
RE4TinyOS: A Reverse Engineering Methodology
for the MDE of TinyOS Applications

Hussein M. Marah
International Computer Institute
Ege University, Izmir, Turkey

hussein.marah@gmail.com

Moharram Challenger
Department of Computer Science

Univeristy of Antwerp and Flanders Make, Belgium
moharram.challenger@uantwerpen.be

Geylani Kardas
International Computer Institute
Ege University, Izmir, Turkey

geylani.kardas@ege.edu.tr

Abstract—In this paper, we introduce a tool-supported reverse
engineering methodology, called RE4TinyOS to create or update
application models from TinyOS programs for the construction
of Wireless Sensor Networks. Integrating with an existing model-
driven engineering (MDE) environment, use of RE4TinyOS
enables the model-code synchronization where any modification
made in the TinyOS application code can be reflected into the
application model and vice versa. Conducted case studies exem-
plified this model-code synchronization as well as the capability
of creating application models completely from already existing
TinyOS applications without models, which is crucial to integrate
the implementations of the third party TinyOS applications into
the MDE processes. Evaluation results showed that RE4TinyOS
succeeded in the reverse engineering of all main parts of two
well-known TinyOS applications taken from the official TinyOS
Github repository and generated models were able to be visually
processed in the MDE environment for further modifications.

Keywords—Model-Driven Engineering, Reverse Engineering,
Wireless Sensor Network, TinyOS, RE4TinyOS.

I. INTRODUCTION

W IRELESS Sensor Networks (WSN) have gained sig-
nificant popularity and implemented in different areas

(e.g. health systems, field monitoring, transportation, military
applications and environmental sensing) to control both the
status of physical objects and the surrounding circumstances
like sound, pressure, vibration, light, temperature, and motion
according to the type of the sensors used in the network [1].
WSNs use low-power micro-controllers and devices due to the
power consumption constraints that must be adhered to.

One of the widely used operating systems for WSNs is
TinyOS [2]. TinyOS is an open-source operating system for
WSNs, developed in the University of California, Berkeley.
It is a lightweight and flexible operating system that offers
a set of services such as communication, timers, sensing,
storage and these services can be reusable to compose larger
applications. These features make TinyOS a reliable and
efficient system for programming, configuring and running
lower-power wireless devices [2][3]. However, especially the
requirement of managing the power constraints makes TinyOS
different from ordinary systems and hence building WSNs
with TinyOS can be a challenging and time-consuming task.
Moreover, the developers need to have deep knowledge and
skills in the special programming language of TinyOS, called
nesC to implement such systems [3]. Adoption to this language

may be difficult and again time-consuming for the program-
mers.

As successfully applied in many other domains, model-
driven engineering (MDE) can provide a convenient way of
developing TinyOS applications for WSNs by leveraging the
abstraction level before delving into programming with nesC.
Within this context, in our previous work [4], we introduced
the use of a domain-specific modeling language (DSML),
called DSML4TinyOS, for the MDE of TinyOS applications.
A metamodel for TinyOS was derived and a graphical mod-
eling syntax was formalized from this metamodel to lead
modeling TinyOS applications. nesC code of the modeled
applications can be automatically generated with the model-to-
code transformations again defined in DSML4TinyOS. How-
ever, this mechanism lacks the synchronization between a
TinyOS application model and the generated code when any
change is made in this code. Mostly, the auto-generated code
is modified to completely meet with the requirements of
the TinyOS application. Furthermore, the application may
evolve according to changing requirements in the future. After
the code modifications are performed, related changes will
make models at different levels asynchronous and inconsistent
[5]. Thus we need to propagate these changes to the other
models and ensure a proper model synchronization [6]. In
order to provide this synchronization which is missing in
the MDE of TinyOS applications, in this paper, we intro-
duce a tool-supported reverse engineering methodology, called
RE4TinyOS. RE4TinyOS enables retrieving TinyOS appli-
cation models from any existing nesC code. In addition to
support the reverse engineering of such applications, use of
RE4TinyOS also integrates with the current MDE process
brought by DSML4TinyOS language to construct a complete
model-driven roundtrip engineering [7] process for TinyOS
applications. As depicted in Figure 1, evolution of the TinyOS
models can be managed within this roundtrip MDE process
which is a combination of the forward and reverse engineering
of TinyOS models. TinyOS models can be created with using
DSML4TinyOS language and the corresponding TinyOS code
can be automatically generated. When this code is modified
and becomes TinyOS code', RE4TinyOS reverse engineering
methodology can be applied on this modified code to retrieve
the corresponding modified model (still an instance of TinyOS
metamodel) which properly reflects the changes in the appli-

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 741–750

DOI: 10.15439/2020F133
ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 741

cation code.

Fig. 1: Forward and reverse engineering for TinyOS applica-
tions

The remainder of the paper is organized as follows: Sec-
tion 2 discusses the related work in this area. RE4TinyOS
methodology and supporting parser and interpreter tools are
introduced in Section 3. The usability of the methodology is
demonstrated and evaluated in Section 4. Section 5 concludes
the paper.

II. RELATED WORK

In recent years, there is a significant interest of the researchers
to apply MDE and its techniques for WSN and IoT develop-
ment. The main goal of applying MDE approach is to facilitate
the task of developing, building and deploying different WSN
and IoT applications. Malavolta and Muccini [8] and Essaadi
et al. [9] present good overviews of applied MDE approaches
for this domain.

For example, ScatterClipse, a generative plugin-oriented
tool-chain, is proposed in [10] to develop WSN applications
running on the ScatterWeb sensor boards by using MDE.
The tool aims to automate and standardize the generation of
application system families for these sensor boards. Thang
and Geihs [11] address the problem of optimizing power
consumption and memory usage in the application design
process and introduces an approach that integrates Evolu-
tionary Algorithms with MDE where the system metamodels
are generated to select the optimal model according to some
performance criteria. Another modeling framework [12] allows
developers to model separately the WSN software architecture
and the features of the low-level hardware as well as the
physical environment of the nodes of a WSN. The framework
is capable of generating code from the created models which
can be used for specific purposes such as analysis.

The study in [13] brings an MDE approach for prototyping
and optimization of WSN applications while Veiset and Kris-
tensen [14] introduce the use of Coloured Petri Net models
for generating TinyOS protocol software. Likewise, the use of

a domain-specific language (DSL), called SenNet, for WSN
application development is proposed in [15] to prepare WSN
applications using multi-abstraction levels. Finally, Rodrigues
et al. [16] aim at facilitating the development tasks required for
Wireless Sensor and Actuator Network (WSAN) applications
via an MDA-based process. The proposed infrastructure is
composed of a platform-independent model (PIM), a platform-
specific model (PSM), and a transformation process which
allows modeling and generation of these applications.

The above mentioned studies provide various noteworthy
approaches both for modeling WSN applications in different
abstraction levels and code generation for WSN development,
mostly assisted with tools. Moreover, some of them specifi-
cally support the development of TinyOS applications within
the MDE perspective. However, none of them considers the
reflection of changes made after in the generated code to
the corresponding application models, i.e. an approach for
constructing the synchronization between WSN model and
code does not exist. We believe that RE4TinyOS reverse engi-
neering methodology, introduced in this paper, may contribute
to these efforts by filling this gap as well as supporting the
roundtrip engineering of TinyOS WSN applications within
a toolchain consists of both generating code from TinyOS
application models and retrieving models from the existing
codes automatically.

Taking into consideration of applying reverse engineering
in the context of MDE, various adoptions exist for different
domains as surveyed in [17]. Perhaps one of the most popular
approaches is MoDisco [18], which follows the MDE concepts
and techniques to represent the legacy software systems in a
different formalism by using reverse engineering. The infras-
tructure of MoDisco introduces generic components that can
be used in the model-driven reverse engineering process (e.g.,
generic metamodels, model navigation, model transformation
and model customization). Favre et al. [19] describe an oper-
ation for generating MDA models that combines the process
of static and dynamic analysis. Model recovery is illustrated
with the reverse engineering of Java code to get class and state
diagrams. Fruitful applications of model-driven reverse engi-
neering can also be seen in e.g. transforming legacy COBOL
code into models [20], model discovery from Java source code
to extract the business rules [21], generating GUI models of the
explicit layouts especially for Java Swing user interfaces [22],
restoring extended entity-relationship schema from NoSQL
property graph databases [23] and even achieving reusable
and evolvable model transformations [24]. However, reverse
engineering of WSN applications is not addressed again in all
these studies.

III. RE4TINYOS METHODOLOGY

Figure 2 represents the use of RE4TinyOS methodology for the
MDE-based reverse engineering of WSN applications running
on TinyOS. The figure gives a straightforward depiction of
how reverse engineering works according to MDE concepts
to convert the TinyOS code to a TinyOS model for any
application.

742 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 2: Overview of the proposed reverse engineering approach

TinyOS applications are written in a special programming
language, called nesC [25] for networked embedded systems.
The nesC programming model combines the features of C pro-
gramming language with the special needs in the WSN domain
such as event-driven execution and component-oriented design
[25]. In this study, we introduce the RE4TinyOS tool, which
is designed to read any TinyOS application code written in
nesC as the input and automatically generate the counterpart
domain model representing this TinyOS application.

To recognize the syntax and all the valid components (sym-
bols, characters and expressions) of a particular programming
language, a language recognizer or language interpreter is
needed to read the elements and differentiate them from other
normal statements of this language. The language recognizer is
used for different purposes like building a compiler or maybe
analyze parts of code to perform some operations [26] [27].
Parsing is the process of syntax analysis and breaks down the
syntax of the language into smaller structures of symbol strings
conforming to the formal rules and the grammar that govern
the language. Also, parsers or syntax analyzers provide the
identification of the languages. Since our aim is to retrieve the
model of the WSN application from its program code, parsing
is an essential process to identify and analyze the input TinyOS
code.

We followed a two-step method to create the environment
required to the reverse engineering of TinyOS applications.
The first step is to design the parser, called TinyOS parser,
that can read any TinyOS code, and by parsing the input, we
can obtain the useful or desired parts of the TinyOS code
in order to use them to build the model. The second step
is implementing this parser design as a Java application that
can read any TinyOS application code and extract the main
elements and components from the code and hence build the
TinyOS model.

In this study, ANTLR was chosen to build the TinyOS
parser. ANTLR (ANother Tool for Language Recognition) is
a well-known computer-based language recognition tool, or
more specifically a parser generator [28] [26] [27].

During a parser design, writing the grammar is a very
crucial phase. It is the phase where the parser designers write
the rules (Lexer and Parser rules) depending on analyzing
the target system for their domains which in our case is the

TinyOS system (i.e., the rules are written according to what
type of input that will be parsed and what are the important
information and parts are needed to be extracted). The next
listing (Coding 1) includes a small fragment from the parser
rules we created by using ANTLR. In this parser implementa-
tion, more than 300 lines of grammar were prepared besides
the lexer rules.

Coding 1: Excerpts from TinyOS parser rules

compilationUnit

: (includeDeclarationModule* componentDeclaration)?

(includeDeclarationConfiguration*
componentDeclaration EOF) ;

→֒

→֒

includeDeclarationModule

: '#' INCLUDE qualifiedName ;

includeDeclarationConfiguration

: '#' INCLUDE qualifiedName ;

qualifiedName

: singleLine ;

componentDeclaration

: moduleDeclaration

| configurationDeclaration ;

//This part is for the module file

moduleDeclaration

: moduleSignature moduleImplementation ;

moduleSignature

: MODULE moduleName '('? ')'? moduleSignatureBody

;→֒

moduleName

: singleLine ;

moduleSignatureBody

: '{' usesOrProvides* '}' ;

usesOrProvides

: usesState

| providesState ;

usesState

: USES INTERFACE usesInterfaceDescription* ';'

| USES '{' (INTERFACE usesInterfaceDescription

';')* '}' ;→֒

providesState

: PROVIDES INTERFACE providesInterfaceDescription*
';'→֒

| PROVIDES '{' (INTERFACE

providesInterfaceDescription ';')* '}' ;→֒

The above excerpts show the general structure of the
written parser rules. For instance, the line that starts with
“compilationUnit”, is considered as the start point of the
whole parsing process. It states that two options exists; the
first for the model and the second for the configuration that
ends with “EOF” condition. The “componentDeclaration” line
includes two main parts which are “moduleDeclaration” and
“configurationDeclaration” respectively. The separator charac-
ter ‘❘’ declares that when the parsing process starts it has two
options, module or configuration as they are the two main
files of any TinyOS application. “moduleDeclaration” contains
the details of the declaration. It has two parts which are

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 743

“moduleSignature” and “moduleImplementation” respectively.
It is worth indicating that these two parts are not separated by
the ‘❘’ character, which means that any module should have
both signature and implementation.

Since our aim is to build models by parsing TinyOS
programs, the metamodel for TinyOS, which we previously
introduced in [4], was considered as the main reference
model and the TinyOS Parser was written and designed with
consistency to the TinyOS metamodel.

The next step after creating the TinyOS Parser is using
this parser and benefiting from its features. ANTLR has the
property to transform or, in more specific words, generate
codes from ANTLR-based parsers to several commonly-used
programming languages like Java, Python, JavaScript, Go,
C++ and Swift [27]. In our case, the target language is Java.
An overview of the constructed TinyOS parser is shown in
Figure 3.

Fig. 3: Parsing process for TinyOS applications

As depicted in the previous figure, our TinyOS Parser is
taking the produced tokens from the Lexer and constructs a
data structure known as Abstract Syntax Tree (AST) for the
parsed TinyOS code. The created AST here records how the
input structure and the components have been recognized by
the TinyOS Parser. By default, the runtime library in ANTLR
provides a mechanism for walking through the constructed
AST and this operation is called a tree-walking. In our
approach, the primary provided parse-tree-walker mechanism
called “Parse-Tree Listener” [27] was used to walk the built
tree of the TinyOS applications. Finally, the “Parse-Tree
Listener” is integrated and implemented in a Java application-
specific code which reads TinyOS programs (nesC codes) as
input and calls every node in the constructed tree of the parsed
TinyOS code by providing a subclass for every TinyOS Parser
grammar that enables the application to enter and exit from
every triggered node in order to obtain and extract the required
information to build theTinyOS model from the code.

Since the Eclipse Modeling Framework (EMF) uses the
XML Metadata Interchange (XMI) standard to express models
by mapping their corresponding information and write all this
information into the XMI file extension, this standard was
utilized to build the TinyOS models inside the developed
Java application. The Java application could extract all the
required and important information from the input files (nesC

code) and convert this information into a TinyOS model, i.e.
XMI file containing a representation of the TinyOS application
according to the TinyOS metamodel.

Above described processes of using TinyOS parser and the
Java application are combined together to create the TinyOS
Interpreter executed by the RE4TinyOS tool (Figure 4).

Fig. 4: TinyOS Interpreter structure

The generated XMI files containing the model representa-
tions of the input TinyOS applications can be opened inside the
DSML4TinyOS modeling tool without any human interven-
tion. Hence, these model instances conforming to the TinyOS
metamodel, can be visually seen and ready for modifications
if needed.

DSML4TinyOS is a tool-supported DSML which facilitates
the development of TinyOS applications according to MDE
principles and techniques. The tool enables TinyOS developers
to develop applications from scratch by visually modelling
these applications and generate code as the final artefact.
DSML4TinyOS uses the TinyOS metamodel introduced in [4]
as the abstract syntax. It has an EMF-based graphical syntax
and the graphical modeling environment required for creating
DSML4TinyOS models according to DSML4TinyOS syntax
and semantics definitions. DSML4TinyOS modeling environ-
ment (see Figure 5) was built on the widely used Sirius plat-
form. Table 1 lists the graphical notations used for the concrete
syntax of the DSML4TinyOS language. TinyOS application
models can be created by simply adding the language elements
from the menu of the DSML4TinyOS tool. Implementation of
the modeled applications can be automatically achieved via the
code generation. DSML4TinyOS benefits from the features of
Acceleo code generator to parse instance TinyOS models and
create the templates of the implementation files.

As mentioned above, TinyOS application models, conform-
ing to the TinyOS metamodel, are stored as XMI files and they
can be modified inside the DSML4TinyOS tool by adding
or removing components. These changes are automatically
reflected into the corresponding application code again by the
tool. Similarly, the TinyOS application models retrieved by
the RE4TinyOS interpreter from the existing implementations
can also be shown and processed again inside DSML4TinyOS
tool. Hence, the synchronization of the system model and the

744 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Table. 1: DSML4TinyOS concrete syntax notations

existing implementation is realized in case of any modification
made on the model or the code.

Fig. 5: DSML4TinyOS graphical modeling environment

To summarize, by applying the RE4TinyOS methodology,
the software model of an existing TinyOS application can
be achieved automatically. For this purpose, a developer only
needs to give the code file of the related TinyOS application
as the input for our RE4TinyOS tool. The built-in interpreter
generates the corresponding model. This model is XMI se-
rialized and can be opened and visually edited inside the
DSML4TinyOS tool. If needed, any change made in the model
is reflected into the code without any developer intervention.

IV. CASE STUDIES

In order to demonstrate and evaluate the usability of
RE4TinyOS methodology and its tool, a multi-case evaluation
study has been performed. The first case study exempli-
fies how the synchronization between TinyOS models and
the corresponding code can be provided with the use of
both DSML4TinyOS and RE4TinyOS tools together within
a model-driven roundtrip engineering process. The remain-
ing two case studies consider the usability of RE4TinyOS
methodology within the scope of the reverse engineering of

already existing TinyOS applications publicly available from
the official TinyOS repository in Github.

A. Supporting model - code synchronization

This section discusses the MDE of an application for a
TinyOS mote, which displays the light emitting diodes (LEDs)
on this mote when needed. The application, simply called
MyProgram for the demonstration purposes, uses the “Boot”
interface, executes the event “Boot.booted()” and calls the
three LEDs via commands. In the “Boot.booted()” event, the
command “AllLedBlink.startPeriodic(1000)” will be called.
This command initializes a timer that gives interrupts for every
1000 milliseconds. Also, the application displays a counter
on the three LEDs of the mote. It uses the timer interface
“Timer<TMilli>as AllLedBlink” and executes the second
event by firing the timer in the event “AllLedBlink.fired()”.
Inside this event, the three commands are called. The event
will call the command “Leds.led0On()”, “Leds.led1On()”, and
“Leds.led0On()” one by one corresponding to each “Counter”
value.

The Above described TinyOS application was modeled
graphically with using DSML4TinyOS and nesC code of this
application was automatically generated.

Coding 2: nesC Module code auto-generated from the original
application model

#include "Timer.h"

module MyProgramC @safe(){

uses interface Leds;

uses interface Boot;

uses interface Timer<TMilli> as AllLedBlink;

}

implementation {

uint8_t counter =0;

event void Boot.booted() {

/* Turn the three leds on */

call Leds.led0On();

call Leds.led1On();

call Leds.led2On();

/* call the timer every 1000 milliseconds */

call AllLedBlink.startPeriodic(1000);

}

event void AllLedBlink.fired() {

counter++;

if (counter & 0x1) {

call Leds.led0On(); }

else { call Leds.led0Off();}

if (counter & 0x2) {

call Leds.led1On();}

else { call Leds.led1Off();}

if (counter & 0x4) {

call Leds.led2On(); }

else { call Leds.led2Off();}

}

}

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 745

Coding 3: nesC Configuration code auto-generated from the
original application model

#include "Timer.h"

configuration MyProgramAppC {

}

implementation {

components MyProgramC;

components MainC;

components LedsC;

components new TimerMilliC() as AllLedTimer;

MyProgramC.Boot -> MainC;

MyProgramC.AllLedBlink -> AllLedTimer;

MyProgramC.Leds -> LedsC;

}

The previous two listings include the code fragment gener-
ated from this model for the module part (Coding 2) and the
configuration part (Coding 3) of the TinyOS application. Also,
the Figure 6 shows the model of the MyProgram application
(as a DSML4TinyOS instance), the instance model represents
the two parts of code ’Module’ and ’Configuration’ for the
application in a single model.

When any change made in the application code, these
can be reflected to the corresponding model with using the
RE4TinyOS tool. Now, let us suppose that a developer wants
to modify the above program with adding three new timers and
a task. In the modified application, every interface will blink
just one specific led: “Timer<TMilli>as RedLedBlink” will
blink the red led, “Timer<TMilli>as GreenLedBlink” will
blink the green led and “Timer<TMilli>as YellowLedBlink”
will blink the yellow led respectively. Hence, every event will
be triggered independently: “RedLedBlink.fired()” will trigger
the red led timer, “GreenLedBlink.fired()” will trigger the
green led timer and “YellowLedBlink.fired()” will trigger the
yellow led timer. Inside “Boot.booted()” event, a ”for loop”
with including an ”if statement” is added to the code to test
the counter, call one of the timers that will be fired and call
the command to turn on the LED. Also, a new task is added
and it will be called in “Boot.booted()” event. Following code
listings (Coding 4 and Coding 5) include the modified versions
of the module and configuration components of our TinyOS
program in which the added / changed parts are highlighted
in cyan color.

Coding 4: Modified nesC Module code of the application

#include "Timer.h"

#include "printf.h"

module MyProgramC @safe() {

uses interface Leds;

uses interface Boot;

uses interface Timer <TMilli> as AllLedBlink;

uses interface Timer <TMilli> as RedLedBlink;

uses interface Timer <TMilli> as GreenLedBlink;

uses interface Timer <TMilli> as YellowLedBlink;

}

implementation {

uint8_t counter;

task void printTask() {

printf("Print task\n");}
event void Boot.booted() {

for (counter = 0; counter <= 31; counter++) {

if (counter == 10) {

call RedLedBlink.startOneShot(counter);}

else if (counter == 20) {

call GreenLedBlink.startOneShot(counter);}

else if (counter == 30) {

call YellowLedBlink.startOneShot(counter);}

else { printf("It will not blink any led\n");}
}

call AllLedBlink.startPeriodic(50);

dbg("MyProgramC", "Application booted.\n");
post printTask();

}

event void AllLedBlink.fired() {

call Leds.led0On();

call Leds.led1On();

call Leds.led2On(); }

event void RedLedBlink.fired() {

printf("Blink the red led\n");
call Leds.led0Toggle();}

event void GreenLedBlink.fired() {

printf("Blink the green led\n");
call Leds.led1Toggle();}

event void YellowLedBlink.fired() {

printf("Blink the yellow led\n");
call Leds.led2Toggle();}

}

Coding 5: Modified nesC Configuration code of the application

#include "Timer.h"

#include "printf.h"

configuration MyProgramAppC {}

implementation {

components MyProgramC, MainC, LedsC;

components new TimerMilliC() as AllLedTimer;

components new TimerMilliC() as RedLedTimer;

components new TimerMilliC() as GreenLedTimer;

components new TimerMilliC() as YellowLedTimer;

MyProgramC.Boot - > MainC;

MyProgramC.AllLedBlink - > AllLedTimer;

MyProgramC.RedLedBlink - > RedLedTimer;

MyProgramC.GreenLedBlink - > GreenLedTimer;

MyProgramC.YellowLedBlink - > YellowLedTimer;

MyProgramC.Leds - > LedsC;

}

To propagate above code modifications to the model of the
application, RE4TinyOS tool was used. New version of the
program was given as input to the RE4TinyOS and the tool
successfully produced the serialized file for the model. This
model was opened in the DSML4TinyOS modeling environ-
ment (see Figure 7) and it was examined that RE4TinyOS

746 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 6: Graphical model of the original TinyOS application

Fig. 7: Graphical model of the modified TinyOS application

maintained the synchronization between the model and the
code by automatically inserting new model elements and
changing existing elements (e.g. “Boot.booted()” event was
changed due to its new function implementation). As can
also be seen from figure 7, the modifications were seamlessly
integrated into the modified and new model with preserving
the unchanged model components.

B. Integrating already existing implementations into modeling

Although the previous case study shows how RE4TinyOs
tool enables retrieving TinyOS application models from the
code and updating the model when the code is modified,
we also need to evaluate the capability of creating appli-
cation models completely from already existing code which
is crucial to integrate the implementations of the third party

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 747

applications into the MDE processes. In here, already existing
code means the application was not previously designed and
implemented with using DSML4TinyOS and RE4TinyOS tool
chain. Hence, it does not own an application model to be used
as an input for further system developments. For the purpose
of evaluating this capability of RE4TinyOS, we considered
the reverse engineering of two existing TinyOS applications
which are well-known and publicly available from the official
TinyOS repository in Github. In the following, first these two
applications and the generated models are introduced briefly,
then the qualitative assessment results are discussed.

1) AntiTheft WSN: AntiTheft is an application for detecting
thefts, that uses various aspects of TinyOS and its services.
AntiTheft application can detect a theft by monitoring two
events:

1) The change in the light level: It assumes that a stolen
mote will be situated in a dark place.

2) The change in the acceleration rate: When thieves steal
anything, they usually move too fast and run.

So, the application will report the theft by:
• Alerting via turning on the light (e.g. a red LED)
• Also making a beep sound
• Reporting to the other nodes within the range by broad-

casting messages, and nodes will also turn on their red
LEDs.

• Reporting to a central node using a multi-hop routing
algorithm.

The complete nesC code of the AntiTheft application,
accessed from TinyOS Github repository [29], was given
as input to RE4TinyOS tool and the serialized model file
was generated. When this file was opened in DSML4TinyOS
modeling environment, the graphical model of the application
was shown successfully (see figure 8). Parts of the TinyOS
application including components, interfaces, commands, and
events are now represented in DSML4TinyOS notation as the
result of the applied reverse engineering methodology.

2) Sense WSN: The Sense is another application also
available in the main TinyOS Github repository. As its name
denotes, it is a simple sensing application that periodically
samples data from the sensors by initializing a timer which will
signal a ”read event” and displays the bits of the sampled read-
ings on the LEDs of the nodes. Similar to AntiTheft applica-
tion, the complete code of the Sense application achieved from
the Github repository [30] was processed by RE4TinyOS tool
and the model of the application was generated without any
error. Figure 9 shows this model opened in the DSML4TinyOS
modeling environment.

C. Discussion

First case study, conducted for the MDE of a TinyOS
LED display application, demonstrated the use of RE4TinyOS
methodology and its tool to support the model-code synchro-
nization where the application model is kept up-to-date in each
modification made in the application code. The case study
also exemplified the use of DSML4TinyOS and RE4TinyOS

tool chain leading the roundtrip engineering of the TinyOs
applications.

The remaining case studies enabled the assessment of
the proposed reverse engineering methodology brought by
RE4TinyOS especially for the already existing TinyOS appli-
cations which were not previously designed and implemented
with using DSML4TinyOS and/or RE4TinyOS tools. More-
over, the fact that the code of these applications are publicly
available in TinyOS Github and written by other developers,
contributed to the objectiveness of the performed evaluation.

When the complete code of both Anti-Theft and Sense
applications, which are ready to be executed, was given as
input to RE4TinyOS, the embedded parser of the RE4TinyOS
was able to automatically generate serialized versions of
the TinyOS software models of these applications, and the
produced models were processed and successfully opened in
the DSML4TinyOS IDE. This also confirms that, if needed,
RE4TinyOS tool can also be used independently from the
MDE tool chain, i.e. the TinyOS application that will be
processed by the RE4TinyOS tool could be previously im-
plemented via using any other method and environment. The
developers can achieve software models of these existing ap-
plications. Furthermore, it is straightforward to visually work
on these recovered models at a higher level of abstraction,
make modifications on them and then reflect these changes to
the exact implementations.

Finally, it is worth indicating that RE4TinyOS succeeded
in retrieving the models for all main parts of AntiTheft and
Sense applications, including “event”, “task”, “component”,
“interface”, “Command”, “Helper-function”, and “Wiring”
(see figures 8 and 9). Although, block structures of the
application events were also retrieved, internal specifications
of some of these events could not be fully represented in the
output model since corresponding meta-entities and relations
are missing in the TinyOS metamodel currently used by the
RE4TinyOS parser. However, these unconverted specifications
were still kept as annotations inside the serialized model and
when any changes made to the model in the visual editor, these
specifications were automatically integrated with the new code
generated from the modified model.

V. CONCLUSION

A reverse engineering methodology and its tool, both called
RE4TinyOS, have been introduced in this paper. RE4TinyOS
enables retrieving the application models from TinyOS pro-
grams written in nesC, which paves the way for using these
models inside an MDE toolchain. Hence, any modification
made in the application code can be reflected into the appli-
cation model and vice versa. Conducted case studies showed
that both model-code synchronization and the integration of
existing TinyOS applications which do not have system models
previously, into the proposed MDE are possible with using
RE4TinyOS. However, the achieved results also showed that
some of the internal TinyOS event specifications of these exist-
ing applications can not be represented in the newly generated
models since corresponding meta-entities are missing in the

748 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

Fig. 8: Graphical model of the AntiTheft application

Fig. 9: Graphical model of the Sense application

current TinyOS metamodel used by the RE4TinyOS parser. In
our future work, we aim at first extending this metamodel to
cover all event internals while keeping the abstraction level
and then improving the parser features with the utilization of
this new metamodel.

ACKNOWLEDGMENT

Hussein Marah would like to thank Turkish government
for Turkiye Scholarships (YTB) program. This research was
partially supported by Flanders Make, a Flemish strategic
research center for the manufacturing industry.

HUSSEIN MARAH ET A.: RE4TINYOS: A REVERSE ENGINEERING METHODOLOGY FOR THE MDE OF TINYOS APPLICATIONS 749

REFERENCES

[1] M. A. Matin and M. Islam, “Overview of wireless sensor network,”
Wireless Sensor Networks-Technology and Protocols, pp. 1–3, 2012.

[2] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS:
An operating system for sensor networks,” in Ambient Intelligence,
W. Weber, J. M. Rabaey, and E. Aarts, Eds. Springer Berlin Heidelberg,
2005, pp. 115–148. doi: https://doi.org/10.1007/3-540-27139-2 7

[3] P. Levis and D. Gay, TinyOS Programming. Cambridge University
Press, 2009.

[4] H. M. Marah, R. Eslampanah, and M. Challenger, “DSML4TinyOS:
Code Generation for Wireless Devices,” in ACM/IEEE 21st Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), Model-Driven Engineering for the Internet-of-Things
(MDE4IoT), 2018, pp. 509–514.

[5] T. Hettel, M. Lawley, and K. Raymond, “Model synchronisation: Def-
initions for round-trip engineering,” in Theory and Practice of Model
Transformations, ser. Lecture Notes in Computer Science, A. Vallecillo,
J. Gray, and A. Pierantonio, Eds. Springer Berlin Heidelberg, 2008,
pp. 31–45.

[6] H. Giese and R. Wagner, “From model transformation to incremental
bidirectional model synchronization,” Software & Systems Modeling,
vol. 8, no. 1, pp. 21–43, 2009. doi: 10.1007/s10270-008-0089-9

[7] L. Favre, Model Driven Architecture for Reverse Engineering Technolo-
gies: Strategic Directions and System Evolution. Engineering Science
Reference, 2010, google-Books-ID: e4RLuAAACAAJ.

[8] I. Malavolta and H. Muccini, “A study on MDE approaches
for engineering wireless sensor networks,” in 2014 40th
EUROMICRO Conference on Software Engineering and Advanced
Applications, 2014, pp. 149–157, ISSN: 2376-9505. doi:
https://doi.org/10.1109/SEAA.2014.61

[9] F. Essaadi, Y. Ben Maissa, and M. Dahchour, “MDE-based languages
for wireless sensor networks modeling: A systematic mapping study,”
in Advances in Ubiquitous Networking 2, ser. Lecture Notes in
Electrical Engineering, R. El-Azouzi, D. S. Menasche, E. Sabir,
F. De Pellegrini, and M. Benjillali, Eds. Springer, 2017, pp. 331–346.
doi: https://doi.org/10.1007/978-981-10-1627-1 26

[10] M. A. Saad, E. Fehr, N. Kamenzky, and J. Schiller, “ScatterClipse:
A model-driven tool-chain for developing, testing, and prototyping
wireless sensor networks,” in 2008 IEEE International Symposium
on Parallel and Distributed Processing with Applications, 2008, pp.
871–885, ISSN: 2158-9208. doi: https://doi.org/10.1109/ISPA.2008.22

[11] N. X. Thang and K. Geihs, “Model-driven development with
optimization of non-functional constraints in sensor network,” in
Proceedings of the 2010 ICSE Workshop on Software Engineering for
Sensor Network Applications, ser. SESENA ’10. ACM, 2010, pp.
61–65. doi: https://doi.org/10.1145/1809111.1809128

[12] K. Doddapaneni, E. Ever, O. Gemikonakli, I. Malavolta, L. Mostarda,
and H. Muccini, “A model-driven engineering framework for
architecting and analysing wireless sensor networks,” in Proceedings of
the Third International Workshop on Software Engineering for Sensor
Network Applications, ser. SESENA ’12. IEEE Press, 2012, pp. 1–7.
doi: https://doi.org/10.1109/SESENA.2012.6225729

[13] R. Shimizu, K. Tei, Y. Fukazawa, and S. Honiden, “Model driven
development for rapid prototyping and optimization of wireless sensor
network applications,” in Proceedings of the 2Nd Workshop on Software
Engineering for Sensor Network Applications, ser. SESENA ’11. ACM,
2011, pp. 31–36. doi: https://doi.org/10.1145/1988051.1988058

[14] V. Veiset and L. M. Kristensen, “Transforming platform independent
CPN models into code for the TinyOS platform: A case study of the
RPL protocol,” in PNSE+ModPE, 2013.

[15] A. Salman, “Reducing complexity in developing wireless sensor network
systems using model-driven development,” phdthesis, University of
Salford, 2017. doi: http://usir.salford.ac.uk/44127/

[16] T. Rodrigues, F. C. Delicato, T. Batista, P. F. Pires, and L. Pirmez,
“An approach based on the domain perspective to develop WSAN
applications,” Software & Systems Modeling, vol. 16, no. 4, pp. 949–977,
2017. doi: 10.1007/s10270-015-0498-5

[17] C. Raibulet, F. A. Fontana, and M. Zanoni, “Model-driven reverse
engineering approaches: A systematic literature review,” IEEE Access,
vol. 5, pp. 14 516–14 542, 2017. doi: 10.1109/ACCESS.2017.2733518

[18] H. Brunelire, J. Cabot, G. Dup, and F. Madiot, “MoDisco: A
model driven reverse engineering framework,” Information and Soft-
ware Technology, vol. 56, no. 8, pp. 1012–1032, 2014. doi:
10.1016/j.infsof.2014.04.007

[19] L. Favre, L. Martinez, and C. Pereira, “MDA-based reverse
engineering of object oriented code,” in Enterprise, Business-Process
and Information Systems Modeling, ser. Lecture Notes in Business
Information Processing, T. Halpin, J. Krogstie, S. Nurcan, E. Proper,
R. Schmidt, P. Soffer, and R. Ukor, Eds. Springer, 2009, pp. 251–263.
doi: https://doi.org/10.1007/978-3-642-01862-6 21

[20] F. Barbier, S. Eveillard, K. Youbi, O. Guitton, A. Perrier, and E. Cariou,
“Model-driven reverse engineering of cobol-based applications,” in
Information Systems Transformation. Elsevier, 2010, pp. 283–299.

[21] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and J. Perronnet,
“A model driven reverse engineering framework for extracting
business rules out of a java application,” in Rules on the Web:
Research and Applications, ser. Lecture Notes in Computer Science,
A. Bikakis and A. Giurca, Eds. Springer, 2012, pp. 17–31. doi:
https://doi.org/10.1007/978-3-642-32689-9 3

[22] . Sanchez Ramon, J. Sanchez Cuadrado, and J. Garcia Molina, “Model-
driven reverse engineering of legacy graphical user interfaces,” Auto-
mated Software Engineering, vol. 21, no. 2, pp. 147–186, 2014. doi:
10.1007/s10515-013-0130-2

[23] I. Comyn-Wattiau and J. Akoka, “Model driven reverse engineering of
NoSQL property graph databases: The case of neo4j,” in 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp. 453–458.
doi: https://doi.org/10.1109/BigData.2017.8257957

[24] J. Snchez Cuadrado, E. Guerra, and J. de Lara, “Reverse engineering
of model transformations for reusability,” in Theory and Practice
of Model Transformations, ser. Lecture Notes in Computer Science,
D. Di Ruscio and D. Varr, Eds. Springer International Publishing,
2014, pp. 186–201. doi: https://doi.org/10.1007/978-3-319-08789-4 14

[25] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” Acm Sigplan Notices, vol. 38, no. 5, pp. 1–11, 2003.

[26] T. Parr and K. Fisher, “LL(*): The foundation of the ANTLR parser
generator,” in Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’11.
ACM, 2011, pp. 425–436, event-place: San Jose, California, USA. doi:
https://doi.org/10.1145/1993498.1993548

[27] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic
Bookshelf, 2013.

[28] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[29] TinyOS Github Repository, “Tinyos antitheft application,” 2013. doi:
https://github.com/tinyos/tinyos-main/tree/master/apps/AntiTheft

[30] TinyoS Github Repository, “Tinyos sense application,” 2013. doi:
https://github.com/tinyos/tinyos-main/tree/master/apps/Sense

750 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020

