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Özet 

Yapay Zeka (AI) ve Nesnelerin İnterneti (IoT) teknolojilerinin birleşerek "Nesnelerin Yapay Zekası" 
(AIoT) altyapısını oluşturduğu gözlemlenmektedir. Bu entegrasyonun amacı, insan-makine 
etkileşimleri, IoT operasyonları, büyük veri analitiği gibi çeşitli alanlarda iyileştirmeler sağlamaktır. 
AIoT tabanlı enerji sistemleri kullanıcılara bu avantajları sunmasına rağmen, geliştiriciler özellikle veri 
toplama ile ilgili karmaşık yazılım bileşenlerinin hazırlanması ve birleştirilmesinde zorluklarla 
karşılaşabilmektedir. Ayrıca enerji sistemlerine yönelik artan güvenlik ve kalite gereksinimleri, 
geliştirme süreçlerinin daha etkin ve daha otomatik bir şekilde yönetilmesini zorunlu hale getirmiştir. 
Bu bağlamda, düşük kodlu geliştirme platformlarının (LCDP) sağlanması, bu tür sistemlerin tasarım ve 
gerçekleştirilmesini kolaylaştırabilir ve model güdümlü mühendisliği (MDE) destekleyebilir. Bu 
nedenle, bu çalışmada düşük kodlu geliştirme yaklaşımının yeni bir uygulama alanı olan AIoT destekli 
enerji sistemlerinde sunduğu avantajlardan yararlanmak amacıyla bir LCDP tanıtılmaktadır. 
Bu çalışmada sunulan LCDP, mevcut IoT tabanlı enerji cihazlarında kullanılan çeşitli araçları entegre 
etmekte ve bu araçların tek bir sistem üzerinden yönetilmesini sağlamaktadır. Ayrıca, gereksinim 
tanımlamadan modelleme ve kod üretimine kadar olan tüm süreçlerin otomasyonunu 
desteklemektedir. Geliştirilen LCDP, cihaz tanımlamaları, gerçek zamanlı değer arayüzleri ve 
uygulanacak yapay zeka yaklaşımları gibi gereksinimlerin kolayca tanımlanmasına olanak 
tanımaktadır. Bu çalışmada önerilen LCDP’nin, farklı bileşen bakış açılarıyla AIoT destekli enerji 
sistemlerinin grafiksel sözdizimi ile kolay modellemesini nasıl sağladığı ve nihayetinde otomatik kod 
üretimini nasıl gerçekleştirebildiği ele alınmaktadır. 
 
Anahtar kelimeler: Düşük kodlu geliştirme, Yapay Zeka, Nesnelerin İnterneti, Nesnelerin Yapay 
Zekası, Model güdümlü mühendislik  
 

Low-code development of the Artificial Intelligence of 
Things (AIoT) enabled Energy Systems 

Abstract 

It is observed that Artificial Intelligence (AI) and Internet of Things (IoT) technologies are merging to 
form the infrastructure of "Artificial Intelligence of Things" (AIoT). The aim of this integration is to 
provide improvements in various areas such as human-machine interactions, IoT operations, big data 
analytics, and more. Although AIoT-based energy systems offer the aforementioned benefits to users, 
developers may encounter difficulties particularly in preparing and integrating the complex software 
components related to data collection in the development of such systems. Moreover, the increasing 
security and quality requirements of energy systems have made it necessary to manage development 
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processes more effectively and in a more automated manner. Within this context, providing low-code 
development platforms (LCDP) may facilitate the design and implementation and support the model-
driven engineering (MDE) of such systems. Hence, in this paper, we introduce an LCDP for AIoT-
enabled energy systems to benefit from these promising features of the low-code development in this 
new application domain. The LCDP herein integrates the various tools used in current IoT-based energy 
devices and enables their management through a single tool. Furthermore, it supports the automation 
of all processes from requirement specification to modeling and code generation. The developed LCDP 
enables easy definition of requirements such as device descriptions, real-time value interfaces, and AI 
approaches to be applied. We discuss how the proposed LCDP may provide easy modeling of AIoT-
enabled energy systems with its graphical syntax from various component viewpoints and hence is 
capable of automatic code generation in the end. 

 
Key words: Low-code development, Artificial Intelligence, Internet of Things, Artificial Intelligence of 
Things, Model-driven engineering 
 

1. Introduction 

Artificial Intelligence (AI) applications have begun to be integrated into existing hardware 
including IoT devices. Today’s modern world is experiencing significant growth in software 
technologies to digitize all human-related processes. With the combination of AI and IoT technologies 
(Madakam et a., 2015), the concept of "Artificial Intelligence of Things" (AIoT) is emerging (Matin et al., 
2023). Integrating AI and IoT aims to achieve higher performance and increased system reliability. 
AIoT-enabled solutions are applied in various sectors such as industry and manufacturing, healthcare, 
agriculture, and energy infrastructure. These solutions enhance efficiency, reduce system downtimes, 
and improve safety measures (Matin et al., 2023). However, major challenges faced by AIoT products 
in this sector include data security, network integrity, energy efficiency, and the complexity of data 
analysis algorithms (Yang et al., 2021). 

In the energy sector, AIoT enables the establishment of intelligent, efficient, and predictable 
systems for both energy production and consumption. While IoT devices collect data from the field, AI 
analyzes these data to provide prediction, optimization, and automation. AIoT-enabled production 
solutions reduce energy costs through resource and process planning. Additionally, AIoT contributes 
to efficient energy management in areas such as increasing grid efficiency, optimal use of renewable 
energy sources, and the creation of decentralized energy trading (Jnr, 2024). Nevertheless, AIoT 
technology heavily relies on sensors, IoT devices, network connections, and data centers. Sustaining the 
functionality of AIoT infrastructure requires energy to connect many devices. Therefore, research is 
being conducted to reduce the energy demands of AIoT solutions. Moreover, changes in consumer 
demands, behaviors, and technological developments have increased energy consumption. As a result, 
energy management has become a critical issue for sustainable production (Matin et al., 2023). In this 
context, daily electricity usage is analyzed by comparing it to previous days' usage to inform consumers. 
Power systems help prevent unexpected energy waste by cutting off undesired electrical loads 
(Arivukkody et al., 2022). 

Although AIoT-enabled energy systems offer the aforementioned advantages to users, developers 
face challenges particularly in the preparation and integration of software components related to data 
collection. Creating an abstract model of such IoT systems before implementation and developing the 
necessary software with minimal coding through visual syntax can improve efficiency (Arslan et al., 
2023). Accordingly, this paper introduces a low-code development platform (LCDP) (Cabot, 2020; Di 
Ruscio et al., 2022) that supports the model-driven engineering (MDE) (Brambilla et al., 2017) of AIoT- 
enabled energy systems. Increasing demands for security and quality in energy systems require more 
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effective and automated management of development processes. This study aims to contribute to 
related novel application area by presenting an LCDP example and to integrate different tools used in 
existing AIoT- enabled energy devices for centralized management. 

The remainder of the paper is structured as follows: Section 2 presents a detailed discussion of the 
metamodel that forms the foundation of the abstract syntax of the proposed LCDP. Section 3 introduces 
the graphical concrete syntax of the LCDP, which enables the modeling of AIoT-enabled energy 
systems. Section 4 discusses the implementation of the web-based integrated development environment 
(IDE) that supports the use of the LCDP. Section 5 presents a case study demonstrating the use of the 
LCDP and its IDE in the development process of such energy systems. Finally, Section 6 offers a general 
evaluation of the study and concludes the paper. 

 

2. Abstract Syntax 

Abstract syntax can be defined as a conceptual representation of a modeling language’s 
fundamental constructs and their relationships, independent of concrete representations (Saritas & 
Kardas, 2014). This abstract structure focuses on identifying the main entities, core properties, and 
relationships within a language. It is typically defined through a metamodel and is used to explain the 
semantics and structure of a Domain-Specific Language (DSL) or a Domain-specific Modeling Language 
(DSML) (Kardas et al., 2023). 

The metamodel of the AIoT-enabled energy systems that provides the underlying abstract syntax 
for our LCDP, includes the meta-entities and their relationships given in Figure 1. Energy devices, 
parameters, and users are defined with the entities that enable data collection, visualization, and 
modeling processes. The main entities of the metamdeol derived for the AIoT-enabled energy systems 
are described below: 

• EnergyDevices represent the AIoT-enabled energy devices defined in the system. Each 
device is associated with one or more parameters, and these parameters are read from the 
energy devices. Energy Devices model the source of data within other environmental 
systems and form the foundation of the entire model. 

• Parameters are defined for reading data from the sensors on energy devices or data 
produced internally. These parameters provide information about the data received from 
the energy device, normalized using attributes such as scale factor and offset. 

• Energy Device Data are recorded for tracking real-time measurements collected from 
energy devices. Each entry corresponds to a specific parameter name associated with a 
device and includes a measured register value alongside a timestamp. This structure 
enables storing time-series data that reflect the dynamic behavior of the monitored system 
and supports visualization, analysis, and AI-enabled processing. 

• Graph Configuration represents the user-defined configurations for visualizing data from 
energy devices via drag-and-drop features. It defines which parameters from which 
energy  devices will be monitored, the type of graph, and update intervals—thus modeling 
the user’s monitoring capabilities. 

• User Model Config represents the energy devices and parameters selected by users when 
configuring AI models. It holds information such as the model type and whether the AI 
training has been completed. 

• User Tables represents custom tables created by users visually, allowing them to monitor 
parameter values from specific energy devices in real time. This enables personalized real-
time monitoring and reporting. 
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• Users represent the registered users of the system and their roles. Each user can monitor 
energy devices, create tables, visualize data, and define AI models. Users are the starting 
point for all personal configurations and interactions. 

 

 

Figure 1. The platform metamodel for the AIoT-Enabled Energy Systems 

3. Concrete Syntax 

The metamodel presented in Section 2 defines the abstract syntax of the system, outlining AIoT 
core entities such as Devices and Users and their interrelationships. For the proper use of these abstract 
elements we need a concrete syntax reflecting the implementation-level counterparts of these abstract 
elements as is the case in various DSL, DSML and LCDP approaches (e.g. (Mernik et al., 2005); 
(Mohamed et al., 2020);  (Celik et al., 2023)). This graphical concrete syntax includes visual and structural 
representations for the concepts and the relations of the proposed DSL for the MDE of AIoT-enabled 
energy systems. 

The concrete syntax of our LCDP is composed of various viewpoints / diagram types each 
representing an essential concept family in a data-oriented architecture. The Device diagram is central 
to the system and focuses on real-time data collection, configuration, and modeling. It works alongside 
the Data table to store parameter information in detail (e.g., scale, offset, value, timestamp). 

The GraphConfiguration and GraphDataPoint diagrams form the concrete syntax structures for 
visual monitoring. While GraphConfiguration defines how data is grouped and visualized, 
GraphDataPoint includes the actual values to be displayed—offering a practical representation of data-
based monitoring. 

UserModelConfig supports user-oriented modeling by defining the devices, parameters, and 
model types selected by each user. UserTable manages user-specific diagrams and related parameters. 

To ensure access control and security, a Users diagram is also integrated into the model, supporting 
a secure, multi-user architecture. 

This structure systematically supports the transition from abstract to concrete in accordance with 
MDE principles and provides a clear, practical, and extensible foundation for both developers and end-
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users. Table 1 lists some of the concrete syntax elements with their correponding visual notations used 
inside the proposed LCDP. 
 

 Table 1: A fragment from the concrete syntax of the AIoT LCDP 

 

4. Online Development Environment for Modeling and Implementation of AIoT- Enabled Energy 
Systems 

In this study, a web-based LCDP has been designed as an integrated tool that enables the transition 
from abstract modeling to application-level implementation of AIoT- enabled energy systems. Based on 
the language specification given in Section 2 and 3 the platform facilitates MDE of AIoT-enabled energy 
systems and enables unified modeling of AIoT-enabled energy devices, parameters, users, visualization 
configurations, and AI models. Users can define system components, visually model them, and 
transform these models into executable software components using a drag-and-drop method, without 
the need for technical programming knowledge. 

The integrated development environment (IDE) is entirely web-based and includes user 
authentication. This ensures each user's project files, models, and AI outputs are securely stored online 
and can be accessed from multiple devices. The interface consists of two main sections: a project 
navigator on the left panel, and a modeling area with drag-and-drop functionality in the center. Once 
the modeling process is completed, the corresponding output is automatically displayed in the same 
area (see Figure 2). 
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Figure 2. An overview of the IDE for the proposed LCDP  

Each project is structured in a layered architecture that includes AIoT-enabled Energy devices, 
sensor parameters, user-specific tables, and AI configurations. For example,  energy  devices such as 
inverters, generators, and climate systems within a power plant can be defined as “Device” objects in 
the system, and parameters such as temperature, voltage, and current can be linked as “Parameter” 
objects. These parameters are normalized and monitored in real-time through the database and 
presented to the user via live tables. 

Graph and table components can be dynamically defined in the user interface. The user can drag 
and drop the desired parameters into table or chart components. The chart component allows for 
historical data analysis, while the table component is used to report real-time values. Each user can 
create a personalized monitoring interface, which is saved by the system and made accessible in future 
sessions. 

In the AI configuration screen, users can select a model type and define training data accordingly. 
Training data can be generated in two ways: (i) by automatically extracting previously recorded 
parameters within the system, or (ii) by uploading external CSV or Excel files.This enables users to 
handle the necessary preprocessing tasks and store the resulting model as a .pkl file on the system. The 
results of the selected model can also be monitored in the user interface via charts or tables. 

This web-based LCDP enables the execution of data collection, visualization, modeling, and AI-
driven analysis functions required for AIoT-enabled energy systems, with minimal need for software 
development expertise. Thanks to the model control mechanisms integrated into the platform, the 
establishment of inconsistent or invalid relationships between defined model components is prevented. 
System integrity is maintained through constraint checks, ensuring that users construct valid model 
structures. Moreover, by performing both data collection and AI model processing within the same 
environment, potential data security risks are eliminated, and the need for third-party applications is 
removed. 

5. Case Study 

Using a low-code development approach, this case study illustrates the design and implementation 
of an AIoT enabled energy system. It exemplifies the definition of AIoT-enabled energy devices in a 
mobile base station; the identification and real-time monitoring of parameters; visualization through 
graphs; and the creation of AI models. 
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In a base station, a rectifier converts AC power to DC power, a generator activates when the grid 
fails to ensure system continuity, and an air conditioning unit maintains operational temperature. These 
devices are typically found in a base station, and their number may increase based on the capacity. 

Users log in to the LCDP system with a username and password, thereby preventing unauthorized 
access. After the user logs in, the dashboard screen is displayed, and the user can use the navigation 
panel on the left to perform the desired operations (Figure 3). 

 

Figure 3. Main page screen for modeling the AIoT-enabled energy system 

On settings page, the system responsible for making AIoT energy devices “readable” implements 
a device-modeling workflow. When the user clicks the “Add New AIoT Energy Device” button, a 
popup form appears in which they specify details such as the device name, IP address, protocol type, 
and other relevant parameters. Upon clicking “Save,” the system automatically generates the 
appropriate code for that device, thereby rendering it accessible and “readable” by the platform (Figure 
4). 

 

 

Figure 4. Device modeling 
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After the relevant energy devices have been registered, the user can click the Parameters button on 
the same interface to select the parameters to be accessed according to the communication protocol of 
the device in the popup window, or manually enter the information (e.g., parameter identifier, register 
index, offset value). Upon clicking the Save button, the system automatically initiates the corresponding 
protocol handlers and data acquisition routines, thus enabling the automatic retrieval of the specified 
parameters from the respective devices (Figure 5). 

 

 

Figure 5. Device parameter modeling 

After device registration, real-time parameter monitoring is initiated by selecting Live Value Table 
under the Live Value section in the main menu. In this interface, the operator can model a monitoring 
table using a drag-and-drop method. When the table is placed in the workspace, a popup window 
prompts the operator to enter a unique table identifier. The operator then selects the target devices and 
specifies the parameters for continuous monitoring. Finally, when the Save command is activated, the 
configuration is completed, enabling uninterrupted real-time visualization of the selected device 
measurements (Figure 6). 
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 Figure 6.  Modeling of Live Value Table 

When you finalize the Live Value table configuration or access the Live Value Table interface later, 
the platform automatically visualizes real-time data for all pre-configured tables. In this way, the 
developed LCDP enables continuous, live visualization of AIoT-enabled energy device measurements 
(Figure 7).  

 

Figure 7. Data visualization fori Live Value Table 

By navigating to the Graph page under the Live Value section in the left-hand menu, real-time 
parameter graphs can be created. In this interface, the operator models a graph using a drag-and-drop 
manner. When the graph is dragged into the workspace, a popup window prompts the operator to 
specify the graph name, target devices to be monitored, parameters to be observed, and the type of 
graph. Finally, when the Save command is activated, the configuration is saved, enabling uninterrupted, 
real-time visualization of the selected device measurements in a graphical form (Figure 8). 

 

          

Figure 8. Graph modeling for Live Value 
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Once the Live Value Graph configuration is completed or the Graph interface under the Live Value 
section is accessed later, the platform automatically plots real-time data for all previously defined 
graphs. In this way, the LCDP enables uninterrupted and real-time graphical visualization of 
measurements from AIoT-enabled energy devices (Figure 9). 

 

Figure 9. Live Value Graph Visualization  

Artificial intelligence (AI) model configurations are defined via a web-based interface in order to 
minimize dependency on developers. Users specify the model name, device type, and the parameters 
to be used. Training data can be retrieved directly from the database or imported via an Excel file. This 
enables data cleaning and correction when necessary. The trained model is saved on the server as a 
“.pkl” file without requiring any coding. The selected model, corresponding parameters, and AI 
outputs are visualized and presented to the user through the web interface (Figure 10). 

 

 

Figure 10. Creating AI Models 

The trained model, using the parameters selected during the training phase as inputs, enables the 
display of prediction outputs within the Live Value Table (Figure 6) and Live Value Graph (Figure 8) 
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interfaces. Additionally, the platform provides a Make a Guess section, allowing users to test the trained 
model by selecting it and entering appropriate input parameters, thus facilitating model validation 
(Figure 11). 

 

Figure 11. AI Model “Make a Guess” 

In this way, all AIoT-enabled energy devices in a base station have been monitored in real time 
with minimal coding; their data has been visualized and reported through tables and graphs, and 
modeled using AI  models. 

6. Conclusion 

In this study, an MDE approach is proposed by integrating DSML and LCDP technologies for the 
development of AIoT-enabled energy systems. This integrated approach enables system designers to 
graphically model the structural and behavioral components of smart energy systems, while also 
supporting the integration of AI and IoT infrastructure. 

The proposed DSML with the supporting LCDP allows for the platform-independent 
representation of physical components, data collection processes, and AI-enabled decision-making 
mechanisms through a metamodel and graphical syntax. Moreover, with the developed LCDP 
prototype, it is possible to generate executable code directly from the models, providing significant time 
savings during rapid prototyping and development phases. 

To the best of our knowledge, this study is among the first to address low-code and model-driven 
development approaches in the context of AIoT-enabled energy systems. Although the syntax and 
semantics definitions for the proposed DSML and its LCDP are discussed in this paper, the systematic 
assessment of the usability of these language elements and the provided IDE needs to be performed. 
Within this context, our future work will evaluate the promising features of this LCDP by means of 
artifact generation and time savings according to a well-defined set of DSL criteria (Kahraman & Bilgen, 
2015) and language evaluation methodology previously we applied in similar systematic DSL, DSML 
and MDE evaluation studies (e.g. Marah et al., 2021; Leblebici et al., 2022; Arslan et al., 2024). 
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