displayed if the calculated value is a decimal 

number. Usable calculate operations are essential arithmetic 

functions; sum, subtract, multiply, divide. 

Modify operations have only one additional field called 

"param"; which is the additional required parameter(s) to 

apply the operation and may not always be necessary. 

Modify operations, which can be used by the developers, are 

listed below: 

Fix Decimal: To limit the number of the decimals to show 

of a decimal number. The param field must be the number of 

the digits. 

Floor: To get the floor value of a decimal number. 

Ceil: To get the ceiling value of a decimal number. 

Abs: To get the absolute value of a number. 

Replace: To replace some specific values of a dimension 

in the result set. A serialized JSON array string, which has 

objects as elements containing "from" and "to" values, is 

required as the "param" field. 

D. Constraints and Query Validations 

Our motivation is to simplify the query generation for the 

Elasticsearch without needing to know its query formulation 

details. However, there are also lots of syntactic controls and 

additional semantic constraints which should also be taken 

into account while writing Dimension Queries. Based on the 

metamodel elements and their relations discussed in the 

previous section, a modeling environment has been 

developed to use language constructs and features of DQL. 

Query developers may use our DSML’s graphical syntax 

and all required constraint checks and hence query 

validations can be realized automatically according to the 

Elasticsearch specifications. 

Fig. 2 shows a screenshot taken from web-based IDE of 

the proposed Elasticsearch DQL. On the left side of the 

screen, the indexes on the system are listed with a combo 

box. After an index gets chosen, its metadata are shown 

directly under the index selector. The users then can start to 

create a DQ by simply dragging and dropping the fields they 

want to include in the query. The DQ gets automatically 

updated on the backstage each time the user drops a new 

field, updates or removes an existing one. The query can be 

tracked from the query panel at the top side of the screen 

dynamically. 
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Filters and post operations are listed on the panel at the 

right side of the screen. Users can create new filters and post 

operations by clicking the add button (+) near them and can 

include filters to the query by simply dragging and dropping 

them into either on a data dimension or into the query 

directly. 

After the users finish choosing the fields, the DQ can be 

sent to the backing server in order to be transformed to the 

Elasticsearch query. At this point, the users can choose to 

simply view the transformed query or the results generated 

with the execution of the transformed DQ. 

There are lots of constraints needed to be followed while 

writing an Elasticsearch query. To be able to generate valid, 

executable Elasticsearch queries, we have also put some 

constraints on DQL and hence the IDE warns the user or 

prints an error message if a constraint gets violated. 

Filters are for filtering data; they do not cause a field to be 

included within the result set. Therefore, filters cannot 

contain filters. Appending filters to other filters will have no 

effect on the generated query. 

Since they affect the set of all results, the “not have 

dimension”s can only be used within the query, not within 

other dimensions. 

Fields from different documents with parent-child relation 

cannot get queried without performing an operation over 

them. Because, for a member of the parent document, it is 

possible to have more than one value on the child document 

and it will not possible to create a result set without making 

some groupings on the parent document. 

Mathematical processes such as number formatting, 

numerical calculations and digit rounding, can only be 

performed on numeric dimensions as well as date format 

operation can only be performed on date dimensions. 

Applying group function to a dimension causes an 

aggregation to get started on Elasticsearch query. On 

Elasticsearch queries, when an aggregation gets started, all 

remaining fields must be included into that aggregation in 

some way. So, when the grouping function is applied over a 

dimension in the DQ, all remaining dimensions need to have 

a function value. 

Each dimension of the query must be unique. If there is 

more than one dimension created with the same field of the 

same document -having also the same function-, one of the 

dimensions must have a filter different than the other one's 

filters at least. Semantic definitions on DQL, make all above 

constraint checks possible inside the IDE.   

E. Query Transformation Stage 

There are four stages of a query transformation which are 

all automatized within DQL’s IDE. First one is called the 

Reducing stage where the dimensions in the DQ get 

inspected and grouped by their respective nested documents 

on the Elasticsearch index. By doing this, it is possible to 

make fewer aggregations on the Elasticsearch query, 

therefore, it increases query execution performance by 

preventing same nested documents to get aggregated over 

and over. The requirement for two dimensions to be grouped 

is that they must be in the same document on Elasticsearch 

and they must have exactly same filters getting applied to 

them. 

After dimensions are reduced, they get Sorted according 

to their documents and the relations between their 

documents on the index. 

Two rules are applied while sorting the dimensions: 

1) For multiple dimensions on the same document, if the 

document has a nested object, its own dimensions have 

priority than the nested object's dimensions. For instance, 

 

Fig. 2. IDE for the proposed Elasticsearch DSML 
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considering the metadata given in Fig. 3, dimensions of 

Document A have a higher priority than dimensions of the 

Nested Object B. Likewise, Document C over Nested Object 

C1 and Nested Object C1 over Nested Object C1.1 have 

priorities.  

 
2) Finally, calculation dimensions like sum, average, 

percentage, and count have the lowest priority so they take 

place at the end of the sorted dimensions list. 

Analyzing stage is the one where the Elasticsearch query 

gets started to be created in pieces. On this stage, each 

dimension is converted to proper Elasticsearch query 

fragment and gathered up on a temporary list. This phase is 

crucial because, during aggregation generation, it is decided 

whether the aggregations will be linked with a nested 

relation or parent-child relation. “Not have dimension”s also 

will be included to the query on this stage. 

The final stage of the query transformation is the 

Generation stage. On this stage, the query at hand is already 

has been reduced (for optimization), sorted and analyzed. 

The dimensions have been converted to aggregation blocks 

and relations between these aggregation blocks have been 

determined. 

The list that's holding the aggregation blocks get iterated 

and linked with respect to their flags set from the previous 

stage of query transformation. Aggregation link is 

established with respect to the metadata of the index. That 

means, aggregation blocks will be linked to the others either 

as siblings or children according to their dimensions’ 
"belongs" field.  

III. USE OF DQL DURING QUERY GENERATION 

The Dimension Queries may be grouped into four main 

types corresponding to the types of the result sets they will 

generate upon the execution of the transformed Elasticsearch 

queries. This section will briefly explain these types. For a 

better comprehension, queries are represented in their textual 

notation during the following discussion, which are achieved 

automatically by using DQL and its graphical modeling 

environment.  

In the first type, the query aims at getting direct results 

without making any grouping or filtering. If that’s the case, 
there is only one constraint: As stated on the constraints 

section, the fields on the query must be on the same 

Elasticsearch document. 

When the created query is in this type (see Fig. 4), 

dimensions must have three main fields. Function field of 

the dimensions must have a static value of “include” (shown 

in lines 6, 9, 12). Additionally, orderby field (line 5) may be 

added to one dimension to sort the results. 

The corresponding translation (see Fig. 5) may seem 

simple because the translated query is obviously small and 

easy to write. However, the real power of the Dimension 

Queries, comes to stage when groupings and functions get 

involved with the query. 

If the created query aims to fetch fields from different 

related documents (see “belongs” properties in Fig. 6 on 
lines 4, 7 and 10), the second type of query comes in. This 

type of query groups fields so different documents may be 

included in the result set. Again, on this type of query (Fig. 

6), there is only one constraint: If a grouping, namely 

aggregation, starts with a dimension, all remaining 

dimensions must have a function applied on them. 

 

 
 

 
 

 

Fig. 3. Sample Index Metadata 
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{ index:"indexName",  

  type: "doc",  

  dimensions: [  

   {property: "prop_1",  

    belongs: "doc", orderby: "asc", 

    function: "include" },  

   {property: "prop_2", 

    belongs: "doc", 

    function: "include" },  

   {property: "prop_3",   

    belongs: "doc",  

    function: "include"}  

  ],  

  from: 0, 

  size: 50 } 

Fig. 4. Dimension Query without Groupings 
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{ from: 0,  size: 50,  

  query: { bool: { disable_coord: false,    

      adjust_pure_negative: true,   

      boost: 1 } 

  },  

  _source: { 

    includes: ["prop_1","prop_2","prop_3"], 

    excludes: [ ] 

  },  

  sort: [{property_1.sort: {order: "asc"}}] 

} 

Fig. 5. Transformed Elasticsearch Query without Aggregations 
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While grouping the results, users may also want to do 

some calculations to see the summarized result. For 

example, let us consider a report to list the total invoice price 

for each customer. To do that, first an aggregation needs to 

be set up on customers (“function” field on line 5 in Fig. 6) 

then another summarization can be used on other 

dimensions. The reason for this aggregation requirement is, 

Elasticsearch needs to make some groupings to calculate 

summarized results such as sum and avg. Functions can only 

be applied when a grouping gets applied to the query. 

Dimensions on this type of query must have same fields 

as the ones within the previous query, except the function 

field values may be “agg”, “count”, “sum”, “avg” and 
“percentage” instead of “include” (see lines 5, 8 and 11 in 
Fig. 6). Fully generated Elasticsearch query for this DQ type 

can not be shown here due to space limitations. However, 

aggregations part of the generated query can be seen in Fig. 

7. 

 

 

If the users want to filter their data, they may create filter 

dimensions. Different usages of different filters are given in 

Fig 8. Applying a filter directly to the query is the case when 

the filters will be inserted within the query field of the 

transformed Elasticsearch query; thus affecting the whole 

result set as mentioned before. The filter (lines between 17 – 

20 in Fig. 8) on this sample is for listing the results by the 

prop_3 field of the doc_2 with a value greater than 1000. 

Applying filter to specific dimensions (lines between 13 – 

14 in Fig. 8) will cause sub-query blocks to be created and 

inserted as filters to related aggregations. When this 

happens, the filters will be applied on only the related 

aggregation and, if there is any, to its sub aggregations. 

Finally, the usage of “not have dimension” is shown 
between the lines 16 – 19 in Fig 8. In this example, a sample 

filter has been added to the “not have dimension”. Before the 
“not have” filter gets applied, its inner filter will be applied 

first to narrow down the results. 

An excerpt from the generic filter of the generated 

Elasticsearch query is given in Fig 9. On the transformed 

query, prop_2 on line 4 is the name of the field to which the 

filter applies. It corresponds to the property field’s value on 
the dimension query (see Fig. 8, line 14). The field called 

from (Fig 9, line 5) is the value of the value field previously 

indicated in Fig. 8, line 19. Finally, the type field in the line 

14 (Fig. 9) is the name of the Elasticsearch document, 

containing the related fields. It corresponds to the belongs 

field (Fig. 8, line 18) in the Dimension Query filter. 
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{index: "indexName",  

  type: "topLevelDocName",  

  dimensions: [ { 

    property: "prop_1", belongs: "doc_1",  

    orderby: "asc", function: "agg" 

  }, { 

    property: "prop_2", belongs: "doc_2",  

    function: "sum" 

  }, { 

    property: "prop_3", belongs: "doc_2",  

    function: "sum" 

  } ],  

  from: 0, size: 50} 

Fig 6. Dimension Query with Functions 
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... 

{aggregations: { 

 prop_1_doc_1_agg: { 

 terms: { field: "prop_1.keyword",  

  missing: "null", size: 2147483647,  

  min_doc_count: 1, shard_min_doc_count:0,  

  show_term_doc_count_error: false,  

  order: { _term: "asc" } },  

  aggregations: { 

   prop_2_doc_2_sum: { 

    children: { type: "documentName_2" },  

     aggregations: {  

      prop_2_doc_2_sum: {  

       sum: { field: "prop_2" } } } },  

      prop_name_3_doc_2_sum: { 

        children: { type: "doc_2" },  

        aggregations: {  

         prop_3_doc_2_sum: {  

          sum: { field: "prop_3" } } } 

} } } } } 

... 

Fig. 7. An excerpt from transformed Elasticsearch Query with Functions 
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{index: "indexName",  

  type: "topLevelDocName",  

  dimensions: [ { 

    property: "topLevelDocName",  

    belongs: "prop_1",  

    orderby: "asc", function: "agg" },  

   {property: "doc_1",  

    belongs: "prop_2", function: "avg" },  

   {property: "doc_1",  

    belongs: "prop_3", function: "avg",  

    filters: [ { 

      property: "doc_1", belongs: "prop_4",  

      function: "lt", values: [ 3000 ]}] },  

   {property: "prop_2", belongs: "doc_1",  

    function: "gt", values: [ 1000 ] },  

   {belongs: "doc_2", function: "nothave",  

    filters: [ { 

      property: "prop_4", belongs: "doc_2",  

      function: "gt", values: [ 10000 ]}] 

  } ],  

  from: 0, size: 50} 

Fig. 8. Dimension Query with Dimension Filters 
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Depending on the function of the filter in the DQ, 

Elasticsearch query filter properties have different usages. 

On Fig 9. line 5, to field is used as the upper limit when the 

DQ function is either less than or range. On the given 

example include_upper field is true since it is a greater 

than filter and the upper value limit is infinity. 

include_lower field acts like the same when the filter 

function is less than. The same fields get used when the 

filter is less than or equal to and greater than or equal to. 

 

 
 

 

Part on the aggregations included in the same transformed 

query is given in Fig. 10. Aggregation names (bold texts on 

lines 3, 16 and 20 in Fig. 10) are generated by combining 

property, belongs and function fields on dimensions. The 

dimension specific inner filter (Fig. 11) is inserted in place 

of the bold filters text in line 19 of Fig. 10. The transformed 

“not have dimension” is given in Fig 12. Note that the inner 
filter is nearly the same as the one in Fig. 10. The must not 

keyword in line 2 determines the purpose of the filter. 
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... 

{"has_child": { "query": { "bool": { 

  "must": [ { "range": { 

   "prop_2": { 

    "from": 1000, "to": null, 

    "include_lower": false, 

    "include_upper": true, 

    "boost": 1.0 

   } } 

  } ], 

  "disable_coord": false, 

  "adjust_pure_negative": true, "boost": 1.0 

 } }, 

 "type": "doc_1", 

 "score_mode": "sum", "min_children": 0, 

 "max_children": 2147483647, 

 "ignore_unmapped": false, "boost": 1.0 

} } 

... 

Fig. 9. An excerpt from transformed Elasticsearch Query’s Generic 
Filter 
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{"aggregations": { 

 "prop_1_topLevelDocName_agg": { 

  "terms": { 

   "field": "prop_1.keyword", 

   "missing": "null", 

   "size": 2147483647, 

   "min_doc_count": 1, 

   "shard_min_doc_count": 0, 

   "show_term_doc_count_error": false, 

   "order": { "_term": "asc" } 

  }, 

  "aggregations": { 

   "prop_2_doc_1_avg": { 

    "children": { "type": "doc_1" }, 

    "aggregations": { "prop_2_doc_1_avg": { 

      "avg": { "field": "prop_2" } }, 

 "prop_3_doc_1_avg_filters_prop_4_lt_4000": 

      { "filters" }, 

 "prop_3_doc_1_avg_filters_prop_4_lt_4000": 

      { "avg": { "field": "prop_3" } } 

} } } } } } 

... 

Fig. 10. An excerpt from transformed Elasticsearch Query’s 
Aggregations 
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{"filters": { "filters": [ { 

 "bool": { "filter": [ { "range": { 

  "prop_4": { 

   "from": null, 

   "to": 4000, 

   "include_lower": true, 

   "include_upper": false, 

   "boost": 1.0 

   } } } ], 

   "disable_coord": false, 

   "adjust_pure_negative": true, 

   "boost": 1.0 

  } 

 } ], 

 "other_bucket": false, 

 "other_bucket_key": "_other_" 

} } 

Fig 11. An excerpt from transformed Elasticsearch Query’s Inner Filter 
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{"bool": { "must_not": [ { "has_child": { 

 "query": { "bool": { "filter": [ { 

  "range": { "prop_4": { 

    "from": 10000, "to": null, 

    "include_lower": false, 

    "include_upper": true, 

    "boost": 1.0 

    } } } ], 

   "disable_coord": false, 

   "adjust_pure_negative": true, 

   "boost": 1.0 } }, 

  "type": "doc_2", 

  "score_mode": "sum", 

  "min_children": 0, 

  "max_children": 2147483647, 

  "ignore_unmapped": false, 

  "boost": 1.0 

  } } ], 

 "disable_coord": false, 

 "adjust_pure_negative": true, 

 "boost": 1.0 } } 

... 

Fig. 12. An excerpt from transformed Elasticsearch Query’s “Not 
Have” Filter 
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IV. EVALUATION 

An evaluation of using DQL has been performed at the 

industrial level with the participation of a group of 

developers from Galaksiya Information Technologies 

(http://galaksiya.com/). Galaksiya is a software company, 

located in Izmir, Turkey and its business domain mainly 

consists of Big Data and its applications. In some of their 

software solutions, the developers in the company recently 

started to work on Elasticsearch and related data storage. 

At the beginning of the evaluation, we have determined 

the logistics as the target domain and created a logistics 

database for our case study. The main reason for choosing 

that domain is logistics datasets are very large in volume 

thus making them hard to query. Considering an end-user 

scenario to create a report over a logistics dataset to view the 

latest activities around the world, we have created a sample 

database by using the most active 51 ports on the world, 82 

random selected shipping company names, distributed to 19 

random countries. Each company on the dataset has random 

amount of ships with a total of 5000. The dataset has around 

4750 auto-generated voyages with randomly selected goods. 

Total number of goods in the system is 50000, again all 

randomly generated. 

Fig. 2 also shows a DQL instance model prepared for this 

evaluation. In the query panel residing at the upper middle of 

the IDE, there exist model items correspond to the required 

data dimensions in the query, namely Company, Market 

Value, Vessel, MMSI, IMO, Departure Port, Shipment Item 

and Amount. On the right panel under the filters, the Vessel 

and the Company are the defined filters which can be used in 

the query. Once dropped on a dimension or to the query, 

they will be transformed into filters within the related 

dimension or into a filter dimension depending where they 

are being applied. 

As being an instance of DQL, the created query aims at 

listing the amount of the goods on each shipment with the 

information of departure ports, vessel details and company 

information. In addition, the same query model leads to 

prepare the query results inside a report grouping the data by 

the companies, vessels and departure ports. 

For the qualitative assessment of DQL usage, five 

software developers became volunteer and agreed on being 

an evaluator. All of these evaluators has B.Sc. in computer 

science / software engineering and two of them are M.Sc. 

students in computer related fields at the time of this 

evaluation performed. Evaluators possessed the experience 

of developing software in industrial scale considering Big 

Data and/or Linked Open Data applications for different 

business domains (3 years on the average). Although they 

were skilled with creating database queries and working 

with data storages, they had no or very little knowledge on 

the query language required for Elasticsearch. After a brief 

introduction of DQL and its IDE, the evaluators were 

requested to create the same report given in Fig. 2. Upon 

completion their modeling session, a questionnaire including 

the following open-ended questions was given to the 

evaluators and their responses were gathered: 

 

1. How does DQL and its IDE make writing 

Elasticsearch queries easier? 

2. Did you encounter any difficulties while modeling 

queries and creating reports with using DQL? If 

any, please provide your suggestions to fix them. 

3. Do you think DQL is easy to learn and use? 

 

All the evaluators agreed on the biggest advantage of 

DQL that it eliminates the syntax errors which may be 

encountered while creating a query since there is no query 

writing process. They also agreed that the use of the DQL 

removed hardcoding the Elasticsearch queries hereafter. And 

most of them indicated that it is possible to create 

Elasticsearch queries without writing a single line of code. 

One of the evaluators stated that DQL’s graphical syntax is 
comprehensive enough to cover all Elasticsearch domain and 

accompanying IDE helped them for determining and 

visualizing the details of queries from scratch. Some of the 

evaluators found the model panel residing on the left side of 

the DQL IDE (see Fig. 2) very helpful by means of 

dynamically showing the whole data model pertaining to the 

query under development. 

For the second question, some of the evaluators stated that 

applying a filter to the report directly or using it separately 

on dimensions is a little bit confusing at the first time but 

after using the editor for a while, it gets simpler. Based on 

the feedbacks gained from the evaluators, visual concrete 

notations required for query modeling and organization of 

them inside the IDE were also re-arranged since some of the 

evaluators found the arrangement of these components a bit 

complicated. 

Finally, for the last question, everyone agreed that even 

end-users with no knowledge on Elasticsearch would be able 

to use DQL for Elasticsearch query design and 

implementation after a small training. Most of the evaluators 

confirmed that there is no need to know any kind of syntax 

and programming (or querying) language for a person to use 

DQL and its IDE. They also added that little knowledge 

about basic query logic is enough for a user before using 

DQL. However, all of the evaluators also answered the third 

question by indicating there is still a learning curve to get 

used to the DQL editor, but with a short training session it 

becomes easy to learn and design reports. 

In order to measure whether the use of DQL speeds up 

query creation, each evaluator’s query design with using 
DQL has been recorded. The evaluators completed the 

generation of the Elasticsearch query required for the above 

logistics case study around 30 mins. on the average. The 

evaluators were also requested to create the same query 

again but this time without using DQL. They just used 

Elasticsearch query syntax and the result was amazing: It 

took around 6.5 hours to complete writing the same query on 

the average. Although that measurement was achieved from 
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only a single case study, we believe that the speedup gain 

obtained with using DQL in here is promising since the 

experts in the company confirmed that the query handled in 

here is complex enough comparing with the exact queries 

created in their commercial applications for datasets which 

are almost same size with the logistics dataset used in the 

case study. 

V. RELATED WORK 

Like other domains, in order to master the problems of 

creation, management and evolution of databases and 

querying on these databases, the researchers investigate the 

ways of applying MDD principles and/or proposing the use 

of DSLs / DSMLs. For instance, MDSheet is proposed in 

[25] for model-driven engineering of spreadsheets. End-

users can build sheets within MDSheet framework via its 

tool. The framework is enriched with a model-driven query 

language [20] which supports most of the SQL standards. 

The language is also structured as a DSL and the related 

MDE framework is integrated with Google Query function 

in [26]. Similarly, FDL [27] is a description language for 

spreadsheets, which is empowered with visualization and 

analysis tool for constructing the separation between the 

input of formulas and the output of calculation results. 

Although these studies provide a good MDD framework for 

spreadsheets, it gets very difficult to extract information on a 

single potentially large matrix in an effective way inside 

spreadsheets and this deficiency may cause spreadsheets a 

weak alternative for databases, especially the ones as being 

Elasticsearch storages. 

Ristic et al. [21] define a model-driven database reverse 

engineering mechanism through a chain of model-to-model 

transformations. These transformations are applied between 

physical database schema and generic relational schema. A 

similar model-to-model transformation approach is followed 

in [22] for automatically achieving a form type data model 

again from a generic database schema. Hence, the form type 

specification represents a platform independent prescription 

model of both future screens and report forms which can be 

generated later for a complete application. Popovic et al. 

[23] propose a DSL, called IIS*CFuncLang, to specify 

application-specific functionalities of business applications 

for different domains at the platform-independent model 

level. The DSL enables modeling the system to be 

developed and generalization of the required executable 

codes is realized via some model transformations. Hence, 

specifications defined with the DSL can be converted into 

executable PL/SQL program codes. These studies bring 

valuable MDD solutions on database processing, query 

generation and reverse engineering of databases. However, 

the metamodels, the transformations and the DSLs defined 

in these studies do not consider the Elasticsearch engines 

and hence, deriving an MDD framework for generating 

queries, structured according to Elasticsearch specifications 

on various query types, is not covered in these studies. 

Research on Elasticsearch has been recently emerged due 

to novelty brought into query structures. Kononenko et al. 

[3] discuss how Elasticsearch differs from the traditional 

relational databases and give some concrete applications of 

using Elasticsearch queries. In addition, they give their 

assessment on the strengths and the weaknesses of 

Elasticsearch for querying new software repositories. 

Elasticsearch’s inverted index capabilities are used in [28] 

for implementing an optimized intelligent search algorithm. 

Query optimization with using this algorithm is employed in 

the retrieval of medicine data. Finally, a social media 

analysis system is introduced [29] in which features of 

Elasticsearch are used on analyzing Big Data. Two ways of 

giving Twitter data as input to Elasticsearch are defined and 

their performances are compared by means of consuming 

hardware resources and the capacity of processing tweets. 

Our work contributes to the research on Elasticsearch by 

introducing a DSML and its supporting IDE which can be 

used to facilitate and expedite the creation of Elasticsearch 

queries by following a MDD process. 

VI. CONCLUSION 

A DSML, called DQL, for supporting MDD of 

Elasticsearch queries has been introduced in this paper. 

Based on the derived metamodel of Elasticsearch queries, a 

graphical concrete syntax is provided for query modeling 

inside the IDE of the language. All required constraint 

checks and query validations are automatically performed on 

the models prepared inside this IDE and Elasticsearch 

queries are generated from these models. Furthermore, IDE 

is capable of executing these auto-generated Elasticsearch 

queries on remote repositories and creating reports covering 

the execution results. The conducted evaluation showed that 

the use of the language significantly decreases the 

development time required for creating Elasticsearch 

queries. Finally, qualitative assessment, based on the 

developers’ feedback, exposed how DQL facilitates the 

development of Elasticsearch queries. 

In the future work, our aim is to extend DQL’s coverage 
on different types of Elasticsearch use cases. Also, we plan 

to enrich DQL’s query modeling environment with 
improved visualization components especially for reporting 

Elasticsearch results. In order to determine how these new 

components enable more feasible query generation, the 

evaluation performed on DQL will be improved and 

experiment settings will be structured with including some 

sort of hypothesis testing as being considered in similar 

efforts like [30-32].  
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