
The Knowledge Engineering Review, Vol. 28:4, 479–503. & Cambridge University Press, 2013
doi:10.1017/S0269888913000088
First published online 19 April 2013

Model-driven development of multiagent systems:
a survey and evaluation

GEYLAN I KARDA S

International Computer Institute, Ege University, 35100 Bornova, Izmir, Turkey;

e-mail: geylani.kardas@ege.edu.tr

Abstract

To work in a higher abstraction level is of critical importance for the development of multiagent

systems (MAS) since it is almost impossible to observe code-level details of such systems due to

their internal complexity, distributedness and openness. As one of the promising software

development approaches, model-driven development (MDD) aims to change the focus of software

development from code to models. This paradigm shift, introduced by the MDD, may also

provide the desired abstraction level during the development of MASs. For this reason, MDD of

autonomous agents and MASs has been recognized and become one of the research topics in

agent-oriented software engineering (AOSE) area. Contributions are mainly based on the model-

driven architecture (MDA), which is the most famous and in-use realization of MDD. Within this

direction, AOSE researchers define MAS metamodels in various abstraction levels and apply

model transformations between the instances of these metamodels in order to provide rapid and

efficient implementation of the MASs in various platforms. Reorganization of the existing MAS

development methodologies to support model-driven agent development is another emerging

research track. In this paper, we give a state of the art survey on above mentioned model-driven

MAS development research activities and evaluate the introduced approaches according to five

quality criteria we define on model-driven MAS engineering: (1) definition of a platform inde-

pendent MAS metamodel, (2) model-to-model transformability, (3) model-to-code transform-

ability, (4) support for multiple MAS platforms and finally (5) tool support for software modeling

and code generation. Our evaluation has shown that the researchers contributed to the area by

providing MDD processes in which design of the MASs are realized at a very high abstraction level

and the software for these MASs are developed as a result of the application of a series of model

transformations. However, most of the approaches are incapable of supporting multiple MAS

environments due to the restricted specifications of their metamodels and model transformations. Also

efficiency and practicability of the proposed methodologies are under debate since the amount and

quality of the executable MAS components, gained automatically, appear to be not sufficient.

1 Introduction

Design and development of intelligent software agents keep their emphasis on both artificial

intelligence and software engineering research areas. In its widely-accepted definition, an agent is

an encapsulated computer system (mostly a software system) situated in some environment, and

that is capable of flexible autonomous action in this environment in order to meet its design

objectives (Wooldridge & Jennings, 1995). These autonomous, responsive and proactive agents

have also social ability and interact with other agents and humans in order to complete their own

problem solving. They may also behave in a cooperative manner and collaborate with other agents



to solve common problems. To perform their tasks and interact with each other, intelligent agents

constitute systems called multiagent systems (MAS).

MAS researchers develop communication languages, interaction protocols and agent archi-

tectures that facilitate the development of MASs. They also propose new methodologies (e.g. Gaia

(Zambonelli et al., 2003) and Tropos (Bresciani et al., 2004)) and tools for agent-oriented software

development because characteristics and challenges of agent-oriented software engineering

(AOSE) stretch the limits of current software engineering methodologies as mentioned in Bergenti

et al. (2004). Besides, AOSE is distinct from object-orientation when agent, goal, role, organiza-

tion, context and messages are considered as first-class entities. For this reason, various MAS

research activities (e.g. Ferber & Gutknecht, 1998; Bernon et al., 2005; Odell et al., 2005) define

agent metamodels (model of models) that include these entities and their relations. AOSE

researchers also propose new agent modeling languages (e.g. Bauer et al., 2001; Depke et al., 2001;

Cervenka et al., 2005) since a system model can be developed by using a proper modeling language,

which is used to express the structure of the system by defining a consistent set of rules.

It is obvious that working in a higher abstraction level is of critical importance for the devel-

opment of MASs since it is almost impossible to observe code-level details of MASs due to their

internal complexity, distributedness and openness. As one of the promising software development

approaches, model-driven development (MDD) (Selic, 2003) aims to change the focus of software

development from code to models, and hence many AOSE researchers believe that this paradigm

shift introduced by MDD may also provide the desired abstraction level and simplify the devel-

opment of complex MAS software. MDD of autonomous agents and MASs has been recognized

and become one of the research topics in AOSE area. Contributions are mainly based on the

Object Management Group’s model-driven architecture (MDA; Object Management Group,

2003), which is the most famous and in-use realization of MDD. Within this direction, some of the

AOSE researchers (e.g. Amor et al., 2005; Gracanin et al., 2005; Hahn et al., 2009; Kardas et al.,

2009) intend to apply the whole MDD process for MAS development while some of them (e.g.

Jayatilleke et al., 2004; Perini & Susi, 2006; Xiao & Greer, 2007) prefer to utilize just MAS

metamodels and/or model transformations as needed. Also some researchers (e.g. Pavon et al.,

2006; Penserini et al., 2006; Rougemaille et al., 2007) take into account the reorganization of the

existing MAS development methodologies to support model-driven agent development. In this

paper, we both give a survey of these noteworthy research efforts and an evaluation of the

introduced approaches within the scope of model-driven engineering quality.

The survey presents an extensive discussion of the above mentioned model-driven MAS

development studies by taking into account the characteristics and methodologies of their pro-

posed approaches, and evaluates the introduced approaches according to five quality criteria we

define on model-driven MAS engineering: (1) definition of a platform independent MAS meta-

model, (2) model-to-model transformability, (3) model-to-code transformability, (4) support for

multiple MAS platforms and finally (5) tool support for software modeling and code generation.

In order to provide a comparison between the surveyed model-driven MAS development

approaches, the evaluation of each approach according to each criterion is also graded and

discussed in this paper.

The remainder of the paper is structured as follows: Section 2 includes a brief introduction of

MDD of MAS software for readers who are not familiar with the MDD and related terminology.

After this background section, the comprehensive discussion and evaluation of the model-driven

MAS development approaches are given in Section 3. Section 4 discusses the results extracted

from our evaluation and Section 5 concludes the paper.

2 Model-driven software development

Selic (2003) states that MDD holds promise of being the first true generational leap in software

development since the introduction of the compiler. Truthfully, MDD considers the models as the

main artifacts of software development and hence its methodology provides a real paradigm shift

480 G . KARDA S



in software development. A model can be considered as a set of statements about a software

system (Seidewitz, 2003). The validity and appropriateness of models describing software systems

are ensured by defining metamodels for those models. AOSE researchers propose various system

metamodels (e.g. Ferber & Gutknecht, 1998; FIPA Modeling Technical Committee, 2004; Bernon

et al., 2005; Molesini et al., 2005; Hahn et al., 2009) for software agents and many of these

metamodels are employed during the MDD of MASs as discussed in the Section 3 of this paper.

A model-driven software development process is based on the definition of (1) domain meta-

models for different abstraction levels, (2) mappings between the entities of these metamodels

and (3) model transformation rules originating from these entity mappings. According to these

predefined transformation rules, a model transformation (Sendall & Kozaczynski, 2003) is

automatically applied on instances of these metamodels at run time. In addition to model

transformations, model to text transformations are applied for the automatic generation of

software codes from system models. Appropriate transformation tools can be used by the software

developers during both model to model and model to text transformations.

The most famous and in-use realization of MDD is the Object Management Group’s MDA

(Object Management Group, 2003). MDA defines several model transformations that are based

on the meta-object facility (MOF; Object Management Group, 2002) framework. In MDA,

models are first-class artifacts, integrated into the development process through the chain of

transformations to coded application. In order to enable this, MDA requires models to be

expressed in a MOF-based language. This guarantees that the models can be stored in a MOF-

compliant repository, parsed and transformed by MOF-compliant tools, and rendered into XML

Metadata Interchange (XMI) for transport over a network (Object Management Group, 2003).

In order to provide a clear distinction between the system design and the underlying archi-

tecture and facilitate the implementation of a designed software system in various deployment

environments, MDA defines model transformations between three different abstraction layers

called Computation-Independent, Platform-Independent and Platform-Specific layers. In each layer,

there exists system metamodels which define meta-entities and relations between these meta-

entities by taking into consideration the needs of the related abstraction level. Therefore, a

metamodel of a software system in the computation independent level is called a Computation

Independent Metamodel (CIMM). Likewise, metamodels in platform independent and platform-

specific levels are called Platform-Independent Metamodel (PIMM) and Platform-Specific

Metamodel (PSMM), respectively. Model transformations are defined between these metamodels

and those transformations are applied on instance models that conform to these metamodels.

As expected, the models of a software system conforming to CIMM, PIMM and PSMM are named as

Computation-Independent Model (CIM), Platform-Independent Model (PIM) and Platform-Specific

Model (PSM), respectively.

A CIM is a view of a system from the computation-independent viewpoint. That means it

describes only the business context and business requirements. Software components are not

included in a CIM. For instance, a CIM for agent systems may not have any information about

agents (e.g. it may just include goals of a system, tasks to be performed and resource dependencies).

System requirements can be modeled within a CIM and entities in the CIM can later be used in order

to derive agents.

On the other hand, a PIM focuses on the operation of a system while it still hides the details

necessary for the implementation of the system in a particular platform. The PIM specifies a

degree of platform independency to be suitable for use with a number of different platforms of

similar type. A PIM for an MAS can include entities and association of those entities that represent

agents, agent roles, goals, agent organizations, interaction protocols, domain knowledge, agent

environment, etc. For instance, Amor et al. (2005), Pavon et al. (2006) and Hahn et al. (2009)

introduce PIMMs that can be used to produce such PIMs for MASs.

Finally, a PSM includes details of a platform implementation for a specific system design.

For example, the exact model of a MAS implemented in JADE agent development framework

(Bellifemine et al., 2001) can be considered as one of the PSMs of the related MAS. The model

Model-driven development of multiagent systems: a survey and evaluation 481



presents the implementation details of the MAS and includes the components of the MAS, which

are given as instances of the meta-entities defined in the JADE PSMM. Metamodels of various

agent development frameworks (e.g. JACK (Agent Oriented Software Group, 2006), NUIN

(Dickinson & Wooldridge, 2003) and SEAGENT (Dikenelli et al., 2006)) represent candidate

PSMMs that can be used to produce PSMs for MASs.

The development process and the MOF-based transformations between the MDA models are

given in Figure 1. The transitions from the computation-independent level to the platform-specific

level step by step are specified in the model transformation definitions based on the MOF

metamodel. In the transformation pattern depicted in the right-hand side of Figure 1, a source

model sm is transformed into a target model tgm. The transformation is driven by a transfor-

mation definition written in a transformation language (e.g. Kalnins et al., 2005; Agrawal et al.,

2006; Jouault & Kurtev, 2006). The source and target models and the transformation definition

conform to their metamodels SMM, TgMM and TMM, respectively. The metamodel (so meta-

metamodel) of these metamodels is MOF. The transformations defined from computation inde-

pendent to platform independent (T1) and platform independent to platform-specific (T2 and T20)

levels use the CIMM, PIMM and various PSMMs for source and target metamodels in corre-

sponding transformation patterns. After completing the model-to-model transformations according

to that pattern, the next and the final step is to provide system implementation by realizing model-

to-code transformations (T3 and T30) for the specific platforms (Kardas et al., 2009).

Since MDA is the most accepted and in-use MDD approach, various approaches exist in AOSE

area (e.g. Amor et al., 2005; Gracanin et al., 2005; Xiao & Greer, 2007; Hahn et al., 2009), which

aim to provide an MDA for the model-driven MAS development. A broad discussion of these

approaches is given in Section 3. For now, it is worth noting that current MDA approaches for

MASs mostly do not cover the computation-independent level and generally they are based on

developing PIMMs and then converting PIMs to PSMs by model transformations. Bauer and

Odell (2005) discuss which aspects of a MAS could be considered at the CIM and the PIM level.

Although they do not propose complete CIMs and PIMs, they define conceptual MAS models for

the CIM and PIM abstractions. According to Bauer and Odell (2005), a CIM for MASs should

Figure 1 Development process and model transformation mechanism in MDA. The figure represents a

slightly modified version of the process described in Kardas et al. (2009). MDA5model-driven architecture

482 G . KARDA S



deal with the following aspects: use cases, environment model, domain/ontology model, role

model, goal/task model, interaction model, organization/society model and business process

models for agent systems. On the other hand, a PIM for MASs should consider the following

aspects: interaction protocol model, internal agent model, agent model, service/capability model,

acquaintance model and deployment/agent instance model. Bauer and Odell distill these necessary

CIM and PIM aspects by summarizing the different approaches of agent-oriented software

methodologies and using the Unified Modeling Language (UML) 2.0 (Object Management

Group, 2005a) diagrams for agent modeling, which are also discussed in the same paper (Bauer &

Odell, 2005).

3 Model-driven development of MASs

The rationale behind MDD and MDA (concrete realization of MDD) discussed in Section 2 has

been adopted by various AOSE researchers to define new MAS software development methodologies.

A group of researchers (e.g. Gracanin et al., 2005; Hahn et al., 2009; Kardas et al., 2009) adapts the

whole MDA process to ease MAS development. They define new MAS metamodels in various

abstraction levels, derive model transformation rules from the entity mappings between these meta-

models and provide model transformation patterns, which are applied to generate instance MAS

models conforming to the proposed metamodels. Another group of researchers (e.g. Jayatilleke et al.,

2004; Perini & Susi, 2006; Xiao & Greer, 2007) prefers partial application of the traditional MDA

process. Model-to-model transformation or just code generation from MAS models are implemented

based on requirements. Besides another group of researchers (e.g. Pavon et al., 2006; Penserini et al.,

2006; Rougemaille et al., 2007) works on the existing MAS development methodologies, reorganizes

them according to the MDD paradigm and produces new versions of these methodologies.

This section presents an extensive survey of the existing model-driven MAS development

approaches by taking into account their properties, contributions and limitations (if any). The

above discussed preferences of AOSE researchers on MDA application and characteristics of their

final work enable us to categorize the approaches in this paper. The MDA application level (full or

partial) and origin of the approaches are taken into consideration and hence we group the

introduced approaches in three categories: complete MDA implementations, partial MDA

implementations and finally reorganized/extended MAS methodologies. Each category and

approaches belonging to these categories are discussed in the following Sections 3.2, 3.3 and 3.4,

respectively. It is worth noting that some of the surveyed approaches may belong to two different

categories. For example, an introduced model-driven MAS development methodology can be an

extension of an existing MAS methodology but it may also include a complete application of the

MDA during MAS development. We prefer to group such applications by favoring their origins

and put them only into the reorganized/extended MAS methodologies category.

During the discussion, the approaches are represented with their abbreviated names (if directly

given by the authors) or name of the tools introduced in the papers. If none of them is applicable, a

descriptive name is given to represent the related approach.

The survey of the approaches covers a comparative evaluation within the scope of the model-

driven engineering quality. Therefore, we first introduce the evaluation criteria used in Section 3.1

and then evaluate each approach according to the given criteria in the proceeding subsections.

3.1 Criteria for the evaluation of the approaches

Currently, a clear methodology for evaluating model-driven software development approaches is

unavailable since neither standard evaluation metrics nor formal representation for the effect of

human factor in MDD’s empirical studies have been determined yet. Recent work in the literature

(e.g. Solheim & Neple, 2006; Mohagheghi & Aagedal, 2007) is aimed to define some quality

metrics for the evaluation of just metamodeling and/or model transformation instead of a

complete evaluation methodology. For instance, Solheim and Neple (2006) propose two-quality

Model-driven development of multiagent systems: a survey and evaluation 483



criteria called Transformability and Modifiability. Transformability means that models must have

the ability to be transformed both to other models of greater detail and to executable pieces of

code. Modifiability means changes made to the requirements are rendered correctly in the models

and reflected in the code. On the other hand, Mohagheghi and Aagedal (2007) define various

factors for modeling quality. These factors can be listed as follows: (1) the quality of modeling

language(s) used, (2) the quality of tools used for modeling and transformations, (3) the knowl-

edge of the developers for the problem in hand and their experience of modeling languages and

tools in use, (4) the quality of the modeling processes used and (5) the quality assurance techniques

applied to discover faults or weaknesses. However, their work lacks the definition of metrics for

the measurement of these factors.

We think that an alternative for the complete evaluation of an MDD approach can be originated

from the comparison of the code-centric and model-centric development processes. Both processes can

be used in the development of the same software system and feedback of the developers on the use of

models and model transformation processes can be obtained (by interview, filling forms, etc.) and

evaluated. Their adaptation and learning tendency for the model-driven approach can be observed

and measured. Efficiency and performance advantages of the model-centric approach can also be

evaluated according to some predefined metrics.

Unfortunately, most of the model-driven MAS development efforts discussed in this paper do

not include such an empirical evaluation of their approaches in their original work. Rare excep-

tions are MDD4SWAgents (Kardas et al., 2009) and CAFnE (Jayatilleke et al., 2007). Kardas

et al. (2009) discuss an empirical evaluation of their approach within its use in a commercial

project but the evaluation is very informal (e.g. conversation-based feedback only covering general

comments from the users) and evaluation results are not clarified. Evaluation of Jayatilleke et al.’s

approach is more comprehensive and noteworthy. A group of domain experts (meteorologists)

evaluated an MDD toolkit called CAFnE in a simulation of an agent-based meteorology alerting

system. Evaluation results are also given in Jayatilleke et al. (2007). However, the adequacy of

the evaluators is dubious when we consider the facts about the evaluation methodology (e.g.

very small number of the evaluators and high-level programming skills of the domain experts).

This causes really an important open issue.

For all of the above reasons, an empirical evaluation of the MAS development approaches

covered in this paper is obviously impossible and hence it is not considered here. Instead, we have

defined five fundamental criteria on capabilities and possessions of the proposed approaches and

evaluated the approaches according to those criteria with a three-level grading. Some of those

criteria are inherited from the aforementioned model quality work (Solheim & Neple, 2006;

Mohagheghi & Aagedal, 2007) and re-construed within the scope of the MAS modeling. These five

criteria are listed as follows:

1. Generic PIMM definition: provision of a metamodel for platform independent metamodeling

of MASs.

2. M2M Transformability: inclusion of transformable MAS metamodel(s) and a model-to-model

(M2M) transformation mechanism.

3. M2C Transformability: inclusion of a model-to-code (M2C) transformation phase for automatic

generation of MAS software codes.

4. Support for multiple platforms: specification and implementation of M2M (and M2C)

transformations for at least two different MAS platforms.

5. Tool support: support of software modeling and code generation tools for the MAS developers.

The derivation of the criteria mainly lies in the complete MDD process and model transfor-

mation pattern discussed in Section 2. Metamodels and model transformations are apparently

inevitable components of the development process. So, definition of the criteria on these com-

ponents is naturally expected. In addition, we also investigate multiple platform support and code

generation capabilities of the approaches. We believe that focusing on just one implementation

platform will cause the following question always to remain open: Can the proposed transformations

484 G . KARDA S



be applied to generate other PSMs for different MAS platforms? It is therefore important to use at

least two PSMMs and apply model transformations between the PIMM and those PIMMs in

order to sustain the claim. On the other hand, automatic code generation is also critical. Although

software models are the main artifacts of the MDD, they are not sufficient for the real-life

implementations of the systems. Definition and application of M2C transformations may provide

rapid and error-free production of agent software at least in the template level. Then the developer

can complete these auto-generated codes for exact implementation. Hence, M2C transformability

is determined as another evaluation criterion. Finally, tool support of the approaches is also taken

into consideration since MDD tools such as modeling editors (graphical user interface (GUI) or

text based), transformation engines and code generation kits doubtlessly facilitate learning,

adoption and use of the proposed methodology by the MAS software developers.

Evaluation of every model-driven MAS development work according to each criterion is graded

with one of the following graduation symbols: 2, 1, 11. The interpretation of each graduation

symbol is different for each criterion. Those interpretations are given in Tables 1–5.

Table 1 Grading of the approaches according to criterion: Generic PIMM definition

Symbol Interpretation

2 No inclusion of a PIMM for MASs

1 There is inclusion of a PIMM for MASs but the PIMM is not generic enough to support a

variety of MAS platforms. It mostly defines meta-entities of a specific MAS methodology

11 There is inclusion of a generic PIMM for MASs. It is possible to implement MASs modeled

according to this PIMM in various MAS platforms

PIMM5Platform-Independent Metamodel; MAS5multiagent system.

Table 2 Grading of the approaches according to criterion: M2M Transformability

Symbol Interpretation

2 Transformation of models is missing

1 There is support for model-to-model transformation to a certain degree. Entity mappings

between models or transformation rules are not defined (or they are defined but incomplete).

Transformation mechanism is too abstract and not implemented

11 There is support for a complete model-to-model transformation phase in which entity

mappings between models and the implementation of the written model transformation

rules are all included. Application of the transformations within a case study may also

be presented

Table 3 Grading of the approaches according to criterion: M2C Transformability

Symbol Interpretation

2 Generation of software codes from MAS models is missing

1 There is support for model-to-code transformation to a certain degree. Transformations are

defined but not implemented or transformations are incomplete and code generation needs

too much intervention

11 There is support for an automatic and a complete code generation from models for at least one

MAS software development framework. Generated template codes are nearly executable.

Application of the transformations within a case study may also be presented

MAS5multiagent system.

Model-driven development of multiagent systems: a survey and evaluation 485



3.2 Complete MDA implementations

This subsection discusses the approaches that aim to define a model-driven MAS development

process based on a complete MDA definition and application. Definition of various metamodels

in different abstraction levels, M2M transformations between these metamodels and code generation

phases for the exact MAS implementations are all covered within these approaches.

3.2.1 Cougaar MDA

Cougaar MDA introduced in Gracanin et al. (2005) aims to improve the productivity of agent

system developers by using the MDA approach. The implementation platform is an agent

architecture called the Cognitive Agent Architecture (Cougaar), which is based on the human

cognitive model of planning. Cougaar MDA attempts to support fully automated generation of

software artifacts and simplifies Cougaar-based application development by providing two

important abstraction layers. The first layer is the Generic Domain Application Model (GDAM)

layer, which represents the PIMM and provides a model of generic agent and domain-specific

components found in the domain workflow. The second layer, Generic Cougaar Application

Model (GCAM) reflects the PSMM or Cougaar architecture. Cougaar MDA does not include any

CIM layer. Application requirements are defined with a Cougaar-specific process definition lan-

guage and then GDAM components for these requirements are obtained after an automatic

transformation. Platform-specific GCAM components are converted to Cougaar/Java codes at

the end of the MDA process.

As also stated by the authors, Cougaar is complex and requires considerable mappings and

transformations. Application of MDA eliminates this complexity and provides a systematic way

of capturing requirements and mapping them from PIMM to PSMM and finally to the code level.

Table 6 shows the evaluation results of the Cougaar MDA approach. The proposed GDAM

represents a PIMM for cognitive agent architectures. However, it is too specific for the Cougaar.

Hence, Cougaar MDA is graded with (1) for the Generic PIMM definition criterion in our

evaluation. There exist some transformations defined between GDAM and GCAM but entity

mappings and transformation rules are not discussed in Gracanin et al. (2005). That causes

Table 4 Grading of the approaches according to criterion: Support for multiple platforms

Symbol Interpretation

2 There is support at most one MAS platform.

1 Definition and implementation of two M2M (and perhaps M2C) transformations for two

different MAS platforms

11 There is support for more than two different MAS platforms. Generality of the introduced

platform-independent agent metamodel is proved by showing its transformability to at least

three different platform specific MAS metamodels

MAS5multiagent system.

Table 5 Grading of the approaches according to criterion: Tool support

Symbol Interpretation

2 Software modeling and code generation tool support for the MAS developers is missing

1 Software tool support to a certain degree. Textual or graphical modeling of MASs is realized

only. Extra mechanism is needed for the support of model transformation

11 Various software tools exist for graphical MAS modeling, application of automatic

transformation between models and generating MAS software codes from MAS models

MAS5multiagent system.

486 G . KARDA S



Cougaar MDA to be graded with (1) for M2M Transformability. It is again graded with (1) for

M2C Transformability since transformation mechanism is not clear and exemplified. Also gen-

eration of Cougaar/Java code is only mentioned, not discussed. Considering the criterion on

support for multiple platforms, Cougaar MDA is graded with (–) because it only supports

Cougaar agent platform. On the other hand, a tool with a GUI is provided for modeling Cougaar

agent systems and generating Java codes. That causes Courgaar MDA to be fully graded (11) for

the tool support criterion.

3.2.2 PIM4Agents

Recently, a group of AOSE researchers from the German Research Center for Artificial Intelli-

gence (DFKI) spent significant effort on creating a PIMM for MASs and using this metamodel in

a neatly structured MDA. They first introduce their metamodel and approach in Hahn et al.

(2006) and Fischer et al. (2007), respectively. The improved version of the PIMM, called

PIM4Agents and the complete MDA based on this PIMM are discussed later in Hahn et al.

(2009). PIM4Agents groups agent modeling concepts in seven MAS viewpoints called Multiagent,

Agent, Behavioral, Organization, Role, Interaction and Environment. In Multiagent view, main

concepts of a MAS (e.g. Agent, Cooperation, Capability and Interaction) are included. Agent view

describes single autonomous entities, the capabilities they have to solve tasks and the roles they

play within the MAS. Behavioral view describes agent plans and information flows between

control structures of a plan. Cooperation of autonomous agents in a MAS is described in the

Organization view. The abstract representations of functional positions belonging to autonomous

entities within an organization or any other social relationship are covered by the Role view.

Interaction view describes interaction protocols of the agents. Finally, Environment view contains

any kind of resource that is dynamically created, shared or used by the agents or organizations.

Since it is not feasible to discuss whole structure of PIM4Agents in here, only the partial

PIM4Agents metamodel reflecting the Organizational aspect is described in this paper to give

some flavor of the approach. Interested readers may refer to Hahn et al. (2009) for the full

description of the PIM4Agents.

As depicted in Figure 2, Hahn et al. describe the Cooperation as a social structure in which

Agents and Organizations can take part. Cooperation binds Instance (run-time object of an Agent)

to the DomainRoles it requires through the concept of a Binding. A Cooperation has also its own

internal Protocol (through the concept of an InteractionUse) that specifies how the members of a

Cooperation communicate with each other. For the purpose of interaction, DomainRoles are

bound through the concept of an ActorBinding to Actors that can be considered as representative

entities within the corresponding interaction protocols.

Hahn et al. define model transformations between PIM4Agents and metamodels of two agent

development frameworks (JADE (Bellifemine et al., 2001) and JACK (Agent Oriented Software

Group, 2006)) in order to provide MDD of MASs (Hahn et al., 2009). Both metamodels of JADE

and JACK are considered as PSMMs and integrated into the proposed MDA. Therefore, both JADE-

and JACK-specific counterparts of an instanceMASmodel conforming to PIM4Agents can be obtained

after application of the model transformations defined between PIM4Agents and these PSMMs.

Table 6 Evaluation of Cougaar MDA (Gracanin et al., 2005)

Criterion Grade

Generic PIMM definition 1

M2M Transformability 1

M2C Transformability 1

Support for multiple platforms 2

Tool support 11

MDA5model-driven architecture; PIMM5Platform-Independent Metamodel.

Model-driven development of multiagent systems: a survey and evaluation 487



Apparently, entity mappings between PIM4Agents and JACKmetamodel are more complete than

the mappings between PIM4Agents and JADE in Hahn et al.’s work since design principles of JACK

framework and PIM4Agents seem coinciding with each other. However, extensions for the standard

JADE framework are required especially when support for agent organizations is considered. For

this purpose, two concepts called Organization and Role are introduced as an extension to the JADE

Application Programming Interface (API) in Hahn et al. (2009). Inclusion of these new meta-entities

to the JADE PIMM supports the entity mappings and model transformations with PIM4Agents. But

incompatibility encountered during exact MAS implementation for standard JADE platform and

problems in automatic code generation still remain.

Abstracting from existing agent-based metamodels, programming languages and platforms,

PIM4Agents presents a PIMM for modeling MASs from various agent viewpoints. Within this

context, Hahn et al.’s work can be graded with (11) for generic PIMM definition. It also gets

(11) for M2M Transformability because model transformations between PIM4Agents and

metamodels of two agent development frameworks are given. Also entity mappings and model

transformations are discussed and exemplified. Code generation from JADE (Bellifemine et al.,

2001) and JACK (Agent Oriented Software Group, 2006) PSMs is considered. But exact imple-

mentation of M2C transformability is not discussed. That causes PIM4Agents to get (1) for M2C

Transformability. Table 7 lists all grades of PIM4Agents.

Since MDD of MASs in two agent platforms (JADE and JACK) is provided in Hahn et al.’s

work, PIM4Agent’s support for multiple platforms is graded with (1) as expected. A graphical

editor is employed in modeling MASs and generating required codes. So, PIM4Agents gets (11)

for tool support criterion.

Figure 2 The metamodel reflecting the organizational aspect of PIM4Agents (adapted from Hahn et al., 2009)

Table 7 Evaluation of PIM4Agents (Hahn et al., 2009)

Criterion Grade

Generic PIMM definition 11

M2M Transformability 11

M2C Transformability 1

Support for multiple platforms 1

Tool support 11

PIMM5Platform-Independent Metamodel.

488 G . KARDA S



3.2.3 MDD4SWAgents

Another MDA for MAS development is introduced in Kardas et al. (2009). The MDD of

Semantic Web enabled software agents (shortly MDD4SWAgents) is considered in this approach.

Software agents collect Web content from diverse sources, process the information and exchange

the results on behalf of their human users in the Semantic Web (Berners-Lee et al., 2001). Also

autonomous agents can evaluate semantic data within these MASs and collaborate with seman-

tically defined entities such as Semantic Web services. The authors claim that the development of

such MASs becomes more complex and hard to implement when requirements of the agents in the

Semantic Web environment are considered, so they propose an MDA-based MAS development

process to facilitate the implementation of such agent systems.

MDD4SWAgents uses an improved version of an agent PIMM, which is first introduced in

Kardas et al. (2007a). The metamodel is based on a core model discussed in Kardas et al. (2006)

and provides add-ons for the core model in order to support the use of model in MDD as a PIMM.

Major entities of the PIMM are the Semantic Web Agent, Semantic Web Organization, Semantic Web

Service, Ontology and agent plan entities (e.g. Semantic Service Register Plan, Semantic Service Finder

Plan and Semantic Service Executor Plan) for modeling agent behaviors and task executions.

A Semantic Web Agent is an autonomous entity which is capable of interaction with both other agents

and Semantic Web Services. Semantic Web Agents constitute Semantic Organizations according to

their organizational roles. Semantic Web Agents play roles, use ontologies to maintain their internal

knowledge and infer the environment based on the known facts.

Kardas et al. (2007b) use the above summarized MAS metamodel in a model transformation

process for achieving various platform-dependent MAS components. In their most recent work

(Kardas et al., 2009), they define model transformations between their PIMM and metamodels of

two Semantic Web enabled agent development frameworks (SEAGENT (Dikenelli et al., 2006)

and NUIN (Dickinson & Wooldridge, 2003)) in order to prove applicability of their approach for

various agent platforms.

Similar to Hahn et al’s. (2009) work, MDD4SWAgents also suffer from the deficiencies of the

target agent platforms. As also stated by the authors, model transformations designed for NUIN

platform differ from the transformations designed for SEAGENT platform in two major view-

points: Completeness and Complexity of the transformations. Model transformations from their

PIMM to SEAGENT PSMM are more complete and productive than NUIN PSMM. However,

new entity definitions are required for NUIN metamodel to complete the exact realization of agent

PIMs in NUIN environment especially when we consider Semantic Web service structures. This is

because Semantic Web support of NUIN remains only in agent configuration and knowledge

store declaration. That metamodel extension in NUIN PSMM is the major drawback of Kardas

et al.’s work. On the other hand, model transformation for NUIN is more complicated and

difficult to implement than SEAGENT transformations. Defined rules for SEAGENT PSMM

transformation mostly include attribute settings for the target entities and mapping of source

entities into those target entities, while rules written for NUIN transformations include various

dynamic model element creations and complex queries for detection of source elements on the

pattern. Those differences in model transformations for NUIN and SEAGENT PSMMs are

naturally expected because SEAGENT platform and the proposed PIMM are compatible due to

their abstractions, design mechanisms and environments that they model. This resembles the

compatibility of PIM4Agents and JACK (Agent Oriented Software Group, 2006) and definition

of new entities for the JADE (Bellifemine et al., 2001) metamodel to support the model trans-

formation in Hahn et al’s. (2009) work.

Table 8 lists evaluation scores of MDD4SWAgents. In our evaluation, MDD4SWAgents is

graded with (11) both for generic PIMM definition and M2M Transformability criteria. A

PIMM for MASs is introduced and model transformations between the proposed PIMM and

metamodels of two agent development frameworks are given. Entity mappings and model

transformations are discussed and also exemplified within a case study. However, M2CTrans-

formability in MDD4SWAgents gets only (1) because transformations are incomplete and generated

Model-driven development of multiagent systems: a survey and evaluation 489



codes need too much intervention at later. MDD of MASs in SEAGENT and NUIN agent

platforms are supported in Kardas et al.’s work. Hence, support of MDD4SWAgents for multiple

platforms is clearly at level (1). On the other hand, MDD4SWAgents’s tool support is (11)

because various software tools exist for graphical MAS modeling, application of automatic

transformation between models and generating software codes from MAS models.

3.3 Partial MDA implementations

We categorize another group of model-driven MAS development approaches as partial MDA

implementations. Instead of a general and complete approach, some AOSE researchers prefer to

define MAS metamodels for only one abstraction level (e.g. PIM or PSM level) and based on the

requirements, they propose either M2M or M2C transformations for system development. This

subsection discusses the approaches belonging to this category.

3.3.1 Malaca model

Amor et al. (2005) propose an MDA-based MAS development process, which employs a platform-

neutral agent model called Malaca. Since the direct transition from various MAS development

methodologies (e.g. Gaia (Zambonelli et al., 2003) and Tropos (Bresciani et al., 2004)) to the MAS

implementation platforms (e.g. JADE (Bellifemine et al., 2001) and JACK (Agent Oriented

Software Group, 2006)) is usually too hard and sometimes impossible, Malaca model aims to

realize this transition by representing an intermediate agent model which bridges the gap between

agent methodologies and implementation platforms. The idea behind the work is to define entity

mappings and model transformations between AOSE methodologies and Malaca model and then

between Malaca model and agent development platforms. Hence, direct transition can be supplied

over these transformations. In order to illustrate the approach, MDA application between Tropos

(Bresciani et al., 2004) design model and Malaca agent model is discussed within the same paper

(Amor et al., 2005). Figure 3a illustrates the classic MDA pattern for model transformation while

Figure 3b depicts the application of this pattern on the transformation from Tropos design model

to Malaca MAS specification.

The contribution of Malaca intermediate model is clear: with just one transformation between

an agent-oriented methodology and the Malaca agent model, the resulting MAS could run in

various agent platforms. Of course, mapping and transformation between Malaca and the related

agent platforms should be defined before this process. However, defined model transformations

for the Malaca model can not be automated in situations where the requirements of the design

phase are not given in detail. This causes the proposed model to be applicable only for the AOSE

methodologies with the detailed design phase. Besides, many of the current AOSE methodologies

do not include a standard procedure for automatic model transformation and interpretation of

the design phase’s diagrams is not available during transformation. This deficiency of the

methodologies prevents the exact implementation of the Malaca-based MDA as already stated by

the authors (Amor et al., 2005).

Table 8 Evaluation of MDD4SWAgents (Kardas et al., 2009)

Criterion Grade

Generic PIMM definition 11

M2M Transformability 11

M2C Transformability 1

Support for multiple platforms 1

Tool support 11

PIMM5Platform-Independent Metamodel.

490 G . KARDA S



The Malaca metamodel includes entities and their relations for modeling both internal design of

agents and coordination between agents. With above described features of this platform-neutral

metamodel, Amor et al.’s work is graded with (11) for generic PIMM definition. MDA is applied

for the transformation between Tropos design model and Malaca agent model. Entity mappings

are discussed in Amor et al. (2005), however, transformations based on these mappings usually can

not be automated. That causes Malaca model to get (1) for M2M Transformability.

Since only PIM to PSM transformation is proposed, Amor et al.’s work gets (2) for M2C

Transformability. The conceptual generality of the Malaca model is only tested with Tropos

(Bresciani et al., 2004) design model. So, support of Malaca model for multiple platforms is

naturally graded with (2). Also Malaca model is not supported with any software modeling and

code generation tools for the MAS developers. Grades of Malaca model are shown in Table 9.

3.3.2 CAFnE

The conceptual framework of domain-independent components proposed in Jayatilleke et al.

(2004) aims to formulate agent systems and modification of agent structures as needed. The

overview of the framework is given in Figure 4. Definition of each component type in the

framework is denoted with an XML Document Type Definition (DTD) and domain-specific

component specifications are given to a transformation module as XML elements conforming to

these DTDs. In the transformation module, executable agent codes for each domain component

are generated by using Extensible Stylesheet Language Transformation (XSLT) rules and

executable binary components. In Jayatilleke et al. (2007), the authors also provide a toolkit called

CAFnE (Component Agent Framework for domain Experts) for their approach in order to make

their approach consistent with MDD and use agent models to generate executable codes.

Perhaps the most important contribution of this work to the related research area is the

practical evaluation of both the proposed approach and CAFnE toolkit in a real life application.

The evaluation considers the MDD of agents employed in a meteorology alerting system. The purpose

Figure 3 (a) The MDA pattern for model transformation (b) The MDA model transformation from Tropos

design model to the Malaca MAS specification using the Malaca Agent Model Profile (adapted from Amor

et al., 2005). MDA5model-driven architecture

Table 9 Evaluation of Malaca Model (Amor et al., 2005)

Criterion Grade

Generic PIMM definition 11

M2M Transformability 1

M2C Transformability 2

Support for multiple platforms 2

Tool support 2

PIMM5Platform-Independent Metamodel.

Model-driven development of multiagent systems: a survey and evaluation 491



of the system is to monitor a wide range of meteorological data, alert personnel to anomalous

situations (extreme or escalating situations) and so on. The authors claim that domain experts

(weather forecasters) with varying programming experience and with no experience with agent

design or programming were able to rapidly (35–40min) become familiar with the CAFnE con-

cepts and begin comprehending an agent system design. They also claim that the users found it

easier to work at the higher level of abstraction given by the tool and the overview diagrams

provided were seen as useful. Open issues of the work can be listed as the adequacy of the

evaluators and simplification of the actual agent-based system. The evaluation of the toolkit and

approach was done by five meteorologists and only two of them had no programming experience.

Also the evaluation considers the development of a simplified version of the exact agent-based

system, which contains some sort of assumptions and data retrieval simulations.

The introduced component model can be accepted as a PIMM for modeling agents, their goals,

beliefs and plans. However, this PIMM appears to be too abstract for especially modeling

coordination and interaction of agents. Hence, the work is graded with (1) in our evaluation.

Transformation of models in different abstraction levels is not considered in the work so it is

incapable of M2M Transformability (–). Jayatilleke et al. discuss generation of executable agent

codes from the DTDs of model elements via XSLT transformation. However, application of the

transformations is not clearly illustrated. So, M2C Transformability of CAFnE is graded with (1).

Since only JACK agent platform (Agent Oriented Software Group, 2006) is considered, CAFnE’s

support for multiple platforms is naturally graded with (–). Introduced toolkit provides graphical

design of the agent systems based on the proposed component model. But code generation cap-

ability of the toolkit is uncertain. Hence, tool support of the work gets (1). All evaluation grades

for CAFnE are listed in Table 10.

3.3.3 TAOM4e

Perini and Susi (2006) introduce a model transformation mechanism for agent-based system

development. They apply MDA’s model transformation pattern in order to obtain UML models

from Tropos (Bresciani et al., 2004) MAS structures. Model transformations are designed and

implemented according to MOF Query/View/Transformation (QVT) specification (Object

Management Group, 2005b). Transformation of a Tropos plan decomposition structure into a

UML 2.0 activity diagram is discussed in the paper. Plans in a Tropos plan structure are mapped

Figure 4 An overview of the conceptual framework of domain independent components (adapted from

Jayatilleke et al., 2004)

492 G . KARDA S



and transformed into Activity nodes in a UML Activity diagram. Automatic application of the

model transformation rules is realized by using a software toolkit called TAOM4e, which is also

introduced in the same paper. Tropos system models are developed graphically in TAOM4e’s GUI

and given as an input to the integrated model transformation engine of TAOM4e. Model trans-

formation engine applies the transformation rules on the input model and successfully generates

the output model(s).

Perini and Susi’s work is a significant effort in application of MDA model transformation

pattern in MAS development. Providing a software tool for the real implementation of the

transformations is worthwhile. But agent metamodel used during the model transformations is

only composed of Tropos structures and the development process is dependent on the Tropos

methodology. That may prevent adaptation of the approach into different MAS development

methodologies if generality is considered.

In Perini and Susi’s work, the metamodel of the Tropos methodology is used as a PIMM during

MAS development and a model transformation pattern is applied between Tropos MAS struc-

tures and UML constructs. Model transformations are designed and implemented according to

MOF QVT specification as discussed above. Hence, TAOM4e gets (1) and (11) for generic

PIMM definition and M2M Transformability criteria, respectively (Table 11). The modeler

introduced in Perini and Susi (2006) provides graphical modeling of MASs according to the

Tropos metamodel. Since code generation capability of the toolkit is uncertain, TAOM4e is

graded with (1) for tool support. The proposed approach does not include M2C transformation

and it does not support any agent development platforms.

3.3.4 PIM4SOA

Integration of agent systems with service-oriented architectures (SOA) is another emerging agent

research track. Agents may constitute the desired composite service architecture and provide the

interoperability with other environment resources based on the business process specifications

of SOAs. For this purpose, a rapid prototyping framework for SOAs is introduced in Zinnikus

et al. (2006). The framework is built around an MDD methodology, which can be used for

transforming high-level SOA specifications into executable artefacts, both for Web Services and

Table 10 Evaluation of CAFnE (Jayatilleke et al., 2007)

Criterion Grade

Generic PIMM definition 1

M2M Transformability 2

M2C Transformability 1

Support for multiple platforms 2

Tool support 1

PIMM5Platform-Independent Metamodel.

Table 11 Evaluation of TAOM4e (Perini & Susi, 2006)

Criterion Grade

Generic PIMM definition 1

M2M Transformability 11

M2C Transformability 2

Support for multiple platforms 2

Tool support 1

PIMM5Platform-Independent Metamodel.

Model-driven development of multiagent systems: a survey and evaluation 493



Belief-Desire-Intention (BDI; Rao & Georgeff, 1995) agents. The modeling part is the first part

of the framework, which is concerned with applying MDD techniques and tools to the design of

SOAs. It defines models and transformations that are specific to the concepts used for SOAs, such

as Web Service descriptions and plans for autonomous agents. The second part of the framework

is the service part that provides a flexible communication platform for Web services. The third

part is composed of autonomous agents that deal both with designing and enacting service

compositions as well as performing mediation, negotiation and brokering in SOAs.

Zinnikus et al. define a PIMM for SOAs called PIM4SOA and PSMMs for Business Process

Execution Language (BPEL; Andrews et al., 2003) processes and BDI Agents working on the

JACK (Agent Oriented Software Group, 2006) environment. The transformation mechanism

introduced in that work has similarities with Hahn et al. (2006) and Kardas et al. (2007b) in the

way of defining metamodels, granting mappings and implementing the transformation. However,

Zinnikus et al. provide a transformation from an agent-free SOA domain to a MAS domain and

deals with the agents only in the platform-specific layer. The platform-independent modeling of

the MASs is not included in their approach and hence the proposed metamodel cannot be considered

as a PIMM for MASs. This causes Zinnkus et al.’s work to be graded with (2) for generic PIMM

definition. On the other hand, model transformations between PIM4SOA and PSMM of JACK BDI

agents are mentioned in Zinnikus et al. (2006). But mappings and transformation process are not

discussed. So, PIM4SOA gets (1) when we consider M2M Transformability criterion.

Since JACK is the only agent development platform supported and M2C transformation is not

taken into consideration, PIM4SOA is graded with (2) both for M2C Transformability and

support for multiple platforms. Software modeling tools are utilized during only the specification

of agent plans, so tool support of PIM4SOA is at level (1). All grades of PIM4SOA are listed

in Table 12.

3.3.5 AMDA

Agent-oriented MDA (AMDA) defined in Xiao and Greer (2007) provides a method for building

adaptive MASs with overall development process support. It aims to fill the gap between major

AOSE methodologies and agent-oriented development platforms. Behavioral semantics are

associated with model constructs and maintained before and after agents translate their behavior

to deploy up-to-date requirements. With this objective, the approach of AMDA has similarities

with above discussed Malaca (Amor et al., 2005) model (Section 3.3.1). However, AMDA’s

PIMM is not an intermediate model. The PIMM is more generic and consists of hierarchical

business knowledge models and a platform-independent agent model. The authors claim that the

domain requirements must be organized in a PIM, in which responsibilities are assignable to

conceptual agents and later transformable to a PSM, which agents use to dynamically interpret

their behavior while running upon specific platforms. They evaluate their approach in develop-

ment of an agent-based railway management system. JADE (Bellifemine et al., 2001) platform is

chosen for the exact implementation of the system agents. The behavior of the system agents are

modeled according to JADE behavior structure since JADE model is considered as a PSMM.

Table 12 Evaluation of PIM4SOA (Zinnikus et al., 2006)

Criterion Grade

Generic PIMM definition 2

M2M Transformability 1

M2C Transformability 2

Support for multiple platforms 2

Tool support 1

PIMM5Platform-Independent Metamodel.

494 G . KARDA S



In fact, AMDA is not just proposed for agent development. It defines a generic agent-based

MDA software development methodology instead of the classic object-oriented MDA. This

approach is valuable because it supports agent-executable rule-based business models and a high

level of abstraction with the direct representation of business requirements. The original AMDA

work does not cover the model transformations between various MDA layers. These transfor-

mations are exemplified in Xiao and Greer (2009) by taking into consideration software adaptivity.

In that work, it can be clearly seen that AMDA use agents as the main constructs of the proposed

software model instead of using agents as just target system development components. AMDA’s basic

metamodel called Adaptive Agent Model is also introduced in Xiao and Greer (2009).

Table 13 shows the evaluation grades of AMDA approach. The above summarized features

provides AMDA to get full grade (11) for generic PIMM definition and M2M Transformability.

A PIMM for adaptive MASs is introduced and model transformations with entity mappings and

rule definitions are given. The proposed approach is also enriched with the use of model configuration

and execution tools and gets (1) for tool support. M2C transformation is conceptually mentioned in

Xiao and Greer’s work. However, exact implementation is not taken into consideration. Also JADE is

the only agent development platform supported. These facts cause AMDA to be graded with (2) both

for M2C Transformability and multiple platform support.

3.4 Reorganization/extension of existing MAS development methodologies

A group of AOSE researchers reorganizes or extends the existing MAS development methodol-

ogies to support model-driven agent development. Originating from the common belief on

advantages and facilities of MDD for easy and rapid development of MASs, researchers work on

the existing MAS methodologies, produce new versions of these methodologies and provide tool

support for the agent development according to these methodologies. This subsection discusses

those noteworthy efforts.

3.4.1 IDK

Pavon et al. (2006) reformulate their existing agent-oriented methodology called INGENIAS in

terms of the MDD paradigm. This reformulation increases the relevance of the model creation,

definition and transformation in the context of MASs. New methodology defines a development

process, a specification of the results to produce and support tools for modeling and transfor-

mation of models. A metamodel for MASs is generated based on the experiences gained by using

the INGENIAS methodology in several projects. Modeling and code generation from this

metamodel are supported by a software tool called INGENIAS Development Kit (IDK). IDK

provides capabilities for model edition, model verification and automatic code generation.

Refined INGENIAS methodology includes two main roles in the development process. As

shown in Figure 5a, the MAS developer uses the IDK MAS Model Editor to specify MAS models.

After these models have been validated, code generation modules facilitate the implementation

to deploy in a target platform. When the system has been produced, the testing activities start.

Table 13 Evaluation of AMDA (Xiao & Greer, 2009)

Criterion Grade

Generic PIMM definition 11

M2M Transformability 11

M2C Transformability 2

Support for multiple platforms 2

Tool support 1

AMDA5 agent-oriented MDA.

Model-driven development of multiagent systems: a survey and evaluation 495



The developer may come back to modeling to add new features. On the other hand, INGENIAS

engineer can customize the editor for a specific purpose by modifying the INGENIAS metamodel

if required and produce new modules for verification and validation or for code generation in the

target platform (Figure 5b).

Pavon et al.’s (2005) work also intends to deal with two issues, which were not addressed by

the previous INGENIAS development process. These issues are (1) metamodel evolution for

the new requirements and (2) transformation of models into code for different target platforms.

The authors claim that it is quite difficult to provide complete metamodels suitable for specific

Figure 5 Twomain roles in the development process of the refined INGENIASmethodology: (a) MAS developer

activities (b) INGENIAS engineer activities (adapted from Pavon et al., 2006). MAS5multiagent systems

496 G . KARDA S



platforms and hence they propose a process for partial and incremental transformations that can

be driven by the application needs. But it still does not present the complete solution for the first

issue, as also stated in their paper. Considering the second issue, the proposed metamodel and

transformations described in Pavon et al. (2006) support only INGENIAS. Hence, transformation

of models into different target platforms (e.g. JADE (Bellifemine et al., 2001)) remains uncertain.

Reformulated model-driven INGENIAS methodology includes MAS modeling conforming to

a generic PIMM, which is structured in five packages called Agents, Organizations, Goals/Tasks,

Interactions and Environment. Within this context, IDK gets (11) for generic PIMM definition

(Table 14). Code generation from INGENIAS models is also discussed in Pavon et al. (2006).

Model-driven process of the IDK is mostly based on the code generation from MAS models.

However, implementation of the transformation is not given. That causes IDK to be graded with

(1) for M2C Transformability.

Transformation of models in different abstraction levels is not included and none of the agent

development platforms is supported. For this reason, IDK gets (2) both for M2M Transform-

ability and support for multiple platforms. On the other hand, IDK MAS Model Editor provides

graphical modeling of MASs according to INGENIAS metamodel. Since IDK has not any model

transformation capability, tool support of IDK remains at level (1; Table 14).

3.4.2 Model-driven tropos

Another MAS methodology revision according to the MDD paradigm is discussed in Penserini

et al. (2006). Penserini et al. mainly focus on requirements traceability and automated code

generation for MAS development. Ideas and standards from MDA are adopted in refining the

modeling process algorithm and building tools of Tropos (Bresciani et al., 2004) methodology.

Tropos capability definitions are revised in order to track whole Tropos development process from

early and late requirements definition phases to detailed MAS design and implementation phases.

The conceptual agent model of Tropos is evaluated as a PIMM and transformations from this

PIMM to JADE (Bellifemine et al., 2001) metamodel are defined within the work. In addition to

MDA-based model transformations, Penserini et al.’s work provides an agent architecture and

interaction protocols complying with the IEEE FIPA specifications (IEEE FIPA, 2002) and uses

Agent UML (AUML; Bauer et al., 2001) for activity and interaction diagrams.

The conceptual agent model of the Tropos methodology is evaluated as a PIMM in Penserini

et al.’s work and hence it gets (1) for generic PIMM definition. Model transformations between PIM

and PSMs are discussed with their transformation rules and examples. M2M Transformability of the

approach is fully graded (11).

Generation of Java codes for JADE agents is mentioned in Penserini et al. (2006). The intention

is to represent capability of agents in the JADE platform. But implementation details of the M2C

transformation are not given and that causes the approach to be graded with (1) for M2C

Transformation. A model transformation tool is used for the automatic transformation of Tropos

models to JADE agent models. That provides model-driven Tropos to get (1) for tool support.

But Penserini et al.’s work fails in support for multiple platforms (2) since JADE is the only agent

platform taken into account. Table 15 lists all grades of the approach.

Table 14 Evaluation of IDK (Pavon et al., 2006)

Criterion Grade

Generic PIMM definition 11

M2M Transformability 2

M2C Transformability 1

Support for multiple platforms 2

Tool support 1

IDK5 INGENIAS Development Kit; PIMM5Platform-Independent Metamodel.

Model-driven development of multiagent systems: a survey and evaluation 497



3.4.3 Model-driven ADELFE

Similar to Pavon et al. (2006) and Penserini et al. (2006), the approach presented in Rougemaille

et al. (2007) aims to add a MDD phase to ADELFE (Bernon et al., 2003) methodology according

to adaptive MAS paradigm by considering two adaptation levels called functional and opera-

tional. The functional level is application dependent and close to the decision process of agents

while operational level is related to elementary skills of agents. By using the new methodology, a MAS

developer can define the functional adaptation in a model conforming to a specific metamodel. Then a

model transformation can be executed on this model according to the entity mappings between

metamodel of this model and metamodel of an agent architecture for the operational level.

Rougemaille et al.’s effort has merit since they intend to provide a development phase to

existing ADELFE (Bernon et al., 2003) methodology, which consists only of the first three steps

of the self-adaptive MAS design life cycle: Requirements, Analysis and Design Workflows.

Definition and application of model transformations would reduce the design duration and the

complexity of the task for designers as stated by the authors. Hence, agent developers only focus

on the system functional adaptation and the agent definition. They do not care about the

operational adaptation because it is automatically handled by the model transformations. How-

ever, the proposed methodology is just described conceptually and the development phase, which

includes model transformations, is not implemented.

In Table 16, evaluation grades of the proposed MDD approach are listed. The approach can be

graded with (1) for generic PIMM definition since an adaptive MAS metamodel (AMAS) for the

ADELFE methodology is defined. Moreover, entity mappings between AMAS and metamodel of

JavAct architecture (Leriche & Arcangeli, 2007) is discussed. But transformations are conceptual

and not implemented. So, model-driven ADELFE gets (1) for M2M Transformability.

Only JavAct agent-based middleware is supported in Rougemaille et al.’s work. M2C trans-

formation is conceptually given in Rougemaille et al. (2007). However, exact implementation is

not taken into consideration. Utilization of some existing model editing and transformation tools

is indicated. But exact use of these tools is not described. For these reasons, the approach gets (2)

when we consider the remaining criteria: M2C Transformability, support for multiple platforms

and tool support.

Table 16 Evaluation of Model-driven ADELFE (Rougemaille et al., 2007)

Criterion Grade

Generic PIMM definition 1

M2M Transformability 1

M2C Transformability 2

Support for multiple platforms 2

Tool support 2

PIMM5Platform-Independent Metamodel.

Table 15 Evaluation of Model-driven Tropos (Penserini et al., 2006)

Criterion Grade

Generic PIMM definition 1

M2M Transformability 11

M2C Transformability 1

Support for multiple platforms 2

Tool support 1

PIMM5Platform-Independent Metamodel.

498 G . KARDA S



4 Evaluation results

The evaluation of model-driven MAS development approaches according to the defined criteria

enables us to understand the current progress of related research and achieve some results of the

MDA application on MAS development. Regardless of the categories of the surveyed approaches,

we again list the grades of each approach for each evaluation criterion altogether in Table 17.

When we examine the grades, we can conclude that almost all of the studies provide a MAS

metamodel and define at least a model transformation employing this metamodel. The majority of

the proposed MDD processes also include a code generation phase to implement MASs. Also most

of the research activities are supported with software tools, which can be used in MAS modeling and

M2M and/or M2C transformations. However, support for multiple agent platforms is clearly a big

challenge and only MDD processes of PIM4Agents (Hahn et al., 2009) and MDD4SWAgents

(Kardas et al., 2009) define transformations for two different agent platforms. None of the proposed

approaches consider the transformability for more than two MAS development frameworks.

Based on the evaluation results, it is hard to declare that we currently have an MDD metho-

dology, which is both complete and practical for MAS development. Cougaar MDA (Gracanin

et al., 2005), PIM4Agents (Hahn et al., 2009), MDD4SWAgents (Kardas et al., 2009) and model-

driven Tropos (Penserini et al., 2006) can be accepted as complete approaches when we consider

the ideal MDD process and its application steps discussed in Section 2. But feasibility of the

proposals is under debate since none of the transformation patterns owned by these approaches

support sufficient agent implementation environments.

We could argue that the lack of a generic and a widely accepted PIMM for MASs is the main

reason of the above situation. Such a PIMM can be derived as a combination of already existing

MAS metamodels (e.g. Bernon et al., 2005 is a good example) or can be proposed as a brand new

metamodel such as PIM4Agents (Hahn et al., 2009). PIM4Agents seems a strong candidate for a

common MAS PIMM. However, generality of PIM4Agents is unclear since it is too new and its

transformability has been proved only for two MAS platforms. In fact, given transformations

from PIM4Agents are not complete and productive as previously discussed in Section 3.2.2.

Platform-specific MAS metamodels need extensions for an adequate transformation when we

Table 17 Evaluation of the model-driven MAS development approaches

Generic

PIMM

definition

M2M

Transformability

M2C

Transformability

Support for

multiple

platforms

Tool

support

AMDA (Xiao & Greer, 2009) 11 11 2 2 1

CAFnE (Jayatilleke et al., 2007) 1 2 1 2 1

Cougaar MDA (Gracanin et al.,

2005)

1 1 1 2 11

IDK (Pavon et al., 2006) 11 2 1 2 1

Malaca Model (Amor et al., 2005) 11 1 2 2 2

MDD4SWAgents (Kardas et al.,

2009)

11 11 1 1 11

Model-driven ADELFE

(Rougemaille et al., 2007)

1 1 2 2 2

Model-driven Tropos (Penserini

et al., 2006)

1 11 1 2 1

PIM4Agents (Hahn et al., 2009) 11 11 1 1 11

PIM4SOA (Zinnikus et al., 2006) 2 1 2 2 1

TAOM4e (Perini & Susi, 2006) 1 11 2 2 1

MAS5multiagent systems; MDA5MDA5model-driven architecture; AMDA5AMDA5 agent-

oriented MDA; CAFnE5Component Agent Framework for domain Experts; IDK5 INGENIAS

Development Kit.

Model-driven development of multiagent systems: a survey and evaluation 499



employ PIM4Agents. Features like support on agent–service interaction, agent adaptivity and

various agent planning mechanisms should also be included in PIM4Agents.

On the other hand, a metamodel for MASs should not be too abstract (e.g. Agent Class

Superstructure Metamodel (FIPA Modeling Technical Committee, 2004)) in order to be used as a

PIMM in model-driven MAS development. Model transformations from the metamodel would be

very inefficient and output models of the transformations would be useless if the PIMM is too

abstract. Hence, the degree of PIMM generality is critical. It should be both generic enough to

support various MAS platforms and concrete enough for productive model transformations.

When we take into account the broad diversity relating to purpose, organization and architecture

of MASs, it is almost impossible to provide just one MAS PIMM with enough generality and

concreteness and use it during MDD of all agent systems.

The above mentioned diversities have caused AOSE researchers to produce specific multiple

metamodels for MASs, each with its own uses, and employ them during their model-driven

approaches. But originating from specific metamodels naturally makes these approaches

impractical and incapable of supporting more than one MAS platform. Evaluation grades on

multiple platform support, listed in Table 17, clearly justify this situation.

As a result, we can conclude that the derivation of a general PIMM needed in MDD of all

MASs is almost impossible. In addition, utilization of the existing metamodels produce model-

driven MAS development methodologies that are weak on multiple platform support. At this

point, we may propose a general platform independent modeling approach, which covers the

utilization of the existing MAS metamodels; such that we may define horizontal transformations

between these metamodels and apply these transformations between the instance models of these

metamodels in order to provide implementation of the same MAS in various MAS platforms.

Referring back to the discussion in Section 2 about the MDD process, we can see that the

traditional way is to define metamodels at different abstraction levels and provide vertical model

transformations between these metamodels (Figure 1). Mens and Van Gorp (2006) state that

refinement of a software system model can be considered as a vertical transformation example

in which a specification is gradually refined into a full-fledged implementation, by means of

successive refinement steps that add more concrete details. That exactly describes the current

research direction followed by most of the AOSE researchers in MDD of MAS. The approaches

we evaluate in this paper consider the refinement of an abstract MAS model by applying vertical

transformations to receive the most concrete and executable system components. However, it is

also possible to define model transformations between the metamodels residing at the same

abstraction level. We call these transformations horizontal transformations in which refactoring or

a migration of a software system typically takes place (Mens & Van Gorp, 2006).

Design and application of horizontal transformations between MAS metamodels may be

encouraging for model-driven MAS development since it provides a general PIMM perspective

based on the utilization of the already existing MAS metamodels that are acquired as the result of

AOSE community’s significant effort. However, the practicability of this approach definitely

needs further investigation. Future work on this topic should consider questions such as: What is

the cost of such a design? Should we always define transformations in a mesh structure (from all

PIMMs to remaining PIMMs) or is just one-to-one transformation enough? Do entity mappings

between PIMMs provide an efficient transformation? Is auto-generated PIM satisfactory? To

what extent should developers intervene in PIM generation? What is the proportion of the auto-

generated model entities (gained as the result of horizontal transformation) among all required

MAS PIM entities? Particularly, the determination of the correct structure of the transformations

and completeness of the auto-generated MAS PIMs are critical for an appropriate MDD process

based on the approach described above.

The last issue that we have considered during the evaluation is the fruitful application of model-

driven approaches in MAS design. Although the main artifacts of MDD are output models,

software codes for the exact system implementation should eventually be obtained. Within this

context, one of the promises of the MDA (in-use realization of MDD) is a faster implementation.

500 G . KARDA S



It is stated that for an application development, software developers need to write only 10% of the

required code manually, 40% of the code is semi-generic and 50% is generic plumbing code

(Herst, 2005). Hence, developers may focus exclusively on the custom code by applying MDA.

Unfortunately, the validity of MDA’s promise on faster implementation for MAS development is

doubtful at present. As discussed above, many of the current model-driven MAS development

approaches (e.g. Cougaar MDA (Gracanin et al., 2005), PIM4Agents (Hahn et al., 2009),

MDD4SWAgents (Kardas et al., 2009), CAFnE (Jayatilleke et al., 2007)) include automatic code

generation for various MAS software development frameworks. However, the quantity of the

generated code is not satisfactory. For instance, codes required for the agent interactions and

internal behavior (plan) structure of agents could not be generated or generated only at the

template level in most situations. In order to be executable, vast amount of these auto-generated

MAS codes need to be completed manually.

5 Conclusion

A state of the art survey on the model-driven MAS development has been given in this paper.

MDD approaches for the development of MASs are discussed and model-driven methodologies

proposed by the agent community are evaluated according to quality criteria defined on model-

driven engineering.

AOSE is a relatively young research field in computer science and the approaches discussed

above can be considered as the first attempts within AOSE to define model-driven MAS develop-

ment. Our evaluation has shown that most of these attempts contributed to the area by providing

MDD processes in which design of the MASs are realized at a very high abstraction level and the

software for these MASs are developed as a result of the application of a series of M2M and M2C

transformations. On the other hand, some of the remaining approaches just included the partial

applications in which M2M transformation or code generation from MAS models are imple-

mented based on the requirements. However, we have concluded that most of the proposals are

incapable of supporting multiple MAS environments due to the restricted specifications of their

metamodels and model transformations. Also efficiency and practicability of the proposed

methodologies are under debate since the amount and quality of the executable MAS components,

gained automatically, appear to be not sufficient. In particular, automatic generation of the

program codes considering agent interactions and behaviors is not at the desired level, and in most

situations intervention of the software developers is required. Hence, extensive modification of the

codes is needed before production deployment of the system. At this point, we may also conclude

that reflecting autonomous and proactive features of agents and their social relations during

model-driven MAS development is currently also in a preliminary state and needs further research.

Acknowledgments

This work is funded by The Scientific and Technological Research Council of Turkey (TUBITAK)

Electric, Electronic and Informatics Research Group (EEEAG) under grant 109E125. The author

also wishes to thank the anonymous reviewers for their accurate comments on the previous

versions of the paper. He was able to improve both his work and the paper significantly by taking

their critical comments into account.

References

Agent Oriented Software Group 2006. JACK Intelligent Agents. Retrieved on May 16, 2011, from http://

www.agent-software.com/

Agrawal, A., Karsai, G., Neema, S., Shi, F. & Vizhanyo, A. 2006. The design of a language for model

transformations. Software and Systems Modeling 5(3), 261–288.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D.,

Thatte, S., Trickovic, I. & Weerawarana, S. 2003. Business Process Execution Language for Web Services

Model-driven development of multiagent systems: a survey and evaluation 501



Version 1.1. Retrieved on May 16, 2011, from http://download.boulder.ibm.com/ibmdl/pub/

software/dw/specs/ws-bpel/ws-bpel.pdf

Amor, M., Fuentes, L. & Vallecillo, A. 2005. Bridging the gap between agent-oriented design and imple-

mentation using MDA. Lecture Notes in Computer Science 3382, 93–108. Springer.

Bauer, B. & Odell, J. 2005. UML 2.0 and agents: how to build agent-based systems with the new UML

standard. Engineering Applications of Artificial Intelligence 18(2), 141–157.

Bauer, B., Muller, J. P. & Odell, J. 2001. Agent UML: a formalism for specifying multiagent software

systems. International Journal of Software Engineering and Knowledge Engineering 11(3), 207–230.

Bellifemine, F., Poggi, A. & Rimassa, G. 2001. Developing multi-agent systems with a FIPA-compliant Aaent

framework. Software: Practice and Experience 31(2), 103–128.

Bergenti, F., Gleizes, M-P. & Zambonelli, F. 2004. Methodologies and Software Engineering for Agent

Systems: The Agent-Oriented Software Engineering Handbook. Kluwer Academic Publishers.

Berners-Lee, T., Hendler, J. & Lassila, O. 2001. The Semantic Web. Scientific American 284(5), 34–43.

Bernon, C., Gleizes, M-P., Peyruqueou, S. & Picard, G. 2003. ADELFE: a methodology for adaptive

multi-agent systems engineering. Lecture Notes in Artificial Intelligence 2577, 70–81. Springer.

Bernon, C., Cossentino, M., Gleizes, M-P., Turci, P. & Zambonelli, F. 2005. A study of some multi-agent

meta-models. Lecture Notes in Computer Science 3382, 62–77. Springer.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F. & Mylopoulos, J. 2004. Tropos: an agent-oriented

software development methodology. Autonomous Agents and Multi-Agent Systems 8(3), 203–236.

Cervenka, R., Trencansky, I., Calisti, M. & Greenwood, D. 2005. AML: Agent Modeling Language – toward

industry-grade agent-based modeling. Lecture Notes in Computer Science 3382, 31–46.

Depke, R., Heckel, R. & Küster, J. M. 2001. Agent-oriented modeling with graph transformations. Lecture

Notes in Computer Science 1957, 105–119. Springer.

Dickinson, I. &Wooldridge, M. 2003. Towards Practical Reasoning Agents for the Semantic Web. In Proceedings

of the Second International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2003),

Rosenschein, J. S., Wooldridge, M., Sandholm, T. & Yokoo, M. (eds.). ACM Press, 827–834.

Dikenelli, O., Erdur, R. C., Kardas, G., Gümüs, O., Seylan, I., Gurcan, O., Tiryaki, A. M. & Ekinci, E. E.

2006. Developing multi agent systems on semantic Web environment using SEAGENT platform. Lecture

Notes in Artificial Intelligence 3963, 1–13. Springer.

FIPA Modeling Technical Committee 2004. Agent Class Superstructure Metamodel. Retrieved on May 16,

2011, from www.auml.org/auml/documents/CD2-03-10-31.doc

Ferber, J. & Gutknecht, O. 1998. A meta-model for the analysis and design of organizations in multi-agent

systems. In Proceedings of the Third International Conference on Multi-Agent Systems, Demazeau, Y. (ed.).

IEEE Computer Society, 128–135.

Fischer, K., Hahn, C. & Madrigal-Mora, C. 2007. Agent-oriented software engineering: a model-driven

approach. International Journal of Agent-Oriented Software Engineering 1(3–4), 334–369.

Gracanin, D., Singh, H. L., Bohner, S. A. & Hinchey, M. G. 2005. Model-driven architecture for agent-based

systems. Lecture Notes in Artificial Intelligence 3228, 249–261. Springer.

Hahn, C., Madrigal-Mora, C. & Fischer, K. 2009. A platform-independent metamodel for multiagent sys-

tems. Autonomous Agents and Multi-agent Systems 18(2), 239–266.

Hahn, C., Madrigal-Mora, C., Fischer, K., Elvesæter, B., Berre, A. J. & Zinnikus, I. 2006. Meta-models,

models, and model transformations: towards interoperable agents. Lecture Notes in Artificial Intelligence

4196, 123–134.

Herst, D. 2005. Model-Driven Architecture for J2EE Development: Promise and Practice. Retrieved on

May 16, 2011, from http://www.orlandojug.org/meeting2005-07-28.html

IEEE FIPA 2002 . IEEE Foundation for Intelligent Physical Agents (FIPA) Specifications. Retrieved on

May 16, 2011, from http://www.fipa.org/specifications/index.html

Jayatilleke, G. B., Padgham, L. & Winikoff, M. 2004. Towards a Component based development framework

for agents. Lecture Notes in Artificial Intelligence 3187, 183–197. Springer.

Jayatilleke, G. B., Padgham, L. & Winikoff, M. 2007. Evaluating a model driven development toolkit for

domain experts to modify agent based systems. Lecture Notes in Computer Science 4405, 190–207. Springer.

Jouault, F. & Kurtev, I. 2006. Transforming models with ATL. Lecture Notes in Computer Science 3844,

128–138. Springer.

Kalnins, A., Barzdins, J. & Celms, E. 2005. Model transformation language MOLA. Lecture Notes in

Computer Science 3599, 62–76. Springer.

Kardas, G., Goknil, A., Dikenelli, O. & Topaloglu, N. Y. 2006. Metamodeling of Semantic Web enabled

multiagent systems. In Proceedings of the Multiagent Systems and Software Architecture (MASSA),

Special Track at Net.ObjectDays—NODe 2006, 79–86. Erfurt, Germany.

Kardas, G., Goknil, A., Dikenelli, O. & Topaloglu, N. Y. 2007a. Modeling the interaction between Semantic

agents and Semantic Web services using MDA approach. Lecture Notes in Artificial Intelligence 4457,

209–228. Springer.

502 G . KARDA S



Kardas, G., Goknil, A., Dikenelli, O. & Topaloglu, N. Y. 2007b. Model transformation for model driven

development of Semantic Web enabled multi-agent systems. Lecture Notes in Artificial Intelligence 4687,

13–24. Springer.

Kardas, G., Goknil, A., Dikenelli, O. & Topaloglu, N. Y. 2009. Model driven development of Semantic Web

enabled multi-agent systems. International Journal of Cooperative Information Systems 18(2), 261–308.

Leriche, S. & Arcangeli, J-P. 2007. Adaptive autonomous agent models for open distributed systems.

In Proceedings of the Second International Multi-Conference on Computing in the Global Information

Technology (ICCGI 2007), Boiou, M., Costa-Requena, J., Thiebaut, D., Popoviciu, C., Tuy, B. & Van de

Velde, G. (eds.). IEEE Computer Society, 19–24.

Mens, T. & Van Gorp, P. 2006. A taxonomy of model transformation. Electronic Notes in Theoretical

Computer Science 152, 125–142.

Mohagheghi, P. & Aagedal, J. 2007. Evaluating quality in model-driven engineering. In Proceedings

of the International Workshop on Modeling in Software Engineering (MISE 2007), Atlee, J., France, R.,

Georg, G., Moreira, A., Rumpe, B. & Zschaler, S. (eds.). IEEE Computer Society, 1–6.

Molesini, A., Denti, E. & Omicini, A. 2005. MAS meta-models on test: UML vs. OPM in the SODA case

study. Lecture Notes in Artificial Intelligence 3690, 163–172. Springer.

Object Management Group 2002. Meta Object Facility (MOF) Specification Version 1.4. Retrieved on May

16, 2011, from http://www.omg.org/cgi-bin/doc?formal/02-04-03.pdf

Object Management Group 2003. Model Driven Architecture. Retrieved on May 16, 2011, from http://

www.omg.org/mda/

Object Management Group 2005a. UML 2.0 Superstructure Specification. Retrieved on May 16, 2011, from

http://www.omg.org/spec/UML/2.0/Superstructure/PDF/

Object Management Group 2005b. Meta Object Facility 2.0 Query/View/Transformation Specification.

Retrieved on May 16, 2011, from http://www.omg.org/spec/QVT/

Odell, J., Nodine, M. & Levy, R. 2005. A metamodel for agents, roles and groups. Lecture Notes in

Computer Science 3382, 78–92. Springer.

Pavon, J., Gomez-Sanz, J. J. & Fuentes, R. 2005. The INGENIAS methodology and tools. In Agent-Oriented

Methodologies, Henderson-Sellers, B. & Giorgini, P. (eds). Idea Group Publishing, 236–276.

Pavon, J., Gomez-Sanz, J. J. & Fuentes, R. 2006. Model driven development of multi-agent systems. Lecture

Notes in Computer Science 4066, 284–298. Springer.

Penserini, L., Perini, A., Susi, A. & Mylopoulos, J. 2006. From stakeholder intentions to software agent

implementations. Lecture Notes in Computer Science 4001, 465–479.

Perini, A. & Susi, A. 2006. Automating model transformations in agent-oriented modeling. Lecture Notes in

Computer Science 3950, 167–178.

Rao, A. & Georgeff, M. 1995. BDI agents: from theory to Practice. In Proceedings of the First International

Conference on Multi-Agent Systems (ICMAS-95), 312–319, San Francisco, USA.

Rougemaille, S., Migeon, F., Maurel, C. & Gleizes, M-P. 2007. Model driven engineering for designing

adaptive multi-agent systems. Lecture Notes in Artificial Intelligence 4995, 318–332. Springer.

Seidewitz, E. 2003. What models mean. IEEE Software 20, 26–32.

Selic, B. 2003. The pragmatics of model-driven development. IEEE Software 20, 19–25.

Sendall, S. & Kozaczynski, W. 2003. Model transformation—the heart and soul of model-driven software

development. IEEE Software 20, 42–45.

Solheim, I. & Neple, T. 2006. Model Quality in the Context of Model-Driven Development. In Proceedings of

the Second International Workshop on Model-Driven Enterprise Information Systems (MDEIS 2006),

27–35, Paphos, South Cyprus.

Wooldridge, M. & Jennings, N. R. 1995. Intelligent agents: theory and practice. The Knowledge Engineering

Review 10(2), 115–152.

Xiao, L. & Greer, D. 2007. Towards agent-oriented model-driven architecture. European Journal of

Information Systems 16(4), 390–406.

Xiao, L. & Greer, D. 2009. Adaptive agent model: software adaptivity using an agent-oriented model-driven

architecture. Information and Software Technology 51(1), 109–137.

Zambonelli, F., Jennings, N. R. & Wooldridge, M. 2003. Developing multiagent systems: the Gaia

methodology. ACM Transactions on Software Engineering and Methodologies 12(3), 317–370.

Zinnikus, I., Benguria, G., Elvesæter, B., Fischer, K. & Vayssière, J. 2006. A model driven approach to agent-

based service-oriented architectures. Lecture Notes in Artificial Intelligence 4196, 110–122. Springer.

Model-driven development of multiagent systems: a survey and evaluation 503


