
Ufuk Firtina

International Computer Institute

Ege University

Izmir, Turkey

ufukfirtina92@gmail.com

Baris Tekin Tezel

Department of Computer Science

Dokuz Eylul University

Izmir, Turkey

baris.tezel@deu.edu.tr

Moharram Challenger

International Computer Institute

Ege University

Izmir, Turkey

moharram.challenger@ege.edu.tr

Geylani Kardas

International Computer Institute

Ege University

Izmir, Turkey

geylani.kardas@ege.edu.tr

Abstract— In this work, a metamodel is introduced

for CArtAgO infrastructure which can be used in the modeling

of software agents on this infrastructure. The metamodel

allows the programming of artifact-based environments for

multi-agent systems. It can be used for different agent

platforms as it is independent of the specifications of these

platforms. Also, a graphical concrete syntax is developed for

the proposed metamodel and a modeling tool is provided. The

use of syntax and the modeling tool is demonstrated with the

JaCaMo Gold Miners case study which consists the

development of software agents for finding gold within a

certain area.

Keywords—Sofware agents; multi-agent systems, CArtAgO,

modeling, metamodel

I. INTRODUCTION

Software Agents, which are autonomous, reactive,

and proactive, have social ability that enable to interact with

other agents and humans to solve their problems. To fulfil

their tasks and interact with each other, intelligent agents

constitute systems called Multi-Agent Systems (MASs) [1].

Programming of agents, their environments and

relationships are very important part of MAS development.

To target the complexity of MASs, Domain-specific

Modeling Language (DSML) studies have gained popularity

[2–7]. Various DSML tools have emerged to make creation

of agents and their coding easier. In addition to the creation

of agents, programming of the environment in MAS is also

critical. This process can become very complex duty to the

dynamic interaction ability of agents with the environment

elements.

To accomplish this process, the abstract

Environment programming helps the implementation of

agents who interact with their surroundings and use their

services and activities to their advantage. The CArtAgO

infrastructure [8], which can work independent of any

specific agent platform, has been established for this

purpose. CArtAgO allows environmental programming for

MASs. It can be used in a wide range of agent languages

due to its orthogonal structure. There exists various MAS

metamodels (e.g. [12–15]) from which abstract and concrete

syntaxes for MAS DSMLs originate. However, they

currently do not consider the environment modeling

according to the specifications of CArtAgO framework.

Hence, in order to fill this gap, we propose a metamodel

which may pave the development of a complete DSML

enabling modeling MAS and its environment and supproting

the automatic code generation for CartAgO framework.

The paper is organized as follows: a brief

description of CArtAgO infrastructure is given in the next

section. The proposed CArtAgO metamodel is presented in

Section III. The concrete syntax for CArtAgO modeling

language and a use case of this language are presented in

Section IV. Insights and related work are given in section V

and Section VI. The paper concludes in section VII.

II. CARTAGO OVERVIEW

CArtAgO [8] is a general-purpose infrastructure that

allows artifact-based environments to be programmed and

executed for MAS. CArtAgO makes it possible to create

open workspaces where agents in different environments

can work together. In this way, MAS developers have a

simple java-based programming model for designing and

programming agent computing environments with different

objects. Infrastructures play an essential role for keeping

useful abstractions alive from design to runtime [8]. Agent

infrastructures provide useful services for the creation,

management and communication of agents. Agents can join

a workspace and use artifacts included in MAS. They can

also create new artifacts. CArtAgO provides basic services

for agents to create and use these artifacts. So, MAS

engineers have a flexible way of designing and constructing

all kinds of artifacts. CArtAgO is designed to be

independent of any specific agent model or platform. It is

intended to be orthogonal for agent models or platforms

used to define the architecture and behavior of the agents.

As we can see in the JaCaMo [12] approach, CArtAgO is

useful when integrated with agent programming languages

based on Belief-Desire-Intention (BDI) architecture.

CartAgO has a layered architecture depicted in Fig. 1.

The kernel follows the interactions between agents and

artifacts. It dynamically creates agents and artifacts through

the given templates. The agent accesses the kernel

properties with the agent contexts. The agent contexts

establish a connection between the agent and the CArtAgO

environment. Also, operational execution requests are

collected in a pool by the environmental controllers.

Fig. 1. Abstract architecture of a CArtAgO application (taken from [8])

Abstract and Concrete Syntaxes for Software Agent
Environment Modeling in CArtAgO Infrastructure

UBMK'18 - 622

Fig. 2. The Proposed CArtAgO Metamodel

UBMK'18 - 623

III. CARTAGO METAMODEL

The concepts and their relations to other concepts

without considering their meaning are explained by the

abstract syntax of a DSML. In other words, the vocabulary

of the concepts provided by the language and how it can be

combined to create models or programs is explained by the

abstract syntax of a language [4]. In terms of Model Driven

Development (MDD), a metamodel describes what models

should look like and, defines the abstract syntax. In this

section, we discuss our metamodel that makes up the

abstract syntax of CArtAgO. The metamodel (given in Fig.

2) adopts the concepts defined in [9-10] and extends them

with new MAS concepts and their relations. Elements of the

metamodel are written in italics during following discussion.

CArtAgO is, in fact, based on the definitions of Agent

and Artifacts (A&A) metamodel introduced in [10]. As a

framework, CArtAgO provides a library of predefined

general-purpose entity types for artifacts and MAS

workspace environments. According to A&A specifications,

Agents are pro-active entities responsible for the goals that

make up the whole MAS behavior. Artifacts are reactive

entities that enable individual agents to work together at

MAS and provide services and functions that shape the

agent environment according to MAS needs.

The A&A metamodel is characterized in terms of three

basic abstractions [10]: Agents, which representing the

proactive components in the system, perform the

encapsulation process for autonomous execution of certain

activities in the environment. Artifacts, which represent

resources, data and media shared by agents in the system,

are passive components. Workspaces are containers of

agents and artifacts and they are helpful for defining the

topology for the environment.

Conforming to the abstractions of A&A, Molesini et al.

[9] proposed a conceptual meta-model for CArtAgO. This

CArtAgO metamodel consists of three main parts: (i) Agent

bodies are the elements that make it possible for agents to be

identified and operated in the working environment, (ii)

Artifacts are the basis for the creation of working

environments and (iii) Workspaces are containers of

artifacts and agents and they help defining the topology of

the working environment. These parts are also kept in our

metamodel and are shown in Fig. 2 with the dotted lines.

The agent body has effectors, actions, sensors and

events. Effectors are used to perform actions in the work

environment. The sensors collect events from the working

environment. Agents interact with work environments

through their own bodies. Actions are used to select, create

and run artifacts.

Artifacts are the basic structures managed by CArtAgO.

Agents use artifacts by running a list of operations

contained within artifact usage interface. Operations must

be run to generate the observable event that is collected by

the sensors of the agents or to update the internal state of the

artifact. Each artifact has a functional description. With this

definition, agents use artifacts more efficiently. The

operating instructions clearly define the functions of the

artifact and how to use it.

Artifacts are in work areas defined by a topology.

Workspaces are collection of agents and artefacts. Agents

can dynamically add or remove artefacts from the

workspace. Agents can dynamically enter or exit the

workspace. Also, workspaces provide an environment for

the interaction between agents and artifacts. Finally,

workspaces provide functionality for generating and

perceiving events. This allows access and use of artefacts.

Abovementioned concepts and their relations are

already defined in [9-10] and also included in our

metamodel. However, we experienced that the definitions

given in A&A [10] and SODA [9] are not enough to derive

a syntax for a DSML that can be used for implementing

MAS on CartAgO. Especially, some additional entities and

attributes are needed to be included inside the CartAgO for

generating software codes during exact MAS

implementations. For this reason, we first added the Class

meta-entity and its attributes into the metamodel that links

the Artifact. Instances of this Class will constitute the code

part of the Java-based Artifact descriptions in a MAS

implementation on the CartAgO infrastructure. The

functions, operations and other required structures,

depending on the Class meta-entity, are also defined in the

metamodel (see lower right part in Fig. 2). In order to use

different types of operations inside the CArtAgO code

structure, we need to define new meta-entities of different

type operations such as LinkOperation, InternalOperation

and GuardOperation. These new meta-entities are added

into our metamodel via inheritance relations, as being the

specializations of the Operation meta-entity. Definition of

these new entities may lead to the increase in throughput,

i.e. a DSML based on this metamodel will be capable of

generating more detailed code for MAS implementations.

IV. USE OF THE METAMODEL

While the concepts represented in a language, and

the relationships between those concepts are expressed by

the specification of abstract syntax, a mapping between

meta-elements and their representations are provided by

concrete syntax for models. In short, the concrete syntax is

the set of notations which provide a graphical/textual

representation of the concepts. In this section, we discuss

graphical concrete syntax for the proposed metamodel

which maps the abstract syntax elements of CArtAgO to

their graphical notations.

Table 1. Graphical Notations

Concept Notation Concept Notation

Agent
Artifact

Relation

Artifact Link Relation

Artifact Class
Guard

Relation

Operation
Operation

Relation

Internal

Operation

Internal

Relation

Link Operation

Guard Operation

UBMK'18 - 624

Based on the metamodel discussed in the previous

section, we have developed a concrete syntax which enables

the use of Cartago concepts during MAS development.

Graphical notations used in this syntax are given in Table 1.

Agent developers can use this syntax inside a modeling tool

which is also developed in this study. This modeling tool for

CArtAgO infrastructure is constructed upon Eclipse Sirius1.

Eclipse Sirius allows us to create a concrete syntax for a

metamodel in Ecore. We can create concrete syntax using

the provided notations for the relations and elements in the

metamodel.

The main elements of our modeling tool are

workspace and artifact diagrams. Although we have an

element representing agents, modeling the internal of agents

is not within the scope of this study. In here, we consider the

modeling agents and the environment they reside. Agents

and artifact structures can be modeled in the workspace

diagram provided by the tool. Links, showing a relation

between an agent and an artifact, can be easliy created.

When a developer double-clicks on an artifact, a new

diagram opens. In this diagram, the agent developer can

model the artifact class. Again, based on the abstract syntax

definitions, ArtifactClass, Operation, GuardOperation,

LinkOperation and InternalOperation elements can be used

in an artifact diagram. There are also links to associate these

elements with ArtifactClass. With these structures, an agent

developer can model the whole artifact structure of the

MAS-to-be-implemented.

 To illustrate using the propsed syntax and graphical
modeling tool, let us consider modeling Gold-Miners2 case
study artifacts. In this case study, it is aimed to find gold
within a certain area by agents. There are two different
agents in this system, Leader Agent with mission of
informing the agents about the locations where the gold is

1 Sirius Modeling Tool, https://eclipse.org/sirius
2 JaCaMo Gold-Miners Project, http://jacamo.sourceforge.net/tutorial/gold-

miners/initial-gold-miners.zip

located and Miner Agent that carries the gold which is found
in the field. Our goal is to model the artifact structures to
program the environment of these agents. In this case study,
there are two artifact files namely twitter.java and
MiningPlanet.java. We simply tried to model these artefacts
and workspace shown in Fig. 3. Also, it is possible to
combine this model with different models created in other
MAS.

V. INSIGHTS

When a MAS structure is being programmed, it is
necessary to define the internal structure of the agents, the
environment they interact with and the relationships between
them. With the creation of these structures, MAS can
become very complex. This complexity can be resolved with
a higher abstraction level using modeling technique.

In this respect, the creation of the CArtAgO metamodel
can be very useful for facilitating environment programming
in a DSML. CArtAgO abstract syntax can be used by
integrating with other Agent DSMLs. The fact that the latest
version of CArtAgO has a connection with the Jason Agent
Programming Language[13] makes it particularly possible to
use with the BDI agent model.

In this study, we have created a syntax that form the basis
for a DSML. This work can be elaborated to create a
concrete syntax that allows for more detailed modeling by
extending the metamodel with agent internals. To reduce the
complexity in MAS programming, the targeted code can be
automatically generated.

Therefore, the code generation can provide part of the
target code from the model created in the DSML which can
increase the development performance and reduce the
number of errors. In the current version of our work, there is
no support for code generation. However, as our next work,
the code generation will be realized.

As a result, the creation of the CArtAgO metamodel and
related concrete syntax allows for environment programming
for MAS, and enables the derivation of a full-fledged DSML
for MAS implementation.

Fig. 3. Gold-Miners model in the proposed CArTAgO modeling tool

UBMK'18 - 625

VI. RELATED WORK

Considering the studies related to Software Agent

Environment programing for MASs, Boissier et al. [12]

conducted a study with JaCaMo platform to integrate agent-

oriented programming, organization-oriented programming

and environment-oriented programming.

This work presents a simple example metamodel for the

JaCaMo platform. They created a multi-agent system

example with the construction of a house. However, no

abstract and/or concrete syntax is discussed for CartAgO in

this study. In [9], Molesini et al. aimed to compare some of

the infrastructures supported by MAS through a case study.

In this work, a conceptual UML metamodel is presented for

CArtAgO.

Also, Omicini et al. [10] focus on the modeling of agent

environments and first-class variants of MAS environments

and artifacts. They presented sample applications of agent-

related research fields. They performed a detailed study on

the artifact structure that CArtAgO focused on. But this

study does not propose any metamodel.

In [8], the concept of environmental programming in

MAS is introduced and a concrete computation and

programming model based on the abstraction applied by the

CArtAgO framework is described. The paper also includes a

description of the main concepts related to artifact-based

environments and related CArtAgO technology. However,

this study does not include any work on CArtAgO

metamodel.

The work herein contributes to the efforts discussed

above by defining and implementing new abstract and

concrete syntaxes for CartAgO which leads to develop a

complete DSML for MAS and environment modeling.

VII. CONCLUSION

In this work, we have introduced a CArtAgO modeling

framework which provides artifact-based environment

programming for MAS, independent of agent platforms.

To this end, we have developed a CArtAgO metamodel

in Eclipse Ecore. The metamodel includes the original

Artifact, Agent and Workspace main elements and their

relations pertaining to CartAgO infrastructure in addition to

the newly defined Artifact entities to support MAS

implementation. Also, in this way, a concrete syntax is

provided by suggesting some graphical notations and

symbols and a graphical modeling tool is introduced to

model MAS based on CArtAgO. This tool allows for

environment modeling of any agent platform and forms the

basis for integration with other agent internal modeling

frameworks.

In our next work, we are aiming to realize the

integration of the proposed metamodel and tool with Jason

agent programing language [13]. In addition, icons used for

concrete syntax can be improved for better user interaction

using physics of notations principles [14].

REFERENCES

[1] M. Wooldridge and N. R. Jennings, “Intelligent agents:

theory and practice,” Knowl. Eng. Rev., vol. 10, no. 02, p.

115, Jun. 1995.

[2] G. Kardas, B. T. Tezel, and M. Challenger, “Domain-

specific modelling language for belief–desire–intention

software agents,” IET Softw., Apr. 2018.

[3] E. J. T. Gonçalves et al., “MAS-ML 2.0: Supporting the

modelling of multi-agent systems with different agent

architectures,” J. Syst. Softw., vol. 108, pp. 77–109, Oct.

2015.

[4] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G.

Kardas, and T. Kosar, “On the use of a domain-specific

modeling language in the development of multiagent

systems,” Eng. Appl. Artif. Intell., vol. 28, pp. 111–141,

Feb. 2014.

[5] C. Hahn, “A Domain Specific Modeling Language for

Multiagent Systems,” in Proceedings of the 7th

International Joint Conference on Autonomous Agents

and Multiagent Systems - Volume 1, 2008, no. AAMAS

’08, pp. 233–240.

[6] J. M. Gascueña, E. Navarro, and A. Fernández-Caballero,

“Model-driven engineering techniques for the

development of multi-agent systems,” Eng. Appl. Artif.

Intell., vol. 25, no. 1, pp. 159–173, Feb. 2012.

[7] J. Faccin and I. Nunes, “A tool-supported development

method for improved BDI plan selection,” Eng. Appl.

Artif. Intell., vol. 62, pp. 195–213, 2017.

[8] A. Ricci, M. Viroli, and A. Omicini, “CArtAgO: An

Infrastructure for Engineering Computational

Environments in MAS,” in 3rd International Workshop

“Environments for Multi-Agent Systems” (E4MAS 2006),

2006, pp. 102–119.

[9] A. Molesini, E. Denti, and A. Omicini, “From AOSE

Methodologies to MAS Infrastructures: The SODA Case

Study,” in Engineering Societies in the Agents World VIII,

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 300–

317.

[10] A. Omicini, A. Ricci, and M. Viroli, “Artifacts in the

A&A meta-model for multi-agent systems,” Auton.

Agent. Multi. Agent. Syst., vol. 17, no. 3, pp. 432–456,

Dec. 2008.

[11] A. Ricci, M. Piunti, and M. Viroli, “Environment

programming in multi-agent systems: an artifact-based

perspective,” Auton. Agent. Multi. Agent. Syst., vol. 23,

no. 2, pp. 158–192, Sep. 2011.

[12] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A.

Santi, “Multi-agent oriented programming with JaCaMo,”

Sci. Comput. Program., vol. 78, no. 6, pp. 747–761, Jun.

2013.

[13] R. H. Bordini, J. F. Hbner, and M. Wooldridge,

Programming Multi-Agent Systems in AgentSpeak using

Jason. Chichester, UK: John Wiley & Sons, Ltd, 2007.

[14] D. Moody, “The ‘Physics’ of Notations: Toward a

Scientific Basis for Constructing Visual Notations in

Software Engineering,” IEEE Trans. Softw. Eng., vol. 35,

no. 6, pp. 756–779, Nov. 2009.

UBMK'18 - 626

