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ABSTRACT
Advances in energy harvesting circuits and energy efficient ar-
chitecture of processors create the potential for batteryless com-
puting and sensing systems called transiently powered computers.
These computers can only operate intermittently due to fluctuating
nature of ambient energy. Intermittent operation requires a new
programming model that should preserve forward progress and
maintain data consistency; which are challenging. We propose a
structured task-based programming model; namely PureMEM, to
cope with these challenges. We discuss how PureMEM prevents
interdependencies caused by the unstructured control encountered
in intermittent operation, enables re-usability of the tasks, provides
dynamic memory management and supports error handling. We
also present intermittent programs to exemplify the features of
PureMEM.

CCS CONCEPTS
• Computer systems organization → Embedded software; •
Software and its engineering → Runtime environments;
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1 INTRODUCTION
Advances in energy harvesting circuits and microelectronics have
led to a new type of computing systems; namely transiently pow-
ered computers (TPCs), that can operate relying on ambient energy
only without requiring batteries. As an example, Wireless Identi-
fication and Sensing Platform (WISP) [13] is a tiny computer that
operates by using the captured energy of radio waves. The captured
energy is stored in a small capacitor and if the stored energy is
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above a threshold, WISP wakes up to sense the environment and
perform computation. When the energy in the capacitor is depleted,
WISP dies due to a power failure—leading to an intermittent opera-
tion. As opposed to continuously-powered computers, TPCs follow
a duty cycle composed of charge→operate→die phases [12]. Since
the ambient energy is non-deterministic, TPCs experience frequent
power failures which reset the volatile state of the device; e.g. stack,
program counter, registers. Therefore, existing programs and li-
braries designed for continuously-powered computers cannot run
on TPCs correctly due to the frequent loss of volatile state—power
failures give rise to failed computation and incorrect results.

In order to preserve progress of computation in TPCs, the re-
searchers proposed inserting checkpoints in the program source at
compile time [1, 2, 8, 9, 12, 16], so that the whole volatile state of
the processor is saved in non-volatile memory. Upon reboot, the
volatile state will be recovered using the checkpointed information
and the computation will be restored from where it left. However,
checkpointing introduces considerable store/restore overhead due
to the size of the volatile state. This issue motivated researchers to
develop task-based programming models for TPCs [3, 6, 10, 17]. In
these models, the program source is composed of a collection of
restartable tasks, task-based control flow and input/output channels
for the data flow among the tasks. Task-based programming envi-
ronments do not checkpoint the whole volatile state: they execute
the current task in the control flow, restart it upon recovery from a
power failure, guarantee its atomic completion, and then switch to
the next task in the control flow.

However, as compared to the structured programming languages
such as C, existing task-based programming models provide limited
abstractions and in turn expose several disadvantages. In particular,
in current task-based systems (a) control flow statements lead to
"spaghetti code", (b) tasks are tightly-coupled with each other since
they share global input/output data that decreases their re-usability,
(c) tasks do not have signatures and therefore make computation
vulnerable to potential bugs and (d) automatic and dynamicmemory
management is not allowed that leads to a bigger memory footprint.
This paper addresses these issues and introduces a structured task-
based programming model for TPCs; namely PureMEM. We list the
main contributions of PureMEM to the state-of-the-art as follows:

(1) Contrary to parameterless tasks and task-based control flow
in existing programming models, PureMEM enables signa-
tures for the functions and introduces function composition
as a control flow structure in order to eliminate "spaghetti
code" and to reduce bugs. Thanks to continuation-passing
style, PureMEM prevents interdependencies caused by the
unstructured control and enables re-usability of the tasks.

1544

https://doi.org/10.1145/3297280.3299739
https://doi.org/10.1145/3297280.3299739
https://doi.org/10.1145/3297280.3299739


Figure 1: Intermittent execution causes errors. The program
computes NTH Fibonacci number. fib array and i are stored in non-volatile
memory. Intermittent execution produces the wrong result because i is
written after read, and then system reboots before fib array is updated.

(2) PureMEM enables manual (dynamic) memory management
that allows creation of variables which live longer by provid-
ing allocation and deallocation of nonvolatile memory. These
variables can be used for data sharing among the tasks—
limiting the scope and lifetime of task-shared variables in
contrast global scope and lifetime task-shared variables in
existing models.

(3) While prior works [3, 6, 10] do not contain any constructs
on error handling, routines in PureMEM may return and
recover errors.

The rest of the paper is organized as follows: Section 2 includes
a brief discussion on TPC and existing programming models for
TPC. PureMEM programming model is discussed in Section 3. Run-
time environment of PureMEM is described in Section 4. Use of
PureMEM is demonstrated with a case study in Section 5. Section 6
gives the related work and Section 7 concludes the paper.

2 BACKGROUND
A typical TPC starts to operate when the energy stored in its capac-
itor is above a predefined threshold voltage. Operation drains the
capacitor quickly, TPC shuts down and reboots when the sufficient
energy is stored in capacitor again. These charge/discharge cycles
make the execution intermittent. Creating programs considering
intermittent execution is difficult since the programmers should
pay attention to forward progress of computation and data con-
sistency. First, long-running computations can not execute in a
single charge/discharge cycle—to maintain the forward progress of
computation, the volatile state of the device must be persisted in a
non-volatile memory so that the computation can be resumed after
the power is restored. However, the volatile state and the state in
non-volatile memory can be different; e.g. write-after-read (W-A-R)
dependencies might create data inconsistencies. For instance, the
variable i shown in Figure 1 is written after read. When any power
failure occurs before the completion of one iteration in the "while"
loop, i might be inconsistent since it will be incremented twice.

Intermittent operation requires a new programming model that
can preserve forward progress and maintain data consistency of
the programs. Researchers developed two major approaches to
overcome these challenges by providing checkpointing-based [1,

2, 7–9, 12, 16] and task-based [3, 6, 10] programming models. In
checkpointing-based systems, programmers and/or compilers in-
ject checkpoints into existing C codes. The injected checkpoints
copy the system’s all volatile state (i.e. call-stack, registers) to non-
volatile memory. Therefore, checkpointing-based models have a
major system overhead [3].

2.1 Task-based Programming Models
In task-based programmingmodels [3, 6, 10], developers decompose
their programs into tasks and define transitions among them. They
introduce considerably less overhead because only the updated data
and the following task identifier are tracked and persisted. A task
is a sequence of program instructions packaged as an atomic unit
of execution and a transition is an act of transferring the control
from one task to another. Task-based runtimes guarantee the atomic
execution of tasks despite power failures: (i) when the current task is
finished, its modifications to the memory is committed permanently
in non-volatile memory and the next task in the control flow will be
executed; (ii) if a task does not complete due to a power failure, its
partial modification to the memory will not be committed and the
consistency of the memory will be preserved. This type of execution
ensures that tasks execute atomically.

In particular, tasks read the value of W-A-R dependent variables
from one memory region, and commit their modified values to an-
othermemory region. Runtime engines link the read-only andwrite-
only memory regions with buffering, versioning and two-phase
committing. The memory models of task-based programming envi-
ronments hide the implementation of linking mechanisms through
shared (global) variable abstractions. As an example, Alpaca [10]
detects W-A-R dependent variables during compilation and pro-
vides two phase committing in run time. It copies W-A-R dependent
values into a special (privatization) buffer, and then commits the
modified values to main memory at the end of task execution. On
the other hand, Chain [3] asks the programmer to split the variables
into read-only (input) and write-only(output) variables for each
task, by declaring input/output channels.

Figure 2 shows conceptual implementation of calculating the area
of a trapezoid in a task-based system; e.g. Alpaca [10]. Since a task
represents a transition point in code, global non-volatile variables
are used for messaging among tasks. For instance, trapezoidMean
task updates the shared variables div_a and div_b which are
used for inputs of div before passing the control to div with
transition_to statement. Result of div is stored in shared vari-
able div_result.

2.2 Drawbacks of Existing Models
Transition methods in prior works are similar to goto statements
since tasks have no arguments and the control is transfered to the
following task and never transferred back (unlike subroutine calls in
structured programming languages). Control flow with transitions
exposes several disadvantages as listed below.

(1) Spaghetti code: Goto statements may lead to spaghetti code
that is potentially difficult to follow and maintain [4]. If a
programmer wants to change the behavior of the program
or just debug the code in Figure 2, (s)he has to follow the
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Figure 2: Calling tasks without arguments behaves like exe-
cuting goto statements and leads to "spaghetti code".

transition_to statements and try to figure out the struc-
ture by considering both code and variables. However, return
statements in functions of a structured programming guar-
antee that the flow of control is passed to statement immedi-
ately following the call of the function. Control structures
(e.g., subroutines) with single-entry and single-exit make the
code readable, maintainable and reusable.

(2) Buggy code: The limited control-flow structure of existing
models forces programmers use global variables to simulate
the input/output values of tasks. This may cause bugs due
to the difficulty of knowing which global variables are used
where. The buggy example in Figure 2 shows that a task
can be called without updating its all inputs. Shared global
variable height, instead of height_t, is initialized and then
areaOfTrapezoid task receives uninitialized input.

(3) Tightly-coupled tasks: Preceding tasks should have the knowl-
edge about the global variables which are used as the in-
puts of the following task—and/or the other way around.
This kind of dependency makes the tasks tightly coupled to
each other and decreases their re-usability. As an example,
div in Figure 2.a is a reusable task, but the following task
trapezoidMul is not because it depends on output of div.

Task-based programming models do not allow pointers. Since
they need to version variables of W-A-R dependency at compile
time to maintain data consistency. However, pointers provide dy-
namic access to memory—prevents versioning data at compile time.
In this case, all algorithms and data structures (e.g., binary trees,
linked lists) which use indirection (i.e. pointers) must be imple-
mented without a support from the programming model. An extra
effort of developing a special referencing convention is required

when implementing these algorithms: declaring global arrays for
each type/context and passing the indexes of elements in array as
references.

Moreover, automatically managed variables like local variables or
manually managed variables like heap objects are not supported in
task-based programming models. All variables shared among tasks
in existing models have global scope and lifetime of the entire run
of the program—increasing the memory footprint of the programs.

3 PUREMEM PROGRAMMING MODEL
Decomposing the problem into small problems, solving them in-
dependently and recomposing the solutions is a common way of
developing solutions for big problems. TPCs do not allow solving
big problems in one charge–discharge cycle. Programmers should
solve small problems in each cycle and gather the solutions piece by
piece with some sort of composition. In the following subsections,
we describe the PureMEM features provided for both composition
and other TPC programming requirements listed in the previous
section.

3.1 Composition With Routines and Closures
In order to describe how PureMEM supports composition, let us
consider the composition of functions (shown in Figure 3.a) to
compute the area of trapezoids in C language. While the functions
areaOfTrapezoid and mean orchestrate the routine flows and pass
the initial data, the other functions add, div and mul, perform the
computations. Figure 3.b shows the similar flow of control and
computation by closure sets in PureMEM routines. In this pattern,
mul and div routines can also be re-used for computing the area
of a triangle by composing them with an other form. Code re-use,
which is a main concern of many developers, is also implemented
by routine composition in PureMEM.

Routine as a control structure follows the common quoted rule
of structured programming that each control structure should have
only one entry point and one exit point. The control is always
transfered to the routine on top of the closure stack, which is a data
structure provided by PureMEM runtime to stack the control trans-
fers (continuations) determined by routines. Since every routine
gets a flow datum and returns a flow datum, they can be composed
regarding to the arity of partially applied routines through closures.
Type checking is not needed when composing closures since Pure-
MEM has only one data type, Result (see the details in Section 3.2).
Pipe function in Figure 3.a performs left-to-right function compo-
sition where as C composition is performed right-to-left. Pipe is
often easier to read in evaluation order. For instance, mean in Figure
3.b pipes (pushes) two closures to the closure stack with the b2
flow data. PureMEM runtime engine calls the routine add with the
values of b1 and b2, and then the routine div executes with the
value of float_2 and the result value of routine add.

Routines in PureMEM must have at least one input and one
output. Last argument is called the flow argument and others
are called as configuration arguments, if any. While the flow
argument is supported by the preceding routine, the configuration
arguments are set by parent routine via a closure. In other words,
PureMEM closure defines the environment of a routine when it
was created where flow data is the input data which triggers the
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Figure 3: Control flow with compositions (a) Function composi-
tion in programming language with a direct-style: C language (b) PureMEM
program computes area of trapezoid via closure compositions. Closures are
records of partially applied routines. For instance, div is partially applied
with a divisor float_2 in routine mean by a helper function cc_div which
is created by ROUTINE(div,2) signature definition. Every closure has a
free variable called flow variable which is symbolized as ’_ ’ in creation of
closures. (c.i) is the state of Closure Stack data structure when PureMEM
runtime model with the continuation-passing style executes the routine
add. (c.iii), (c.ii) are the conceptual states of call-stacks when a C based
environment executes add function with and without tail-call optimization
respectively.

execution of the routines. Function compositions in a direct-style
programming language, e.g. C, are naturally realized as tail-calls;
so are all calls in Figure 3.a. Tail calls can be implemented with-
out adding a new stack frame to the call stack like Figure 3.c.iii,
instead of standard call-stack in Figure 3.c.ii, because there is no
statement left to execute in functions mean and areaOfTrapezoid
while returning from add function. Optimized tail-calls may be con-
sidered as goto statements with parameters [14]. Although the cost
of function calls are considered to be significant, this style makes the
procedure calls as efficiently as goto statements, therefore enabling
efficient structured programming.

Similarly, PureMEM implementations always provide tail-call
optimization because continuation-passing (composition) with clo-
sures is a tail-call. It passes parameters to the following routines
and the control flow is not returned to caller. Figure 3.c.i shows that
closure stack while routine add executes has even less overhead in
memory than the call-stack in Figure 3.c.iii.

Figure 4: Compound data representation and the use of
global variables.

3.2 Data Type, Variables and References
PureMEM programmers write and read the output values of rou-
tines in memory locations which are protected against power fail-
ures by the PureMEMmemory system (see the details in Section 4.2).
Memory locations can be allocated with a size value dynamically or
statically with nv_alloc (see Figure 3) function or GLOBAL (see Fig-
ure 4) keyword respectively. SET_Float_val and GET_Float_val
wrapper functions are called to update and read the values stored in
corresponding memory locations specified with the variables a and
b in mul, div, add in Figure 3. By providing allocation methods and
a referencing mechanism, PureMEM memory system introduces
an extra level of indirection to non-volatile memory to ensure safe
memory access despite intermittent execution break data consis-
tency.

3.2.1 PureMEM Data Type: PureMEM programming model has
one data type; namely Result, whose value is an integer. All type
definitions trough INTERMITTENT_TYPE (see the usage of it in Figure
3) must be considered as aliases of Result type, similar to typedef
keyword in C language. PureMEM does not provide type checking
functionality but INTERMITTENT_TYPE definitions can be used for
refactoring and benefiting from helper functions; e.g. sizeof_,
GET_, SET_. It is worth mentioning that current type system is
fairly simple; however higher-level abstractions on type system;
e.g. type checking, can also be incorporated—which is out of scope
of this paper.

3.2.2 Values of References: The integer values of Result variables
are grouped into three categories; Box, Success and Failure. (i) Box
values represent any valid storage chunk index in PureMEM Mem-
ory Model (see Section 4.2). Box values are references enabling a
program to indirectly access a particular datum in PureMEM mem-
ory model. (ii) Success value is a constant integer that is bigger than
the maximum chunk index which is used for passing the control to
the following routine without a datum or error. (iii) Failure values
are integers bigger than Success constant. They represent a particu-
lar error which can be passed to the following routine and handled
in routines. PureMEM runtime engine may return failure values like
OUT_OF_MEMORY to the routines whereas developers may also
define error values in PureMEM and pass them in continuations
(see Section 3.3).

3.2.3 Compound Data Representation: Compound data represen-
tation is just like any other INTERMITTENT_TYPE definitions but
with multiple INTERMITTENT_FIELD definitions; Surface in Figure
4 has two fields area and color. All fields can be accessed by GET_
and SET_ prefixed functions created by PureMEM.
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Figure 5: ErrorHandling: Code defines the division by zero error with
the keyword ERROR and returns (similar to throw) in div routine. System
function tryPipe binds the routines mul and div with system routine bind.
Routine bind checks the outputs of them. If an error is returned, binded
routines are all bypassed and the finalRoutine prints the error message
and waits for a new input. If no error is returned, finalRoutine just passes
the valid result.

3.2.4 Routine Signatures: A PureMEM routine is a C function
which returns a value and has at least one argument. All arguments
and the returned value must be of type Result. Because there is
only one type in PureMEM, only the arity of routine with ROUTINE
keyword is enough to define the signature. However, it is a good
practice to create and use INTERMITTENT_TYPE definitions (aliases)
in function signatures for readability and maintainability. ROUTINE
definitions lead to construction of helper functions prefixed as cc_
to create closures easily in pipe functions (see some usages in
Figures [3.b, 4 and 9] ).

3.3 Error handling
PureMEM routines may not only detect but also recover from the
system errors and user defined errors with the help of PureMEM
standard library. Since PureMEM routine is packaged as a unit,
error handling like try-catch mechanism can be built over routines.
Figure 5 shows the usage of bind routine of tryPipe function. The
system routine bind checks the flow argument whether it holds an
error or a valid value. It creates a closure in closure-stack with the
configuration argument when the flow data is valid. Otherwise, it
passes the error data to the next routine. Error value passes through
all bind routines and reach the finalRoutine. Since tryPipe ab-
straction provides error checking before calling the routines, error
checking is discarded in mul and div routines. All possible errors in
the tryPipe block are checked and handled only in finalRoutine.

4 PUREMEM RUNTIME ENVIRONMENT
4.1 Forward Progress and Memory Consistency
PureMEM system can be in one of five states shown in Figure 6.
One routine in a PureMEM program is marked as the initial routine
and executed when the device is powered for the first time in Initial

Figure 6: States of PureMEM runtime environment Dotted ar-
rows shows the state transitions of PureMEM runtime environment. Straight
arrow depicts the acts of reading and writing the memory constructs; Cache
and Memory. Where Cache is stored in volatile memory, Memory is imple-
mented on non-volatile memory of the TPC.

Booting state. After a successful initial boot, every reboot caused by
a power failure starts the system from Rebooting state and executes
the register reset routine. Closure compositions created by initial
routine and other routines are stored in Closure Stack by Runtime
Engine in Persisting state. PureMEM system runs as long as there
is closure in Closure Stack and loops over Popping, Computing
and Persisting states. Closure compositions returned by running
routines control the flow of the program.

PureMEM runtime engine and routines do not have direct access
to the non-volatile memory as depicted in Figure 6. All writing and
reading operations take place via a memory caching system. In
Persisting state, all updated values in Cache are committed at once
as a transaction–the caching and atomic committing mechanism
ensures the consistency of memory. If any power failure occurs
before committing is completed, cached values will be lost and all
changes on the closure stack and other memory spaces showed in
Figure 7.b will not be updated at all. In this case, next reboot will
cause the last closure is popped from the stack and converted into
running routine with the same inputs in Computing state again.
This time, changed values should be committed to keep the progress
flow. Otherwise, it means that the capacitor of the system is not
enough to power the states of Rebooting, Popping, Computing
and Persisting for the last closure. PureMEM programmer should
decompose and compose the routines in this respect.

4.2 PureMEM Memory Model
Where previous task based programming models abstract the vari-
ables in non-volatile memory, PureMEM abstracts the location
of any value in the non-volatile memory to eliminate W-A-R de-
pendencies. This low level location abstraction facilitates the im-
plementation of other constructs in PureMEM: manual memory
management, local variables, closure stack and thereby modeling
in continuation-passing style.

4.2.1 Memory Location System. PureMEM implements the mem-
ory location for intermittent programming via the persistent data
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Figure 7: PureMEM memory model (a) shows the conceptual de-
sign and situation of memory model of PureMEM while updated memory
locations with indexes 4 and 6 are being committed to Memory atomically
via a special tree structure: Radix Balance Tree [15]. Status values in the
cache W and R indicate whether the value in the position should be updated
or not. (b) depicts the memory layout of PureMEM: Arena is the manually
managed memory region. PureMEM runtime engine manages the region
Closure Stack automatically. Global variables are stored in Static region.

structure Radix Balanced Tree (RBT)[15]. The original RBT is an
immutable vector which always preserves the previous version of
itself when it is modified. RBT is a tree whose nodes are fixed size
arrays and leafs are the values of the vector. Every update operation
on RBT creates a new RBT instance with the help of a structural
sharing technique.

In PureMEM, memory is split into 4 byte chunks. The index
number of the chunks are used as virtual addresses. Every node of
PureMEMRBT and addressed values (chunks) in PureMEMmemory
have two versions; 0 and 1 (see Figure 7.a). The version of the whole
memory used for Cache readings is stored in stable version bit.
All write operations take place in the version 1 when the stable
version is 0 or the other way around. Figure 7.a shows a RBT with
a branching factor of 4. The bits in the nodes are used as pointers
to the version of corresponding children’s nodes. The bits on the
leafs of RBT show the version of the chunk on the relevant location.
The red shaded nodes and values in Figure 7.a show the updated
values which will be activated after setting the stable version of
PureMEMmemory. Since changing the stable version of the system
is the last atomic action in this transaction, the commit guarantees
the consistency of the RBT and non-volatile memory. If any power
failure occurs before changing the stable version, system will be
rebooted with the last committed version of memory instance. This
means that closure stack has not been updated during power failure,
thereby last routine will be re-executed with the same input values
in Arena and Static region of PureMEM memory model in Figure
7.b.

PureMEM RBT implementation enables efficient access and mod-
ification with a time complexity of O(log n). If the branching factor
of RBT is chosen 16 because of having a system with 16 bit archi-
tecture, RBT can map 64MB memory in 7 levels.

4.2.2 Memory Management. PureMEM provides three types of
memory allocation for power-failure immune variables.

Figure 8: MinHeap and Node types in C language and cor-
responding types in PureMEM: It also shows how a MinHeap is
created dynamically with capacity input in C and PureMEM.

(1) Static memory allocation: Global variables are allocated stati-
cally in static region of PureMEM non-volatile memory (see
Figure 7.b). Their lifetime spans the execution of the pro-
gram.

(2) Automatic memory allocation: Memory space of configura-
tion arguments of routines are automatically allocated and
deallocated by the closure stack. Because PureMEM follows
continuation-passing style, memory of the configuration
arguments are allocated when the continuation definition
(closure) is created and reclaimed by PureMEM runtime after
the routine of closure completes its execution. However, it is
worth indicating that objects referenced by arguments are
not automatically allocated and deallocated.

(3) Manual memory allocation: The objects can be created in
arena dynamically via nv_malloc function. Unlike usual
heap implementations, objects in arena are not freed individ-
ually. All objects are freed at once via freeArena function. It
is similar to the region-based memory allocation models but
PureMEM involves only one arena. This simple implementa-
tion runs with a small overhead of updating an integer value
holds the first free location (tail) in arena. The programmers
may use arena for intermediate results where they store the
final results (e.g., state of the system) in static region.

PureMEM runtime stores and updates the top of closure stack
and tail of arena in the Runtime Data region. Atomicity of updat-
ing runtime data is handled by regular cache and commit mecha-
nism. PureMEM runtime engine does not have any direct access to
PureMEM memory as shown in Figure 6. All routine and runtime
updates take place in cache at first, and then they are committed
together as one atomic action in Persisting state.

5 CASE STUDY
A real world scenario for intermittent program development would
be converting an existing C program to an intermittent program.
We implemented Huffman Code to evaluate the capabilities of Pure-
MEM programming model. Huffman Code uses minimum heap to
find a prefix-free binary code with minimum expected codeword
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Figure 9: Building huffman tree in C language and PureMEM programming model: (a) shows the function in C language. (b) shows the
decomposition of the function in PureMEM routines. (c) depicts the dynamically created flow diagram by PureMEM runtime regarding to the continuations
returned by routines.

length. It is commonly used for lossless data compression. Minimum
Heap is basically a binary tree with pointers.

The compound data structures used in C and equivalent struc-
tures in PureMEM for minimum heap node are shown in Figure
8. Mainly, it is a procedure of mapping the types and fields with
INTERMITTENT_TYPE and INTERMITTENT_FIELD. The new_minHeap
function in Figure 8 shows how the size of Huffman tree is config-
ured dynamically with the help of PureMEM function nv_alloc
and returning the corresponding memory location.

Figure 9 shows the original C code and equivalent PureMEM
code of the function; buildHuffmanTree. Basically, the procedure

is a translation from the direct style of C language to continuation-
passing style of PureMEM. The flow of the C program can be de-
composed into logical pieces like comments in Figure 9.a ,and then
recomposed as equivalent PureMEM routine compositions in Fig-
ure 9.c. Creating continuations with pipe functions builds dynamic
multi-level flowcharts like in Figure 9.b. Solving the problem in sev-
eral levels increases the code-reuse. The routine,extractMin runs
several times without affecting the flow because of single-entry
and single-exit structure of the routines. On the contrary, prior
task-based programming models cause flat flowcharts like in Figure
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2.a because transition_to statements cannot create compositions
(levels) inside of the functions dynamically.

Selection, iteration and recursion constructs of structured pro-
gramming can be reduced to a PureMEM Routine which contains
’If’ statement(s) and return statement with a closure sequence and a
flow data. The routine, iterateWhileSizeOfHeapDoesnotBecomeOne,
is tail-recursive function passing a continuation of itself in one of
its continuations. The other selection passes only a SUCCESS value
for running the next routine in the closure stack.

ROUTINE definitions of PureMEM in Figure 9.b create C functions
with cc_ prefixes which help the programmers to create closures.
The cc_ prefixed functions guarantee to call routines with all inputs
at compile time and prevent the bug which is previously illustrated
in Figure 2.a and encountered in the existing programming models.

6 RELATED WORK
Checkpointing-based and task-based computation techniques are
provided by the recent efforts. i) Checkpointing: Mementos [12],
QUICKRECALL [8] and Hibernus++ [1] monitor the supply voltage
with hardware assistance, to checkpoint the system state. DINO
[9] lets the programmer to place checkpoints independently of
monitoring voltage. ii) Task-based techniques: Chain [3] provides
channel-based memory model and idempotent task abstraction. Al-
paca [10] uses automatic privatization and redo-logging techniques
for correct intermittent programs. Recent task-based efforts [3, 10]
abstract the variables in their memory model where PureMEM in-
troduces the intermittent memory location which provides a lower
abstraction than the prior studies and enables higher abstractions
to create: closures, manual memory management, compound data
and routine signature, error-handling and structured programming
routines via efficient runtime model with continuation passing
style.

Although PureMEM is not a functional programming model, it
uses techniques which are used in functional programming. Tasks
in task-based programming models must be atomic and idempotent
[3]. Pure functions in functional programming are guarantied to
be idempotent, thanks to referential transparency property [11].
Similarly, pure functions are atomic because their inputs are im-
mutable objects [5] whose state cannot be modified after they are
created (no intermediate state exists). Pure functions create new
instances of the objects through some sort of copying and updating
operations on persistent data structures which are implementa-
tions of immutable objects. PureMEM uses persistent data structure
RBT [15] as immutable object for the representation of the whole
memory space for intermittent programming. Routines cannot up-
date system memory, they create updating records which are used
for creating a new instance (reference / version) of memory by
PureMEM runtime engine. Functional programming languages use
closures for continuation-passing style so does PureMEM with low
computation overhead.

7 CONCLUSION AND FUTURE WORK
We have shown that the low level abstractions provided by un-
structured programming model for transiently powered systems
bring challenges to programmers: they lead spaghetti-code which
is difficult to maintain and debug, they limit the code reuse, they do

not provide memory abstractions like data referencing and manual
memory management. To address these limitations, we presented
PureMEM: first structured task-based programming model for tran-
siently powered systems. This paper discusses the first step of our
ongoing studywhich tries to eliminate the disadvantages and brings
the best of both checkpoint and task based programming models.
Our future work will be on completing the implementation of a com-
piler which transforms any C code to PureMEM code automatically,
after injecting tags into the original standard C code.
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