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Abstract. This paper proposes a structured approach to integrating
Large Language Models (LLMs) into Multi-Agent Systems (MAS) by
revisiting and extending the fundamental Agent-Oriented Software En-
gineering (AOSE) concept of “roles.” Traditional AOSE methodologies
provide well-defined processes for modeling agents, roles, goals, and in-
teractions, yet contemporary LLM-based MAS frameworks typically lack
such systematic engineering foundations. We highlight how ad hoc de-
velopment practices in LLM-enhanced MAS—often driven by prompt
engineering or role-playing strategies—can lead to inconsistencies and
reduced maintainability. Through a critical examination of role defini-
tion, specification, and implementation, we identify several gaps in terms
of software engineering. To bridge these gaps, we propose a hybrid role-
based architecture where we treat roles as first-class entities at run-time
encapsulating both traditional AOSE design principles and LLM-driven
functionalities. By laying this groundwork, we aim to foster more robust,
scalable, and transparent engineering of LLM-enhanced MAS.

Keywords: Multi-Agent Systems · Large Language Models · Agent-
Oriented Software Engineering · Role Abstraction · Action Execution.

1 Introduction

Large Language Models (LLMs), with their advanced natural language pro-
cessing capabilities, have opened new avenues for enhancing the capabilities of
Multi-Agent Systems (MAS). Examples of these include improved resource coor-
dination and decentralized collaboration [80, 44], enhanced memory and context
handling with hierarchical memory models [80], advanced problem-solving [30]
and simulation capabilities [25], scalability and flexibility through frameworks
for rapid prototyping [15] and scalable deployment [17]. The rapid advancement
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of LLMs has also sparked growing interest from research and industry leverag-
ing agent-based solutions, accelerating the development of practical MAS ap-
plications and dedicated innovative tools. LLM-enabled MAS applications span
multiple domains, including education [43], 6G communications [42], healthcare
[4], financial analysis [74], agriculture [48], crime detection [66] and social simu-
lations [31, 32]. Dedicated tools and frameworks aiming to leverage the benefits
of LLMs to create more efficient, autonomous, and scalable MAS, facilitating
their application across various domains, are being proposed at an increasing
pace [16, 51, 79, 44].

However, the existing tools and frameworks often lack a dedicated engineering
methodology, resulting in LLM-enabled MAS applications being frequently de-
veloped in an ad hoc manner, which can lead to inconsistencies and inefficiencies
in their implementation and deployment. This challenge is further compounded
by a significant gap in integrating LLMs within MAS, particularly in leverag-
ing the extensive body of knowledge from Agent-Oriented Software Engineering
(AOSE). AOSE provides a rich set of principles, methodologies, and tools specif-
ically designed to address the complexities of developing agent-based systems [8,
72, 36]. The under-utilization of established AOSE methodologies [58, 11, 24, 55,
75] and frameworks for integrating LLMs into MAS hinders the optimization
of design and implementation, ultimately affecting system quality, reliability,
and maintainability. Because, by providing structured processes and clear guide-
lines, these methodologies help development teams systematically plan, imple-
ment, and test multi-agent software, reducing the likelihood of errors and costly
rework.

Software engineering methodologies are built upon conceptual elements that
serve as high-level representations (or “blueprints”) of concepts within a system.
Since they do not strictly dictate the underlying details, these elements can be
implemented in many ways depending on the chosen technology, programming
language, system constraints, or performance needs. The AOSE literature out-
lines key conceptual elements such as agents, roles, goals, actions, interactions,
organizational structures, communication protocols, and mental states (e.g., be-
liefs, desires, intentions). However, adapting them to real-world LLM-enabled
MAS applications remains underexplored.

Based on this observation, in this paper, as a first step towards engineering
LLM-enhanced MAS, we study the role concept and its realization, as it is the
standard building block for specifying agents in AOSE methodologies [1]. The
contributions of this study are as follows:

– We survey and categorize current LLM-powered MAS tools and frameworks
(e.g., AutoGPT, CAMEL, MetaGPT, LangChain), analyzing their develop-
ment workflows and methodological limitations.

– We identify gaps between traditional AOSE methodologies and contempo-
rary LLM-enhanced MAS implementations.

– We provide a comprehensive, structured analysis of the role concept in MAS,
covering its definition, specification, and implementation from both AOSE
and LLM-enhanced perspectives.
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– We propose a hybrid architecture that treats roles as first-class run-time
entities, encapsulating both AOSE principles and LLM functionalities.

The organization of this paper is as follows: Section 2 provides a brief back-
ground about engineering multi-agent systems. Section 3 describes how LLM-
enabled MAS are engineered in practice and provides an evaluation in terms of
agent-oriented software engineering. Section ?? discusses the gaps, implications
and challenges. In Section 5, we propose a hybrid role-based architecture that
encapsulates both traditional AOSE design principles and LLM-driven function-
alities. Section 6 concludes the paper by summarizing the findings, and outlines
potential future work.

2 Engineering Multi-Agent Agents

MAS methodologies provide structured frameworks for the analysis and design
of agent-based systems, enabling agents to perform specific tasks effectively. For
example, GAIA [75] offers systematic modeling for complex systems by explicitly
defining agent roles, responsibilities, and interaction protocols. Roles represent
specific functionalities and responsibilities assigned to agents, whereas protocols
regulate interactions among agents. The MaSE [53] methodology supports the
design process by analyzing systems as sets of roles and tasks. These tasks and
roles are linked to agent goals and subsequently combined to define agent classes
in the design phase. O-MaSE [18, 20] extends MaSE by introducing meta-models
and modular components, emphasizing agent-environment interactions. This fa-
cilitates modeling of systems involving environmental processes and rules.

Tropos [11] views agents as social actors structured around concepts such
as goals, plans, capabilities, and beliefs. In Tropos, roles represent abstract be-
haviors of actors within specific contexts, while positions indicate the set of
roles an actor may assume. Prometheus [55] simplifies agent design by adopting
a goal- and plan-oriented approach, linking goals explicitly to functionalities.
Functionalities are defined in terms of actions, messages, and data handled by
agents, thereby streamlining system development. ASEME [68] takes a platform-
independent, abstract, and modular approach, modeling actor behaviors and
control flows by integrating actors, roles, goals, and use scenarios. In the final
step, code compatible with agent development platforms such as JADE is au-
tomatically generated. The AGRE [24] model defines agents in terms of roles,
groups and environments within an organizational context. This allows agents
to adopt flexible and adaptive behaviors across multiple roles, facilitating the
design of dynamic and modular systems (see [64] for a detailed example).

Although existing AOSE methodologies provide various tools for the struc-
tured definition of roles, responsibilities, tasks, and interactions, they lack the
flexibility and creativity offered by LLMs. This constitutes a significant challenge
for traditional methodologies in adapting to today’s rapidly evolving application
domains.
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3 Practical Engineering of LLM-enabled MAS

This section describes the design principles and configuration approaches used by
current LLM-powered MAS development tools to support practical engineering,
highlighting features that enhance their overall usability.

3.1 Existing Tools and Frameworks

Current tools for developing LLM-enabled Multi-Agent Systems (MAS) can be
grouped into three categories based on their primary functionality:

– Autonomous Task-Oriented Frameworks: Tools like AutoGPT4, BabyAGI5,
SuperAGI6, and XAgent7 use iterative task loops and autonomous planning-
execution mechanisms to achieve goals with minimal human intervention.

– Role-based Collaborative Frameworks: CAMEL [52], ChatDev [60], and MetaGPT
[39] configure multiple agents with specialized roles, using structured inter-
actions to collaboratively perform complex tasks, particularly in software
development contexts.

– General Multi-Agent Orchestration Frameworks: AgentVerse [17], AutoGen
[76], CrewAI8, AWS MAO9, OpenAI Swarm10, and LangChain11 facilitate
flexible configuration and management of agent interactions, emphasizing
modularity, scalability, and integration.

3.2 Common Development Workflows and Practices

Developers in practice leverage these tools to rapidly prototype and implement
LLM-enabled MAS for a variety of tasks. A common workflow begins with defin-
ing the roles or objectives of each agent, often via careful prompt engineering or
scripting using the framework’s API. For example, using a library like AutoGen
or LangChain, a developer can instantiate agents with distinct personas (e.g.,
a “Planner” agent and an “Executor” agent) and then script an interaction loop
between them. Typically one agent may be tasked to break down a problem
and another to solve sub-problems, or one may critique and improve the other’s
outputs. Similarly, with role-based systems such as ChatDev or MetaGPT, the
developer provides an initial high-level task (for instance, a software feature
request), and the system spawns multiple agent instances (developer, tester,
manager, etc.) that message each other to gradually refine and implement the
4 AutoGPT, https://agpt.co/, accessed February 4, 2025.
5 BabyAGI, https://babyagi.org/, accessed February 4, 2025.
6 SuperAGI, https://superagi.com/, accessed February 4, 2025.
7 XAgent, https://github.com/OpenBMB/XAgent/, accessed February 4, 2025.
8 CrewAI, https://www.crewai.com/, accessed February 4, 2025.
9 AWS Multi-Agent Orchestrator, https://awslabs.github.io/multi-agent-

orchestrator/, accessed February 4, 2025.
10 OpenAI Swarm, https://github.com/openai/swarm, accessed February 4, 2025.
11 LangChain, https://python.langchain.com/, accessed February 4, 2025.
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solution. In these multi-agent conversations, each agent’s prompt template en-
codes its persona and scope of work, which guides the agent’s behavior through-
out the dialogue. Developers often iterate on these prompts to steer the agents
toward productive interactions (e.g. ensuring the “tester” agent knows how to
systematically find faults in the “developer” agent’s code output).

Another prevalent development pattern is the use of autonomous task loops,
epitomized by AutoGPT and BabyAGI. In this pattern, once a user supplies an
initial goal, the agent system itself iteratively generates sub-tasks, executes them,
evaluates results, and adjusts the plan or creates new tasks as needed. Developers
employ such patterns to offload not just single-step queries to LLMs, but entire
project workflows. For instance, a user might ask AutoGPT to "research and
write a report on market trends", upon which the system will autonomously
break the job into smaller tasks (e.g. data gathering, analysis, drafting) and
cycle through them until completion. In practice, frameworks like SuperAGI
or AWS’s MAO provide higher-level interfaces for running these autonomous
agents, allowing developers to configure resources (for example, a vector database
for long-term memory) and to monitor the agent’s progress through a dashboard.

Building LLM-enabled MAS today is an iterative and experimental process.
Developers rely heavily on observing agent behaviors through logs or real-time
monitors and then refining the system. If the multi-agent system fails to converge
to a good solution, one might adjust the prompts, add a new agent (for example,
an agent whose sole role is to critique solutions or to summarize the discussion
so far), or tweak the interaction protocol (for instance, enforcing that agents
communicate in a structured format or brief bullet points to reduce ambiguity).
In summary, current best practices involve defining clear agent roles, endowing
agents with the necessary tools or external knowledge sources, simulating their
interactions in a controlled environment, and iteratively improving their prompts
and logic. Over time, repeated patterns (such as a planner-executor pair, or
a questioner-responder-reviewer trio) are becoming templates that developers
can reuse across projects, gradually forming an evolving playbook for how to
effectively combine multiple LLM agents for different classes of problems.

3.3 Methodologies and Guidelines in Current Tools

Given the relative infancy of LLM-enabled multi-agent systems, most of the ex-
isting tools do not prescribe a rigorous software engineering methodology for de-
sign or implementation, nor do they explicitly reference classical Agent-Oriented
Software Engineering (AOSE) frameworks (e.g., Gaia, Tropos) from the multi-
agent systems literature. Development is often guided by example use cases and
the built-in templates provided by each tool, rather than by a formal process
model. For instance, AutoGPT and BabyAGI emerged as experimental proto-
types shared via open-source repositories; users typically follow the provided
README or community-written guides to adapt them to new tasks, engag-
ing in a lot of trial-and-error. The emphasis is on achieving functional goals
(e.g., “ let the agent autonomously handle my email workflow ”) and tweaking the
agent’s prompts or code as needed when issues arise, rather than on adherence
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to a standardized development lifecycle. In essence, the methodology is ad hoc
– developers iteratively refine the system until it performs the desired behav-
ior, which is feasible given the high-level nature of LLM prompts but lacks the
guarantees of traditional engineering approaches.

Some frameworks do offer informal guidelines aligned with their design philoso-
phies. For example, MetaGPT incorporates the concept of Standardized Operat-
ing Procedures (SOPs) from human teamwork as part of its prompting strategy.
This provides a semi-structured template for how agents should collaborate on
a complex task (e.g., a defined sequence of phases such as requirement analysis
→ design → implementation → testing in a software project). A developer us-
ing MetaGPT is encouraged to follow this template when setting up agent roles
and conversation order, which is a form of methodology albeit specific to the
software-development domain. Similarly, ChatDev’s enforced structure of a vir-
tual software team implicitly serves as a development guideline: it suggests that
to solve a problem (say, build a new software feature), one should instantiate
a team of agents with complementary roles and have them communicate in a
logical order reflecting a typical software engineering process. These tool-specific
conventions (often inspired by real-world workflows) provide starting points for
developers, but they are not generalizable frameworks one could apply to any
MAS project in a systematic way. Notably, we find little to no evidence that
these new platforms build on established AOSE methodologies – for instance,
their documentation and papers do not mention using Gaia’s role models or Tro-
pos’s goal diagrams to design agent societies. The emphasis is more on empirical
effectiveness (does a given configuration of agents solve the task?) rather than
a priori design correctness. In practice, the lack of formal methodology means
that much of the development knowledge is tacit, residing in the experience of
the developers or shared through blog posts and forums rather than encoded in
the frameworks themselves.

3.4 Incorporation of Software Engineering Principles

Current LLM-enabled MAS frameworks implicitly support software engineering
principles like modularity and reusability by dividing complex problems into
specialized agents with clearly defined roles. Tools such as LangChain emphasize
role specialization, which simplifies the development, testing, and potential reuse
of agent components across projects. Role specialization aligns well with the
principle of single responsibility, enhancing overall system maintainability.

However, significant challenges persist. The behavior of agents, defined largely
through prompts, lacks transparency and formal analyzability, complicating main-
tainability—minor prompt changes can unpredictably influence entire systems.
Frameworks like AutoGen offer visual debugging to mitigate this, but robust,
systematic methods remain scarce. Additionally, runtime-based traceability pro-
vided by logging agent interactions doesn’t easily map back to original require-
ments, limiting systematic verifiability and role clarity.

Scalability also poses issues. While selective message routing and orches-
trators, such as those employed by OpenAI Swarm and AWS MAO, improve
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manageability of agent interactions by efficiently handling multiple agent roles,
empirical evidence of their effectiveness in large-scale scenarios remains limited.

Overall, while current frameworks demonstrate foundational support for mod-
ular, reusable agent roles, the absence of formal methodologies, traceability
mechanisms, and comprehensive scalability strategies highlights critical areas
needing development to fully integrate classical software engineering principles
into practical MAS engineering.

4 A Critical Examination of Roles

AOSE has long provided solid analytical and design foundations for MAS. AOSE
methodologies encompass fundamental concepts such as agents, roles, goals,
actions, interactions, organizational structures, and communication protocols.
Among these concepts, the role is a key concept as it is used to define respon-
sibilities and capabilities of agents. In many AOSE methodologies, a common
method is handling agent roles and then aggregate them to form complete agents
[1]. Consequently, as a first step towards bringing AOSE methodologies and the
practical LLM-enabled MAS development together, we start by critically exam-
ining the role concept which is a fundemantal conceptual element in AOSE.

In software engineering, conceptual elements are typically characterized by
three facets: their definition, specification, and implementation. Accordingly, we
will examine, in order, the role concept’s definition (Section 4.1), specification
(Section 4.2), and implementation (Section 4.3).

4.1 Role Definition

In AOSE, a role is an abstract definition that encapsulates a set of responsibil-
ities, behaviors, and interaction protocols expected of an agent within a multi-
agent system. It specifies what actions an agent should perform, how it should
interact with other agents, and what obligations or constraints it must observe
in a given organizational or social context. By decoupling the expected behaviors
from the agent’s concrete implementation, the role concept promotes modularity,
reusability, and flexibility, allowing agents to adopt or change roles dynamically
as system requirements evolve.

Different methodologies approach the concept of role in various ways. GAIA
[75] emphasizes that roles encompass responsibilities, protocols, and permissions
to fulfill specific functions. MaSE [53] structures roles through use case scenar-
ios and sequence diagrams during system specification. O-MaSE [18, 20] extends
MaSE to include environmental interactions, deepening role modeling. Tropos
[11] defines a role as an abstract representation of a social actor’s behavior in
a specific context, while Cabri et al. [13] highlight the interactional aspects of
this approach. Prometheus considers a role as an element that reflects system
functionality and defines the actions performed by agents. ASEME [70] presents
dynamic role models derived from system use case scenarios, modeling the influ-
ence of roles on agent-internal behavior through control flow. Finally, AGRE [24]
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defines a role as a functional position within a group, emphasizing that multiple
agents can share the same role as an abstraction.

In AOSE, roles are typically an analysis and/or design-time concept rather
than a run-time concept. In some cases (e.g. GAIA), the role concept is only used
during the analysis phase and does not exist in the design. Over the years, one
of the significant problems faced by the MAS community was transitioning the
concept of a role from an abstract design into a concrete implementation within
an agent framework, primarily because roles often did not exist at run-time,
making effective mapping challenging [9].

In the context of an LLM, a role can be defined as a predetermined behav-
ioral profile or identity assigned to the model (such as "an experienced medical
advisor" or "a technical support expert"), guiding its responses, language style,
information focus, and context-awareness to accomplish specific tasks or interac-
tions effectively. However, it does not encapsulate interaction protocols; instead,
it encapsulates the responsibilities and behaviors to ensure appropriate and task-
specific responses. Here, the role concept is a design-time concept, interpreted
and executed by the LLM at run-time.

At design-time, the developer defines what role the model will assume and
how it should behave, while at run-time, the LLM actively applies and adapts
these guidelines dynamically during user interactions. However, at run-time, the
LLM processes these guidelines as instructions or contextual cues rather than
maintaining explicit “roles” and “actions” in the agent-oriented sense (with goals,
behaviors, or organizational structures). Essentially, the concept of roles and ac-
tions is supplied and interpreted by users and developers through prompts and
conversation structure, rather than by the LLM’s own inherent representation.
While LLMs can appear to perform roles and actions (e.g., adding two numbers),
this “execution” is still just a text-based transformation (generating a numeric
answer) rather than an explicit representation of action, roles, or goals as under-
stood in AOSE. It is effectively a pattern matching or textual reasoning process,
not an agent-based execution driven by internally modeled objectives.

4.2 Role Specification

Specification of a role provides a detailed, often formal, description of what
actions it can perform and how it can interact with other roles [34, 46]. The
behavior is often described in terms of permissions, responsibilities, activities,
and interactions [5]. This detailed breakdown is used to guide the implementation
of the role. In the following, we give an ordered list of methods for specifying
roles, arranged by increasing levels of formality and precision—from the most
informal, conceptual descriptions to the most rigorous, mathematically precise
and verifiable specifications:

1. Natural Language Description: The use of natural language in role defini-
tion offers both accessibility and flexibility. In this approach, users define a
role by explicitly and comprehensively describing its tasks, responsibilities,
interaction patterns, and objectives using natural language expressions.
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2. Graphical Modeling Languages (e.g., UML12, SysML13, AUML14): These
provide visual diagrams to depict roles, their relationships, and interactions.
They strike a balance between clarity and formality, making them well suited
for conceptual modeling and communication among stakeholders [6, 29, 67].

3. Business Process Modeling Languages (e.g., BPMN15): Designed for illus-
trating business workflows, BPMN specifies roles within processes clearly.
It is more structured than free-form graphics yet still primarily serves as a
communication tool rather than a formal specification [54].

4. Architectural Description Languages (ADLs) (e.g., ACME [26], AADL [3]):
ADLs focus on system architecture, detailing how roles (often as components
or connectors) integrate into and interact within an overall system. They add
structure by specifying interfaces and inter-component relationships [23, 57].

5. Programming Code: Implementing role specifications in programming lan-
guages makes them executable. While this approach is concrete and precise
in terms of behavior, it often intertwines specification with implementation
details rather than remaining purely abstract [63].

6. Domain-Specific Languages (DSLs): DSLs are custom-tailored to particu-
lar domains. They capture role details and constraints that are specific to
the domain context, offering both precision and relevance while potentially
varying in formal rigor [21].

7. Behavioral Modeling Languages (e.g., Statecharts [35], Petri nets [59]): These
languages emphasize the dynamic aspects of roles—modeling state transi-
tions, interactions over time, and concurrency. They provide a formal way
to describe how roles behave under various conditions [14, 69].

8. Ontology and Semantic Web Languages (e.g., OWL16, RDF17): By defining
roles within a network of semantically related concepts, these languages offer
a formal framework that supports logical inference and interoperability. They
are especially useful when roles need to be integrated into larger knowledge
representation systems [33, 40].

9. Logic Programming Languages (e.g., Prolog [28]): Using a declarative, rule-
based approach, logic programming languages allow you to specify roles in
terms of logical constraints and relationships. This method supports formal
reasoning and can automatically infer properties of roles [38].

10. Formal Specification Languages (e.g., Z [71], Alloy [41], TLA+ [49], VDM
[45], B [2]): These are the most mathematically rigorous methods available.
They provide precise, unambiguous specifications that can be used for formal
proofs and verification, ensuring that role properties and interactions meet
strict correctness criteria [27, 56, 61].

These various methods for role specification comprehensively outline the the-
oretical framework and expectations of a role within a system. These methods
12 OMG UML, https://www.omg.org/spec/UML, accessed on February 4, 2025.
13 OMG SysML, https://www.omgsysml.org/, accessed on February 4, 2025.
14 AUML, https://auml.org/auml/, accessed on February 4, 2025.
15 BPMN, https://www.omg.org/bpmn/, accessed on February 4, 2025.
16 OWL, https://www.w3.org/TR/owl-ref/, accessed on February 4, 2025.
17 RDF,https://www.w3.org/TR/rdf11-concepts/, accessed on February 4, 2025.
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not only determine which actions a role will perform and how it will interact with
other roles but also provide crucial insights into how these abstract concepts can
be transformed into concrete actions during the implementation process.

In the context of LLMs and LLM-enabled agents, role specification relies
solely on natural language descriptions. These textual inputs are interpreted
and refined through a detailed prompt engineering process, enabling LLMs to
capture the user’s intent. This process ensures that the generated responses
align with the desired expertise or narrative style, thereby improving overall
performance. In essence, natural language serves as a vital bridge between human
intent and model behavior—the clarity and scope of the language used in defining
a role directly shape the quality and relevance of the model’s outputs. However,
to achieve less error-prone role specifications, it is preferable to use the more
precise methods described above. These specifications can then be translated
into natural language descriptions when interacting with LLMs.

Besides, role specialization and reusability are partially feasible within LLM-
based systems, particularly when supported by structured prompt engineering
and modular design frameworks. By defining roles through detailed persona
descriptions—encompassing aspects such as background, expertise, tone, and
communication style—LLMs can consistently emulate specific behaviors across
various contexts. This approach not only enhances the model’s ability to main-
tain a coherent persona but also facilitates the reuse of these role definitions
across different tasks and applications. However, challenges remain in ensur-
ing that specialized roles do not lead to overfitting or reduced generalization
capabilities. Techniques such as Role Prompting Guided Domain Adaptation
(REGA) [73] address this by preserving the general capabilities of LLMs while
allowing for effective domain-specific adaptations. REGA employs strategies like
self-distillation and role integration to mitigate issues like catastrophic forgetting
and inter-domain confusion. Having said, while frameworks and methodologies
are emerging to bring more structure to LLM role definitions, LLMs still lack the
formal structure of object-oriented programming (OOP), making it challenging
to ensure consistency and reusability across different contexts, and they do not
yet match the rigor and predictability offered by OOP paradigms.

4.3 Role Implementation

A role defines a set of actions that an agent can perform to achieve its objectives
within a multi-agent system (MAS). These actions are guided by the structural
arrangements associated with the role, which may include interacting with the
environment, gathering information, making decisions, and communicating with
other agents. By adopting roles, agents can dynamically respond to changing
conditions and collaborate effectively on complex tasks. The specific actions
associated with a role can be implemented in the following ways.

Actions Directly Called within Code Roles are implemented using pro-
gramming languages and are invoked directly by agents within their code. As
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Fig. 1. Actions directly called within code

shown in Figure 1, an action is first added to the relevant role. Then, Agent
requests to perform the role. For an Agent to perform its Role, it has to execute
various actions. After execution, actions produce outcomes, which are returned
to the agent by the role. This method is more common in AOSE methodologies
such as GAIA [78], Prometheus [55], MaSE [53] and is based on the implemen-
tation of role definitions directly as methods or plans in the agent code.

Fig. 2. Actions called as Semantic Web Services

Actions called as Semantic Web Services Agents dynamically discover and
invoke actions via services, aligning with modern microservices architectures. In
Figure 2, firstly the action as Web Service registers its capabilities to Directory
Service. Then, at any time, Agent sends a request to find the appropriate service.
Once selected, Web Service is invoked, performs the required operations, and
returns the output information in (5) [12].

Fig. 3. Actions Triggered for LLM to Performs Its Role

Actions Triggered for LLM to Perform Its Role An LLM autonomously
performs tasks by assuming a specific role, enabling artificial intelligence to ex-
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hibit autonomous behavior. In the first step of Figure 3, Agent initiates a two-
stage prompt process before forwarding it to LLM. In (2), Role supplies its
description, and in (3), it sends a prompt containing the action request. In (4),
LLM executes the required action-whether generating a response, handling a
query, or performing another designated task and returns the output or action
outcome back to Agent [17, 52, 60].

Fig. 4. Actions Triggered by LLM-Controlled Tools

Actions Triggered by LLM-Controlled Tools Agents use natural language
queries or commands to trigger actions through LLMs, leveraging advancements
in AI and natural language processing. As shown in Figure 4, in (1), a specific
action definition is explicitly added to the Agent. Then, in (2), the Agent sends
a prompt to the LLM, including descriptions of the defined tools or actions.
In (3), the LLM selects the most suitable tool from the available options. The
chosen action is then either executed by the Agent within Local Code in (4a) or
performed by sending a request to the Web Service in (4b). In (5a), the result
from the Local Code is returned to the Agent. In (5b), the response from the
Web Service is returned to the Agent. In (6), the Agent forwards these results to
the LLM. Finally, in (7), the LLM translates these results into natural language
and returns them to the Agent.

Actions Triggered by LLM-Controlled MCP Model Context Protocol
(MCP)18 is a robust and open protocol specifically designed to facilitate seam-
less integration of data sources and external tools into LLM-enhanced MAS.
MCP operates on a client-server model, systematically managing resources (e.g.,
documents, databases), tools (e.g., API calls, file operations), and standardized
prompt templates required by LLMs. As shown in Figure 5, MCP Server provides

18 MCP, https://modelcontextprotocol.io/, accessed on March 31, 2025.
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Fig. 5. Actions Triggered by LLM-Controlled MCP

these resources and tools, while LLM acting as MCP Client establishes connec-
tions, enabling Agent to efficiently discover and utilize available resources.

In LLM-supported MAS, the selection of role implementation methods must
be carefully evaluated based on various criteria, including system performance,
security, flexibility, and maintenance ease. Directly invoked actions within code
provide developers with full control, enabling efficient debugging, performance
optimization, and security. While this method ensures minimal latency and high
computational efficiency, its static nature limits flexibility, leading to issues such
as code redundancy, maintenance complexity, and scalability challenges. On the
other hand, actions invoked as semantic web services enhance dynamic adapt-
ability and reusability through runtime updates and service extensions. While
centralized maintenance facilitates cross-platform integration, dependency on
external service providers introduces risks such as API changes, service outages,
security vulnerabilities, and network latency [47]. Actions triggered by LLM-
controlled tools simplify complex operations via natural language interactions,
providing a user-friendly environment and supporting rapid prototyping [65].
However, this approach comes with the risks of unpredictable LLM behavior
[22], potential errors [77], and high resource consumption [19]. Additionally, ac-
tions triggered by an LLM assuming a role offer high adaptability, creativity,
and continuous learning capabilities. The ability to assign roles using natural
language further enhances accessibility. However, this method also presents chal-
lenges such as a lack of transparency [37], security and privacy risks [62], and
significant computational demands.

In this section, we have shown that roles are not necessarily explicitly rep-
resented an implementation of a concept. In AOSE, roles are often used as ab-
stract concepts during design-time and typically lack explicit representation at
run-time. However, this absence hinders the clear mapping between agents’ be-
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haviors and their corresponding roles, thereby limiting the system’s dynamic
adaptability. As highlighted in frameworks such as ROPE [7] and JaCaMo [10],
this limitation underscores the need for explicit run-time role modeling. Lhaks-
mana et al. [50] further stress the critical advantages of defining roles explicitly at
run-time, particularly in self-organizing multi-agent systems. We thus argue that,
in LLM-supported MAS, roles should be treated as first-class entities at run-time
to effectively manage diverse application domains and support adaptability. Such
an approach enhances agents’ ability to adapt dynamically, increases run-time
flexibility, and promotes overall system sustainability. This shift toward explicit
run-time role representation is embodied in the hybrid role-based architecture
presented in Section 5.

5 Proposed Role-based Architecture

Based on the aforementioned observations, this section lays the foundation for an
initial architecture for LLM-enhanced MAS engineering. Our goal is to establish
a comprehensive framework that integrates traditional AOSE concepts (e.g.,
role, role implementation) with LLM-based dynamic capabilities. Due to the
requirements of hybrid usage and encapsulation, we propose maintaining role
definitions explicitly within agents. By encapsulation, we mean bundling data
and the actions that operate on that data in a role into a single unit. This way,
we can protect the role’s internal state from unintended interference or misuse.
Moreover, encapsulation promotes modularity and maintainability, making it
easier to modify and debug the role while ensuring data integrity.

Fig. 6. Proposed Role Based Architecture

Role definitions can encompass one or multiple role implementation ap-
proaches outlined in Section 4.3 (Figure 6). This means that a role may involve
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actions that are executed locally, actions accessed via web services, tasks per-
formed by locally implemented large language model (LLM) tools, or operations
carried out directly by LLMs.

Fig. 7. Proposed Role Concept as UML.

Consequently, we design the LLM-enabled role concept using the UML graph-
ical modeling language since it is more precise compare to natural language. Fig-
ure 7 shows a simple UML class model in which an agent with roles. Each Role
belongs to one Agent (its owner), has a string indicating the environment where
the role is played, and may include various role specific data. A Role can have
five types of “actions” with different stereotypes—indicating, for example, Lo-
calCode, WebService, LLMTool, MCPTool, or LLMAction—that can be invoked
when an agent is acting in that particular role.

Fig. 8. Figure (a) is a prompt template for a role configured to use tools when necessary.
Figure (b) is a prompt template for a role that generates a response directly through
the LLM.

When an agent intends to determine or guide its actions within a specific role
using outputs generated by an LLM, it employs a dynamically generated prompt.
This prompt is constructed by selecting one of the two prompt templates de-
picted in Figure 8. Figure (a) illustrates a scenario in which the agent performs
an action by utilizing external tools based on recommendations provided by the
LLM, whereas Figure (b) represents a scenario in which the agent directly utilizes
the textual output from the LLM as its response. Placeholders in these prompts-
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such as ownerAgent.name, role.name, env, and role_specific_data—are dy-
namically replaced at runtime with concrete values derived from the respec-
tive role instance and its owning agent. Consequently, the LLM obtains explicit
contextual information about the agent’s identity, the role being enacted, the
operational environment, and the available capabilities. Thus, the agent inter-
prets the output generated by the LLM and either executes appropriate actions
through designated tools or directly incorporates the LLM’s response into its
communication processes.

6 Conclusion

In this study, we shed light on the fact that existing LLM-based tools and frame-
works do not sufficiently leverage AOSE’s extensive body of knowledge. While
LLM-based frameworks and tools have made impressive strides in enabling pow-
erful and flexible agent behavior, they often do so through ad hoc design ap-
proaches that compromise maintainability, reusability, and scalability.

To address this issue, we conducted a focused study on the concept of roles,
a foundational element in AOSE, and examined how it is defined, specified, and
implemented in both traditional AOSE and LLM-based systems. Our analysis
revealed key differences and limitations in current LLM-enabled role modeling,
particularly the absence of formal structure and runtime support.

However, adapting the concept of “role” in LLM-assisted MAS development
and transforming it into concrete actions brings both new opportunities and chal-
lenges. Hybrid solutions that combine the solid principles of traditional AOSE
methodologies with the innovative dynamism of LLMs can be effective in over-
coming these challenges. Based on this observation, we proposed a hybrid role-
based architecture that encapsulates both traditional AOSE design principles
and LLM-driven functionalities. This initial architecture is able to express roles
that have various actions types while encapsulating them.

By bridging the conceptual foundations of AOSE with the dynamic poten-
tial of LLMs, our work lays the groundwork for a more principled engineering
methodology for LLM-enhanced MAS. Future work will focus on refining this ar-
chitecture and validating its effectiveness through practical case studies involving
real-world MAS applications.
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