
Community Detection in Model-based Testing to
Address Scalability: Study Design

Alper Silistre∗, Onur Kilincceker†, Fevzi Belli‡, Moharram Challenger§ and Geylani Kardas∗
∗International Computer Institute, Ege University, Izmir, Turkey. Email: alpersilistre@gmail.com, geylani.kardas@ege.edu.tr
†University of Paderborn, Paderborn, Germany. Mugla Sitki Kocman University, Mugla, Turkey. Email: okilinc@mail.upb.de

‡University of Paderborn, Paderborn, Germany. Izmir Institute of Technology, Izmir, Turkey. Email: belli@upb.de
§University of Antwerp and Flanders Make, Belgium. Email: moharram.challenger@uantwerpen.be

Abstract—Model-based GUI testing has achieved widespread
recognition in academy thanks to its advantages compared to
code-based testing due to its potentials to automate testing and
the ability to cover bigger parts more efficiently. In this study
design paper, we address the scalability part of the model-based
GUI testing by using community detection algorithms. A case
study is presented as an example of possible improvements
to make a model-based testing approach more efficient. We
demonstrate layered ESG models as an example of our approach
to consider the scalability problem. We present rough calculations
with expected results, which show 9 times smaller time and
space units for 100 events in the ESG model when a community
detection algorithm is applied.

I. INTRODUCTION

SOFTWARE testing is of critical importance considering
today’s technological developments. The solution methods

proposed in this area differ according to the software systems
to be tested. Graphical user interfaces (GUIs) are an integral
part of the web and mobile software systems. Many model-
based approaches have been proposed varying based on the
model used for testing the GUI functions. These models differ
in terms of semantics and syntactic terms. Scalability is shown
as one of the disadvantages of all model-based approaches. As
the model grows, operations such as test production become
more difficult, thus creating the problem of scalability.

Model-based testing is a testing method that executes test
cases generated from the abstract view of a system under test
(SUT). This abstraction specifies the behavior of the system so
we can model it with one of the different models such as Finite
State Machine (FSM) [1], Event Sequence Graph (ESG) [4]
[5], Event Flow Graph (EFG) [2] [3], and Regular Expression
(RE) [6][7]. The major benefit is, code-based testing is a time
consuming and error-prone method to cover all cases of the
SUT while we can generate and run test sequences efficiently
with model-based testing. There are many automation tools to
achieve this task and many papers worked on this topic for
several decades.

Model-based approaches suggest a hierarchical and layered
structure at the model generation stage. No specific approach
has been found in the literature regarding the problem that may
arise if the tester who created the model skipped this important
issue. In this study, the community detection approach, which
is frequently used in different areas, is proposed to eliminate
this serious problem. Thus, the model expressed as layered

will be hierarchical, that is, a layered structure by community
detection method. In the scope of the study, an ESG model
will be layered, and then automatic test set generation and test
execution operations will be performed on this ESG model.

The current work in this paper is a design study. We briefly
review the literature and provide proof of concept with a
case study to support the proposed approach. Expected results
with the scope of the current work are discussed, and rough
theoretic calculations are presented.

The rest of the paper is organized as follows: Section 2
gives the related work on models used in GUI testing and com-
munity detection problem. Section 3 introduces the proposed
approach. A case study to exemplify the proposed approach
is given in section 4. Expected results and implications with
possible threats to the validity of the proposed approach are
presented in section 5. Finally, section 6 concludes the paper.

II. RELATED WORK

This section briefly presents related literature regarding
model-based GUI testing and community detection problem.

A. Model based GUI Testing

Shehady and Siewiorek [1], introduce a model to be used
in model-based testing called VFSM (Variable Finite State
Machine) for the GUI with fewer states than a formal FSM
model. The VFSM and FSM are equivalent at its core. So,
they show how to convert a VFSM to an FSM to create a test
suite. The major benefit here is that the total state count is
less which makes it more efficient in terms of end-to-end test
generation and execution.

Memon et al. [2] come up with a new technique that
helps automated test generation by using ESG models. Es-
sentially, this technique is a planning algorithm that uses AI.
The algorithm needs start and final states of the model and
several defined operators to work on the model. It creates test
sequences between these start and final states by looking into
GUI interactions and events between these states.

Memon [3] shows event-flow model generation which he
describes as one scalable model for using in the model-based
testing area. Event-space exploration (ESES) strategies are
used inside the proposed method. The event-flow model is
a combination of different models which are assessed in the

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 657–660

DOI: 10.15439/2020F163
ISSN 2300-5963 ACSIS, Vol. 21

IEEE Catalog Number: CFP2085N-ART ©2020, PTI 657



paper. In order to reduce the cost of model creation, the process
is also automated.

Belli [4] presents a new approach called the ’holistic’
approach. He discusses that in order to test the GUI of a system
properly, we must take incorrect test cases along with correct
test cases into account. The GUI of an application should work
without failing even the events are illegal. This is an important
part of achieving complete system coverage.

Belli et al. [5] examine existing work on models that have
been used in model-based GUI testing such as; ESG, EFG,
etc., and analyze these model notations and how to create
mutation from them. They also present ways to apply test gen-
eration from models and additional optimization techniques.

Kilincceker et al. [6] introduce RE as being a model-
based testing method and use RE to model hardware design
combined with RE-based test generation. RE is represented
by an abstract syntax tree and a tree traversal algorithm is
used in the test generation. RE-based coverage criteria are
used to assess the adequacy of the testing method. Kilincceker
and Belli [16] propose novel coverage criteria based on the
analysis of a RE model. These coverage criteria are used to
generate test sequences for testing GUI systems in [7] by
means of random test generation. They also use to test GUI of
mobile applications [13], hardware design [15], and web-based
systems [16] combined with holistic testing.

B. Community Detection

Harary et al. [8] take into account the result of a Festinger’s
work [17] which was finding a clique in a group depending
on whether certain elements satisfy required conditions and
improve this with a new study to find all cliques in a group
that has three or fewer cliques with a concept called unicliqual
person. They then remove the restrictions with an "inductive
reduction method".

Fortunato [9] explains community detection in graphs in
very detail from main definitions to different methods to detect
these communities, with example algorithms and techniques.
He gives details about his ideas on the topic and mentions the
given problem yet to be solved properly.

Leskovec et al. [10] examine different algorithms for net-
work community detection to understand them better and
compare them with each other in terms of performance and
their capabilities. They also take biases in those algorithms into
consideration while conducting their study. They show how
complicated to detect communities in large network groups.

Sadi et al. [11] study community detection algorithms with
a method that is using Ant Colony Optimization to reduce
network graphs without losing its ability to solve the given
problem. They work especially on the scalability part of the
topic because the cost of computation is a lot in any given
large network graph. They aim to reduce the number of nodes
and then applying algorithms to work on this reduced graph.

To the best of our knowledge, there is no work to address
scalability for model-based testing by utilizing the community
detection algorithm. To this end, the current work aims to

Test
Suite

Non-Layered 
ESG Model

Layered ESG ModelCommunity Detection 
Algorithm

Test Generation Mutant ESG

Mutant ESG

Mutant ESG

...

Fig. 1. The proposed approach

fill the gap by providing a community detection algorithm to
address the scalability problem of model-based testing.

III. THE PROPOSED APPROACH

The proposed approach offers a community detection algo-
rithm on a non-layered ESG model to obtain a layered one. It
also includes further necessary steps in conventional model-
based testing approaches. These further steps, apply to the
layered ESG model, are test generation and test execution as
depicted in Fig. 1. By detecting communities in our model,
we will treat them as sub-graphs. These sub-graphs will have
their own process to generate test sequences with a model-
based test generation and execution process. This sub-graph
will be treated as a single node in the main graph. Since this
sub-graph has nodes that are part of the community, extracting
their interaction with other nodes in the main graph will be
beneficial in terms of scalability because we do not need to
create test sequences that involve nodes in a community to
have a relationship with another node in a higher level graph.

Moreover, the test suite resulted from the test generation
step becomes more compact and useful from the layered ESG
model. Finally, the test suite is executed on mutant layered
ESG models to evaluate their effectiveness using mutation
score. To do this, the current work utilizes model-based
mutation testing by means of appropriate model mutation
operators given in [16].

IV. CASE STUDY

The community detection step in the proposed approach
is exemplified in a case study that is the internal part of a
commercial tourist web page namely ISELTA 1. The case study
is the Special Module of ISELTA web page. Special Module
enables agents to offer special advertisements.

Special Module of ISELTA contains arrival and departure
dates, accommodation type, number of items, total price, de-
scription nation and international, name of the advertisement.

1ISELTA, Available at: http://iselta.ivknet.de/

658 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020



Fig. 2. ESG model of the Add Layer for ISELTA Special Module

Fig. 3. ESG model of the Edit Layer for ISELTA Special Module

We represent events of “number of items”, “total price”,
“description” and “name” input fields of the ISELTA Special
Module in ESG models. Other events are neglected.

Special Module is represented as a non-layered ESG model
that contains 23 nodes excluding opening and closing events
namely pseudo-events representing the starting and finishing
states of the ESG model.

Current work uses LEMON (Local Expansion via Minimum
One Norm) [18] method for the detection of communities in
the graph model of GUI. LEMON uses a local expansion
method to find the communities. It detects communities using
a sparse vector and is able to achieve the highest detec-
tion accuracy compared with state-of-the-art methods such as
OSLOM [19], DEMON [20], LC [21]. We skip details of the
definitions and algorithms for community detection algorithm
due to lack of space in the current paper. The community
detection algorithm is applied to the non-layered ESG model
and results in two sub-layers and one upper layer. The upper
layer contains 2 sub-layers (sESG) namely Add and Edit
layers given in Fig. 2 and Fig. 3, respectively. The resulting
ESGs include 17 events in the Add layer and 6 events in
the Edit layer excluding pseudo-events. Instead of applying
test generation on 23 events in the non-layered ESG model,
the current work divides this non-layered ESG to sub-layers
by using a community detection algorithm. The current work
is expected to speed up the test generation to save time and
potentially scale on large models. Moreover, the resulting test
suites from the test generation become more compact and
efficient.

V. DISCUSSION

A. Expected results and implications

This section provides the expected results of the proposed
approach in terms of scalability and efficiency. To do so, a

rough calculation to measure scalability and efficiency will be
carried on.

Let’s assume that we have 100 events in a non-layered
ESG. In the best case, the community detection algorithm
detects 10 sub ESG events containing 10 events. Then, we
have 10 events in the upper layer and 10 events in each
sub layer resulting in 110 events in total. Assume that the
test generation algorithm runs on O(n2) time complexity and
O(n2) space complexity. The test generation algorithm results
in 1002 time units and 1002 space units in the full resolution
ESG model. However, for the layered ESG models with a
community detection algorithm applied, the result is 102 time
and space units for each sub-layer. Since we have 10 sub-
layers, we will have 102 * 10 which will result in 1000 time
and space units and another 102 from the upper layer. This
results in 1000 + 100 equal 1100 time and space units. This
provides about 9 times faster test generation and 9 times more
compact test suites for 100 events in the best case if we can
divide 100 events into 10 equal sub-layers. Additionally, any
further increase in the number of layers will provide much
smaller time and space units.

In the worst case, the community detection algorithm does
not detect any layer and the non-layered and layered ESG
models have the same number of events. However, the cost
of the community detection algorithm is neglected from the
calculation due to no additional cost on the test generation
but to overall methodology. The computational complexity of
a conventional community detection algorithm is O(m2n) for
a graph with n vertexes and m edges [12].

B. Threats to validity
1) Conclusion Validity: The size of our case study may

be small to show an example of the defined approach in this
paper. This is a potential threat to generalize the approach
since multiple examples of bigger ESG models should be
assessed to be sure about the robustness of the approach. With
this, any unforeseeable problems might pop up, and we can
address solutions to these possible problems when the total
event size of the ESG model goes beyond the numbers given
here. We plan to evaluate the proposed approach on medium
and large size of case studies to cope with this threat.

2) Internal Validity: We have described how the model-
based testing approach works on models which defined as an
abstraction of the system. In theory, working with abstractions
makes things efficient since we do not need to use a code-
based white-box testing approach. This gives us the ability to
test huge models otherwise would be time-consuming if we
need to test them manually or with code. This may cause a
threat to the internal validity of the approach because testing
on the abstraction can never be full as it would run on the
actual system. However, it is possible to execute generated
test suites from models in actual systems using appropriate test
automation tools (such as Selenium 2) for code-based testing.

Another problem might be the problem of creating wrong or
missing models (a model does not cover the whole SUT) from

2Selenium, Available at: https://www.selenium.dev/

ALPER SILISTRE ET AL.: COMMUNITY DETECTION IN MODEL-BASED TESTING TO ADDRESS SCALABILITY 659



a system if it is a complex one. This will naturally prevent us
to test the whole system. Because of these reasons, we must
depend on the correctness of the model for an efficient model-
based testing approach.

3) External Validity: Model-based testing aims to detect
behavioral and functional faults in a system. Using this method
to identify problems in visual aspects and semantics of GUI
widgets in a system is a threat to the external validity of the
approach because model-based testing is not the first method
that comes to mind for this. Code-based testing approaches are
more applicable for testing these visual aspects of the system
under test. However, the proposed approach is applicable
for any testing approach that uses behavioral and sequential
models rather than concurrent systems modeled such as by
Petri-Nets.

4) Construct Validity: The theoretic advantages, discussed
in the previous section, require to be validated on the case
studies in terms of time and space complexity. However, the
scenarios for average and worst cases result in additional cost
of community detection algorithm (O(m2n) for a graph with
n vertexes and m edges [12]). This can be a potential threat to
construct validity. On the other hand, the community detection
algorithm reduces the total cost of time and space complexity
comparing to the full resolution model where community
detection is not applied.

VI. CONCLUSION

The study design given in this paper introduces a model-
based testing approach combined with the community detec-
tion algorithm to cope with possible scalability problems.

A proof of concept with a small size case study is given to
exemplify the use of the community detection algorithm in the
current work. The community detection algorithm is applied
to the full resolution ESG model to create a layered ESG
model. The layered ESG model contains several small layers to
improve the efficiency of further steps such as; test generation
and execution. Moreover, expected results are introduced with
rough theoretic calculations.

A community detection algorithm executes on the full
resolution ESG model to obtain a layered ESG model. Then,
the test sequences will be generated on this resulting layered
ESG model. These test sequences will be executed on mutant
models obtained from the original ESG model to evaluate the
quality of the generated test sequences. To this end, we expect
to provide 9 times faster and 9 times more compact test suites
in the best case with respect to layered ESG model rather
than full resolution ESG model when we assume that time
and space complexity of test generation algorithm equal to
O(n2). Moreover, this also provides saving time in further
test execution time. Thanks to 9 times more compact test
suites, the time required during the test execution phase can
be 9 times less. However, the proposed approach comes with
an additional cost of the community detection algorithm. It
can be noticed that the case study is trivial and presented to
explain the idea. However, we plan to evaluate our approach

on medium and large sizes of ESG models to assess these
expected advantages by automating procedures.

REFERENCES

[1] R. K. Shehady & D. P. Siewiorek, "A method to automate user interface
testing using variable finite state machines," Proceedings of IEEE 27th
International Symposium on Fault Tolerant Computing, Seattle, WA,
USA, 1997, pp. 80-88, doi: 10.1109/FTCS.1997.614080.

[2] A. M. Memon, M. E. Pollack & M. L. Soffa, "Hierarchical GUI test
case generation using automated planning," in IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 144-155, Feb. 2001, doi:
10.1109/32.908959.

[3] Memon, A. M. (2007). An event-flow model of GUI-based applications
for testing. Software testing, verification and reliability, 17(3), 137-157.

[4] Belli, F. (2001, November). Finite state testing and analysis of graph-
ical user interfaces. In Proceedings 12th international symposium on
software reliability engineering (pp. 34-43). IEEE.

[5] Belli, F., Beyazıt, M., Budnik, C. J., & Tuglular, T. (2017). Advances
in model-based testing of graphical user interfaces. In Advances in
Computers (Vol. 107, pp. 219-280). Elsevier.

[6] Kilinccceker, O., Turk, E., Challenger, M., & Belli, F. (2018, July).
Regular expression based test sequence generation for HDL program
validation. In 2018 IEEE International Conference on Software Quality,
Reliability and Security Companion (QRS-C) (pp. 585-592). IEEE.

[7] Kilincceker, O., Silistre, A., Challenger, M., & Belli, F. (2019, July).
Random test generation from regular expressions for graphical user
interface (GUI) testing. In 2019 IEEE 19th International Conference
on Software Quality, Reliability and Security Companion (QRS-C) (pp.
170-176). IEEE.

[8] Harary, F., & Ross, I. C. (1957). A procedure for clique detection using
the group matrix. Sociometry, 20(3), 205-215.

[9] Fortunato, S. (2010). Community detection in graphs. Physics reports,
486(3-5), 75-174.

[10] Leskovec, J., Lang, K. J., & Mahoney, M. (2010, April). Empirical com-
parison of algorithms for network community detection. In Proceedings
of the 19th international conference on World wide web (pp. 631-640).

[11] Sadi, S., Öğüdücü, Ş., & Uyar, A. Ş. (2010, July). An efficient
community detection method using parallel clique-finding ants. In IEEE
Congress on Evolutionary Computation (pp. 1-7). IEEE.

[12] Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A comparative
analysis of community detection algorithms on artificial networks.
Scientific reports, 6, 30750.

[13] Mercan, G., Akgündüz, E., Kılınççeker, O., Challenger, M., & Belli,
F. (2018). Android uygulaması testi için ideal test ön çalışması. CEUR
Workshop Proceedings.

[14] Kılınççeker, O., & Belli, F. (2017). Grafiksel kullanıcı arayüzleri için
düzenli ifade bazlı test kapsama kriterleri. CEUR Workshop Proceed-
ings.

[15] Kilincceker, O., Turk, E., Challenger, M., & Belli, F. (2018, April).
Applying the Ideal Testing Framework to HDL Programs. In ARCS
Workshop 2018; 31th International Conference on Architecture of Com-
puting Systems (pp. 1-6). VDE.

[16] Kilincceker, O., & Belli, F. (2019, November). Towards Uniform Mod-
eling and Holistic Testing of Hardware and Software. In 2019 1st Inter-
national Informatics and Software Engineering Conference (UBMYK)
(pp. 1-6). IEEE.

[17] Festinger, L. (1949). The analysis of sociograms using matrix algebra.
Human relations, 2(2), 153-158.

[18] Li, Y., He, K., Bindel, D., & Hopcroft, J. E. (2015, May). Uncovering the
small community structure in large networks: A local spectral approach.
In Proceedings of the 24th international conference on world wide web
(pp. 658-668).

[19] Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011).
Finding statistically significant communities in networks. PloS one, 6(4),
e18961.

[20] Coscia, M., Rossetti, G., Giannotti, F., & Pedreschi, D. (2012, August).
Demon: a local-first discovery method for overlapping communities.
In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining (pp. 615-623).

[21] Ahn, Y. Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities
reveal multiscale complexity in networks. nature, 466(7307), 761-764.

660 PROCEEDINGS OF THE FEDCSIS. SOFIA, 2020


