

Accepted Manuscript

A model driven architecture for the development of smart
card software

Hidayet Burak Saritas, Geylani Kardas

DOI: 10.1016/j.cl.2014.02.001

To appear in: Computer Languages, Systems &
Structures

Published online: 17 February 2014

Please cite this article as: Hidayet Burak Saritas, Geylani Kardas, A model driven architecture
for the development of smart card software, Computer Languages, Systems & Structures
(2014), doi: 10.1016/j.cl.2014.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

http://dx.doi.org/10.1016/j.cl.2014.02.001
http://dx.doi.org/10.1016/j.cl.2014.02.001

ACCEPTED MANUSCRIPT

A Model Driven Architecture for the Development of

Smart Card Software

Hidayet Burak Saritas and Geylani Kardas1

Ege University International Computer Institute, 35100, Bornova, Izmir, Turkey

saritasburak@gmail.com, geylani.kardas@ege.edu.tr

Abstract: Smart cards are portable integrated devices that store and process data. Speed,

security and portability properties enable smart cards to have a widespread usage in various

fields including telecommunication, transportation and the credit card industry. However, the

development of smart card applications is a difficult task due to hardware and software

constraints. The necessity of the knowledge of both a very low-level communication protocol

and a specific hardware causes smart card software development to be a big challenge for the

developers. Written codes tend to be error-prone and hard to debug because of the limited

memory resources. Hence, in this study, we introduce a model driven architecture which aims

to facilitate smart card software development by both providing an easy design of smart card

systems and automatic generation of the required smart card software from the system

models. Differentiating from the previous work, the study in here contributes to the field by

both providing various smart card metamodels in different abstraction layers and defines

model-to-model transformations between the instances of these metamodels in order to

support the realization of the same system on different smart card platforms. Applicability of

the proposed methodology is shown for rapid and efficient application development in two

major smart card frameworks: Java Card and ZeitControl Basic Card. Lessons learned during

the industrial usage of the architecture are also reported in the paper. Finally, we discuss how

the components of the architecture can be integrated in order to provide a domain-specific

language for smart card software.

Keywords: Model driven architecture, metamodel, model transformation, smart card, Java

Card, Basic Card.

1 Corresponding author. Addr: Ege Universitesi Uluslararasi Bilgisayar Enstitusu, Bornova Metro Duragi
Karsisi, 35100, Bornova, Izmir Turkey. Tel.: +90-232-3113223; Fax.: +90-232-3887230

1

ACCEPTED MANUSCRIPT

1. Introduction

Smart cards are portable, integrated circuit devices that securely store and process data [1].

These tiny computers with their own memories and processors have a widespread usage in

various fields including telecommunication, transportation, banking and healthcare. For

instance the operation of a cellular phone is directly based on a smart card which carries an

identification number unique to the owner, stores personal data and prevents operation if

removed. Also most of today’s credit cards are in fact smart cards that store account

information for a bank customer and provide authorization and authentication for electronic

money transfers.

Since hardware and software capabilities of a smart card are very limited compared to a

desktop personal computer, the development of smart card applications is a difficult task. The

necessity of having a deep knowledge of both a very low-level smart card communication

protocol [2] and a specific hardware causes smart card software development to be a big

challenge for the developers. Limited memory resources force developers to deal with very

primitive data structures. The design of the software for the process of incoming hexadecimal

data packages and preparation of the outgoing data packages byte-by-byte, again in

hexadecimal format, are difficult and time-consuming jobs for the developers. Development

environments dedicated to the smart cards are mostly incapable of code debugging and this

makes written codes tend to be error-prone.

Like other smart card developers, we also experienced above difficulties in the design and

implementation of various smart card software which were developed during our academic

research (e.g. [3], [4], [5]) or for commercial purposes. Based on our experience, we may

conclude that working in a higher abstraction level different from the code level is mandatory

2

ACCEPTED MANUSCRIPT

for an efficient design and implementation of smart card software systems. Within this

context, Model Driven Engineering (MDE) (or Model Driven Development (MDD)) [6],

which aims to change the focus of software development from code to models, may also

provide easy and efficient production of smart card software. In such an MDE environment,

card developers can graphically design their system models conforming to metamodel(s) at

various abstraction layers which in fact present entities and their relations needed for a smart

card system, and then software codes needed for the designed system are automatically

generated as the result of a model to text transformation. Hence, in this paper, we introduce a

MDD process which aims to facilitate the smart card software development by both providing

an easy design of smart card systems and automatic generation of smart card programs. We

use Model Driven Architecture (MDA) ([7], [8]) which is one of the realizations of MDD to

support the relations between platform independent and various platform dependent smart

card entities to develop software for smart cards.

Following the derivation of smart card metamodels in different abstraction layers, definition

and implementation of model-to-model (M2M) transformations for the instances of these

derived metamodels were performed. Finally, model-to-text (M2T) transformations were

provided to automatically generate required software codes.

Apart from the related work (e.g. [9], [10], [11], [12]) which mainly considers model driven

smart card software development only specific for the Java Card framework [13], the study

presented in this paper introduces a platform independent metamodel (PIMM) for smart card

systems in order to free the developer from taking into consideration the specific needs of

different smart card platforms such as Java Card. Furthermore, the proposed PIMM enables

the developer to model the smart card system conforming to data transmission and data

3

ACCEPTED MANUSCRIPT

storage standards brought by ISO/IEC 7816 standards family [2]. This standards family

includes various standards for smart card development such as the physical characteristics,

electrical interface, transmission between smart cards and host devices and personal

verification.

On the other hand, transformability from the general smart card PIMM to the dedicated smart

card platforms is also presented in this study. Metamodels of two major smart card

frameworks, Java Card [13] and ZeitControl Basic Card [14], are defined as the platform

specific smart card metamodels (PSMM). Hence, applied M2M transformations and

following M2T transformations provide the implementation of the same smart card system on

different execution platforms.

The rest of the paper is organized as follows: A brief discussion on smart card technology is

given in Section 2. Section 3 includes the proposed smart card PIMM and related modeling

environment. Platform specific metamodels and modeling tools for the MDD of Java Card

and Basic Card applications are given in Section 4 and 5 respectively. Defined model

transformations between general smart card models and Java Card and Basic Card models are

discussed in Section 6. Section 7 covers the automatic code generation from platform specific

card instance models. Evaluation of the study by considering the lessons learned during the

industrial usage of the architecture is reported in Section 8. Related work is given in Section

9. Section 10 concludes the paper.

2. Smart Card Technology

Smart cards are tiny computers with their own processor and memory. For instance, the

integrated circuit on a bank credit card is in fact a smart card. Also, subscriber identity

4

ACCEPTED MANUSCRIPT

modules (SIM), used inside our cellular phones, are smart cards that store subscriber

information to use the phones properly. A smart card includes a micro-processor, read-only

memory (ROM), random access memory (RAM) and electrical erasable programmable ROM

(EEPROM). Operating system of the card is stored in ROM. Similar to the main memories of

our desktop PCs, applications run on RAM. Finally, EEPROM stores applications and data

while the card is unpowered. Connection points on the card support the input/output and

communication with the host computers [1], [15]. Fundamental functionality (e.g. commands

for interchange, structure of transmitted data packages) and characteristics (such as electrical

interface or contact type) for smart cards are defined with ISO/IEC 7816 standards [2].

Depending on the usage type, smart cards may be classified as contact or contacless. Contact

cards should be inserted in a card reader which is directly connected to a host computer

whereas contactless cards do not need to be inserted or contacted physically for operation.

Such kind of cards communicates with and is powered by the reader through Radio Frequency

(RF) induction technology.

Like Transmission Control Protocol/Internet Protocol (TCP/IP) and related data package

transmission used in computer networks, there also exists a standard communication

infrastructure defined for smart cards again in ISO/IEC 7816 Standards family. Whole

communication between a smart card and a host computer (terminal) is provided by the

exchange of Application Protocol Data Unit (APDU) packages [2]. A host terminal

application sends Command APDU packages and receives Response APDU packages from

the smart card. Based on the received command APDU, related application residing in the

card is chosen by the smart card operating system and the chosen application now begins to

process the received command APDU packages and sends back responses in response APDU

5

ACCEPTED MANUSCRIPT

packages to the terminal. A command APDU package has a 4-byte mandatory header with the

following fields: CLA, INS, P1, P2. In addition to these fields, it may also include data up to

256 bytes. Table 1 lists command APDU fields and their descriptions.

Table 1: Command APDU fields

Field Description

CLA Instruction class indicating the type of command

INS Instruction code indicating the specific command (e.g. get data or write data)

P1 Instruction parameter for the command

P2 Instruction parameter for the command

Lc Length of data being sent

Data Data being sent

Le Length of the expected response

A response APDU package is sent by the card to the reader. The package contains a

mandatory 2-byte status word and up to 256 bytes of data (Table 2). Status word (SW1 and

SW2) denotes whether the requested operation successfully performed or not. For example,

hexadecimal 0x9000 value for SW1 and SW2 bytes indicates that the operation has been

successfully performed.

Table 2: Response APDU fields

Field Description

Data
Response data (It can be empty in case of a failure or intentionally no

response data is requested).

SW1 Command processing status

SW2 Command processing status

6

ACCEPTED MANUSCRIPT

3. A PIMM for Smart Cards

Both programming interface and structure of the programs stored in the smart cards vary

despite the above discussed unique hardware and standard communication protocol. Some of

the cards support file systems and allows file-oriented data processing. On the other hand, a

group of smart cards includes middlewares that enhance actual read/write operations over

different abstractions such as object-orientation. In this section, we discuss a PIMM for smart

card applications which enables software developers to model their card software conforming

to common smart card data transmission and data storage standards without considering the

specifications of programming for different smart card platforms (e.g. Java Card [13]). The

preliminary version of the metamodel is introduced in [16].

Derivation of the metamodel entities and their relations was performed as the result of a

feature-oriented domain analysis. With the collaboration of smart card software developers,

both features of smart card software and dependencies among those features were determined.

While studying on the features, we also specified the system constraints. Further, the analysis

also enabled us to determine mandatory and optional features. For instance, a smart card

application should support the APDU protocol and own the required properties for the

convenient communication between the host computers. On the other hand, it would be better

to have authorization features for accessing the data stored on the card in most of the

situations. However it is not a must for all smart card applications. Obtained feature model

supported the creation of the smart card PIMM in question.

Figure 1 depicts the proposed common smart card metamodel which is encoded according to

the well-known Ecore meta-metamodel included in the Eclipse Modeling Framework (EMF)

[17]. Similar to Unified Modeling Language (UML) class diagrams, boxes with compartments

7

ACCEPTED MANUSCRIPT

represent meta-entities while lines show the associations like inheritance and composition

between the card entities. Some of the meta-entity attributes are suppressed in the figure to

provide clear reading.

The key entity of the metamodel is the Application which represents a smart card program.

The platform independent modeling of a smart card software starts with the inclusion of an

Application instance. As will be discussed later, platform dependent counterpart of this entity

can be an applet for Java Cards or a file definition for Basic Card applications. At least one

instance of the Application entity should be included in a smart card application model.

Notice that the implementation of such constraints required for the metamodel entities and

their relations was provided with using the well-known Object Constraint Language (OCL)

[18], [19]. Special OCL rules were written for describing those constraints which also

constitute the static semantics for the models.

Figure 1 approximately here

Figure 1: The metamodel for smart card applications

Another important meta-entity is the APDU. Communication between smart cards and

terminals is realized over APDU packages. Each communication in an interaction model can

be represented with an APDU instance. The metamodel includes two specialization of this

meta-entity as expected: CommandApdu and ResponseApdu. Comforming to ISO/IEC 7816

specifications, these APDU types cover proper attributes in our metamodel. For instance,

instruction bytes (INS) in a CommandApdu entity manages the instructions that will be

executed in the card application. Data and/or notification on a card process are returned by

8

ACCEPTED MANUSCRIPT

ResponseApdu instances. A ResponseApdu includes a group of SWConditions which define

status word types of ISO/IEC 7816 APDU responses.

For a smart card application, all needed CommandApdu and ResponseApdu instances are

encapsulated within an APDUOperation meta-entity. That entity provides the definition of

data types and variables needed during the execution of commands or card operations. The

relation between a modeled Application and every added APDUOperation is established over

an Including entity.

Almost all smart card software requires a user authorization via the input of a valid personal

identification number (PIN). Hence a meta-entity called PIN is included in the metamodel.

Before the establishment of the connection between the smart card and the host, value of the

PIN should be verified. Terminal sends an APDU including an entered PIN value and the

application in the smart card checks that value. Validation of the PIN is mandatory for the

execution of successor commands. An Access_key entity in a smart card model associates PIN

instance(s) with a Application.

Constant and Data entities are used for the definition of information processed in the card

application. Each data owns name, type and value attributes. Some fundamental smart card

data types are already defined in the model with SCDataTypes entity. These types are

“number”, “numberArray”, “string”, “boolean” and “byte”. User defined data types can be

included in the models via DataUnit entities. Hence, new data structures can be constructed

from the collection of existing data types (e.g. SCDataTypes or again DataUnits). Association

of the new DataUnit instances with an Application is realized over an Instance.

9

ACCEPTED MANUSCRIPT

Now let us consider the modeling of smart card applications according to above discussed

PIMM since the MDE of software systems naturally requires a phase in which the modeling

of the system is realized. Models are the main artifacts of the development process and

software developers should be supported with appropriate modeling tools for the production

of these artifacts. Hence, in this study, a set of modeling tools were designed and

implemented to support our approach proposed for the MDE of smart card systems.

The modeling tools introduced in this paper were developed on Eclipse platform [20] by using

the Graphical Modeling Framework (GMF). GMF [21] is a framework for building graphical

modeling tools for various domains. In our study, we (1) provide domain models for various

smart card environments (including both platform independent and platform specific) as

Ecore metamodels, (2) prepare graphical elements representing the smart card domain

elements and their relations, and (3) map smart card components with the graphical nodes to

generate smart card modeling tools / editors according to GMF specifications.

Considering the generation of the modeling tool for our general smart card models, above

introduced metamodel naturally presented a base on which the related modeling editor is

built. Since we already derived the Ecore encoding of the PIMM, remaining work just

covered the tasks given in (2) and (3).

The screenshot in Figure 2 shows a fragment from the modeling environment provided by the

platform independent smart card modeling tool. Developers can visually model their smart

card systems by using the editor palette shown in the right side of Figure 2. The palette

includes the nodes and links that can be used for preparing a smart card application instance

model. Each node or link is a graphical element which represents a unique meta-entity of our

10

ACCEPTED MANUSCRIPT

PIMM. The editor environment also supports developers in model consistency and prevents

wrong relation establishments between smart card model elements. Further, constraints on the

model entities and their relations (e.g. compartment constraint, number of relations

constraints, relationship source and destination constraint, entity-relation consistency

constraint) are also checked automatically within the editor environment. As previously

mentioned, such constraints were implemented by using OCL [18]. For this purpose, built-in

features of the GMF were utilized. The "gmfmap"s were prepared for the components of each

Ecore metamodel (both PIMM and PSMMs) in our study. Inside each "gmfmap" description

file, OCL constraints can be inserted e.g. for the compartment setting between the top node

and the child nodes or creating the link mappings such as association or aggregation. OCL

constraints were also written for the determination of the relation types inside Feature-Value

expressions.

A developer simply drag-and-drops a smart card software component from the palette to the

design area, sets the attribute values for the component (if applicable) and associates it with

already existing smart card elements according to the above metamodel definitions and

constraints. Modeling of a smart card software is started with the inclusion of an Application

instance (shown in the upper left of Figure 2). Successor instances (such as APDUs, PIN, data

or smart card operation types) are added into the model by connecting them with proper

association links (Instance, Including or Access_key) again based on the metamodel

specifications.

Figure 2 approximately here

Figure 2: Modeling enviroment for the development of platform independent smart card

software

11

ACCEPTED MANUSCRIPT

As can be seen from the Figure 2, some elements such as Application and APDUOperation

instances own a set of compartments in order to encapsulate other elements. Hence, an

appropriate settlement of the elements is achieved. Furthermore, metamodel constraints for

each model element are checked automatically by the editor. These constraints include unique

settlement of the elements (e.g. CommandApdu and ResponseApdu elements can only be

inserted into an APDUOperation) or the use of the correct association links (e.g. Access_key

relation can only be established between a smart card Application and a PIN element). The

modeling editor also controls the derivation and use of data variables and constants only

inside the suitable elements such as Application and DataUnit.

Each model designed in the editor environment is in fact an instance of our PIMM. Figure 2

also shows such an instance model for a classic e-purse smart card system. Suppose a smart

card software is required for an e-purse (wallet) application. In this application, customers use

their smart cards during online payment operations. The electronic money transfer is realized

based on the customer account information stored on the smart card. The smart card

application instance (seen at the left of Figure 2) provides the storage of the customer account

information and user authentication (over a PIN) and includes appropriate smart card

operations (modeled as APDUOperations) for e-money transfer (credit / debit) and balance

inquiry (getBalance APDUOperation in the model).

4. Modeling Java Card Applications

Today Java Card [13] is perhaps the most preferred type of smart cards and its application

programming interface, called Java Card API, is one of the widely chosen software libraries

for the development of smart card software. The Java Card technology provides application

development for smart cards and other memory-limited devices by using the features of the

12

ACCEPTED MANUSCRIPT

Java programming language. However only a subset of the Java programming language can

be used due to the resource limitations of a smart card. For example, only boolean, short and

byte can be used as primitive data types. Integers, characters and the String class can not be

used. Furthermore multidimensional arrays, dynamic class loading, garbage collection,

threads, object serialization and cloning are also not supported in Java Card.

A card program written for a Java Card is named as the card applet. Java Card Framework

(JCF) supplies the API to develop smart card applications that conform to the ISO/IEC 7816

standards [2]. After a card applet is prepared using the Java Card API, a Converted Applet

(CAP) file is formed from the written applet and any other on-card class files needed by this

applet. Converter loads this CAP file to the smart card and the interpreter installs the applet

encapsulated in the CAP file. After the installation, all the permanent Java objects are created

on the card and are ready to use [22].

Software developers use the Java packages and classes distributed within the Java Card API

for the implementation of smart card applications. However, above discussed restrictions of

the API make the development process difficult and time-consuming. In order to cope with

those deficiencies, a MDE methodology for the development of Java Card programs is

defined in this study. The methodology includes the visual modeling of Java Card programs

and then automatic code generation from the prepared system models. For this purpose, we

first need a metamodel for describing Java Card entities and their relations. The definition of a

M2T transformation originating from this metamodel enables us to automatically generate

Java Card software codes. In the following, we discuss the related metamodel and visual

modeling of the Java Card software based on this metamodel. M2T transformations defined

for the Java Card programs will be later discussed.

13

ACCEPTED MANUSCRIPT

Based on the specifications of the Java Card API, we derived a metamodel for the Java Card

programs. The metamodel includes Java Card components and their associations. According

to our approach, the derived metamodel is considered as a PSMM for smart cards within the

MDA perspective [7]. We provided a transformation mechanism from the platform-

independent smart card metamodel (introduced in Section 3) to this PSMM in order to obtain

Java Card platform-specific counterparts of the models conforming to the platform-

independent smart card metamodel. Related transformation mechanism will be discussed later

in Section 6 of this paper.

Like the PIMM discussed in the previous section, derived Java Card metamodel is encoded

again according to the Ecore meta-metamodel [17]. That encoding provides the XML

Metadata Interchange (XMI) serialization of our Java Card metamodel and hence the

metamodel can be employed in various M2M transformations as source or target metamodels.

Figure 3 depicts the derived Java Card metamodel. Some of the entity attributes are omitted

for clarity.

The key entity in the metamodel is the Applet. An applet is a Java Card program residing on a

smart card. It receives incoming requests from the host, processes the request and responses

back to the host program. The APDU meta-entity in our metamodel represents packets of data

that conform to the specifications of the ISO/IEC 7816. As discussed before, an APDU can be

a command or a response APDU. In Java Card technology, the host application sends a

command APDU and a Java Card applet responds with a response APDU. In fact, a Java Card

applet remains idle until it receives a command APDU.

14

ACCEPTED MANUSCRIPT

Figure 3 approximately here

Figure 3: The Java Card metamodel

The PIN, as its name denotes, provides an interface for declaring passwords for the authorized

access to the smart card programs. The OwnerPIN is a concrete implementation of the PIN

interface. It maintains the PIN value, the maximum length of PIN allowed, the maximum

number of times an incorrect PIN can be presented before the PIN is blocked and the

remaining number of times an incorrect PIN presentation is permitted before the PIN becomes

blocked. Java Card API provides a ready-to-use class for this PIN implementation with the

same name. So, the OwnerPIN is also represented with a meta-entity in the proposed Java

Card metamodel. The traditional way is to provide an attribute with type OwnerPIN for each

Java Card applet. Properties (e.g. maximum length and maximum try limit) of this PIN are set

when the applet is installed into the smart card. Before opening a communication session

between the host application and the Java Card applet, the verification of the entered PIN is

performed inside the smart card: The host application sends an APDU containing a PIN value;

the applet processes that PIN value and checks whether the PIN is valid. The session is not

opened until the PIN is verified.

The upper part of the Figure 3 consists of the meta-entities representing the base of the JCF. It

resembles the metamodel of the core of the Java programming language with the definition of

classes, parameter types, fields and methods. The relations between the Java Card classes

(Association, Aggregation, Generalization and Implements) are also given in the metamodel.

However, we organize the metamodel as it reflects the restrictions originating from the use of

just a subset of the Java programming language for the Java Card. For instance, JClass

represents the Java class entity for the JCF which is the base class for all Java Card classes

15

ACCEPTED MANUSCRIPT

(e.g. Applet, APDU and any user-defined Java Card classes). We introduce JClass meta-entity

as a limited version of a classic Java Class with inabilities such as it can not be cloned or

serialized. Likewise, primitive data types in Java Card API (JCDataTypes) are restricted with

only three primitive data types: byte, short and boolean. These primitive types are represented

in the metamodel with JCByte, JCShort and JCBoolean meta-entities. Representations of the

exception types specific to the Java Card (e.g. PINException, APDUException) are also

included in the metamodel.

The derivation of the Java Card metamodel has allowed us to develop another modeling tool

for smart card software development. By following the development steps discussed in

Section 3, a GMF-based tool has been produced. The screenshot given in Figure 4 shows the

modeling environment presented by this tool. Again a developer can simply drag-and-drop a

Java Card software component from the palette to the design area, sets the attribute values for

the component and associates it with already existing smart card elements according to the

Java Card metamodel definitions and constraints. All attributes of the smart card components

can be set by using the properties tab of the editor (shown at the bottom of Figure 4).

Figure 4 approximately here

Figure 4: Modeling environment for the MDE of Java Card Programs

A huge number of attributes can also be set or altered graphically on the model (e.g. type and

cardinality of association links). Associations and attribute settings that violate the

specifications and the restrictions of the Java Card metamodel are detected and prevented by

the editor. For instance, if a ParamType or a Field instance is in array type, more than one

dimension is not allowed for this defined array since multi-dimensional arrays are not allowed

16

ACCEPTED MANUSCRIPT

in Java Card programs. Other examples for the violation check can be listed as follows: Field

and Method instances can only be inserted into the instances of JClass, Applet and OwnerPIN.

The initial value of an OwnerPIN instance's attribute for the remaining number of incorrect

PIN trials should be equal to the value of the same instance's attribute for the maximum

number of incorrect PIN entries.

Figure 4 also includes the Java Card instance model for our sample purse application

introduced in section 2. The Java Card applet ("PurseApplet"), seen at the center of Figure 4,

provides secure storage of the customer account information and includes appropriate

methods for user authentication and e-money transfer (debit / credit). Other required Java

Card components for the program (e.g. Purse, pursePIN) and their relations with the main

applet class are also included in the model. Purse object, that will be stored in the smart card,

includes balance information for a user. Instance fields and methods for the Purse object are

encapsulated in proper compartments during the system modeling in the editor. Based on the

received command APDUs, PurseApplet calls proper getter/setter methods of the Purse object

and sends response APDUs to inform host application for the result of the operations. To keep

simplicity, the complete definition of applet methods required for processing all command

APDUs is not given in the current instance model. Also Java Card components needed for the

exception mechanism are omitted in the model.

5. Modeling ZeitControl Basic Card Programs

ZeitControl Basic Card [14] (hereafter referred to as Basic Card), is another programmable

smart card. It fully supports the smart card communication protocol defined in ISO/IEC 7816

standards [2]. The operating system of the Basic Card consists of a directory-based, PC-like

file system. The built-in chip of the Basic Card has lower memory resources comparing to

17

ACCEPTED MANUSCRIPT

other smart card technologies (such as Java Card). However, this also causes Basic Card to be

cheaper than other cards.

The Basic Card programs are written in a special programming language called ZC-Basic

Language [14], a dialect of the Basic language. That language is naturally not object oriented

and each written program for Basic Cards is usually made up of a single code file in which the

whole functionality needed for all card processing and host communication operations is

defined as a set of Basic procedures. Similar to the Java Card's CAP conversion mechanism, a

Basic Card program is converted to an image file (with .IMG extension) and uploaded to the

Basic Card.

To provide MDE of Basic Card software in the defined MDA, again we need a metamodel for

Basic Card programs and provide a development environment in which both visual modeling

of Basic Card software and auto-generation of program codes are easily performed. In the

following, we discuss these ingredients for the proposed methodology.

First of all, we derived the required metamodel from the structure of Basic Card programs.

The metamodel describes the building blocks (data types, functions, subroutines, etc.) of a

Basic Card program and relations between these blocks. Figure 5 depicts the Ecore encoded

Basic Card metamodel. Entity attributes are not shown here again for the sake of simplicity.

Similar to the Java Card metamodel, the metamodel for Basic Card is considered as another

PSMM in our MDE approach. Hence another set of model transformations were defined from

the platform-independent smart card metamodel (introduced in Section 3) to this PSMM in

order to obtain Basic Card platform-specific counterparts of the models conforming to the

18

ACCEPTED MANUSCRIPT

platform-independent smart card metamodel. Related transformation mechanism will be later

discussed in Section 6.

The ZCardProgram meta-entity (shown in the bottom-left of the Figure 5) is the

representation of a Basic Card source program. A ZCardProgram is composed of program

attributes, card initialization code, card operation procedures and references to external file(s)

and definition file(s). The card initialization is the first block of code that is not contained in a

procedure definition.

A BasicMember in the model represents any unit of a Basic Card program (e.g. a command, a

function or a parameter). A Basic Card procedure definition can be a Function, a Subroutine

or a Command. A function returns a value to the caller whereas a subroutine does not return a

value but carries data through its arguments. A Command is defined like a subroutine

however two ID bytes should be specified as well. These ID bytes represent the command that

will be invoked later by the card.

Figure 5 approximately here

Figure 5: The Basic Card metamodel

Data types for variable and parameter declarations can be String, floating-point, single (4 byte

single precision number), long, integer and byte in ZC-Basic Language. Hence, in the

proposed metamodel, we define corresponding meta-entities (e.g. BasicString and

BasicFPoint) and an enumeration for these types, called DataTypes. Constants for the

declaration of command types are encapsulated in a DefinitionFile. Such definition files are

included at the beginning of a Basic Card program. Also other source files, represented with

19

ACCEPTED MANUSCRIPT

the IncludeZCardProgram entity in the metamodel, can be included by the main card

program.

The Persistence meta-entity denotes the storage type and access rights of a data field in a

Basic Card. Four flags (EEPROM, public, private and static) are defined in ZC-Basic

Language for this purpose and any Persistence instance conforming to our metamodel stores

values of each of these flags for a specific data field.

As expected, another visual modeling editor, based on the above metamodel of Basic Cards,

has been developed for the Basic Card programmers (Figure 6). Figure 6 also includes the

Basic Card instance model for our sample purse application introduced in Section 3. The

elements in the model constitute a ZCardProgram which stores the related customer account

information and includes appropriate Basic Card commands, subroutines and functions

designed for electronic money transfer. The program has the same functionality with the

previously discussed Purse applet. Instances for command definitions and required program

attributes of the ZCardProgram are also included in the model.

Figure 6 approximately here

Figure 6: Modeling environment for the MDE of Basic Card Programs

6. Model Transformations between Platform Independent and Platform

Specific Smart Card Metamodels

Sendall and Kozaczynski [23] describe model transformation as the heart and soul of model

driven software development. Indeed, definition of metamodels is required but not sufficient

for a complete MDE process. We have to define transformations between those metamodels

20

ACCEPTED MANUSCRIPT

to obtain the main artifacts of the process: target models. We define transformations between

the aforementioned platform independent and platform specific smart card metamodels and

apply those transformations where generic smart card models conforming to the PIMM

discussed in Section 3 are accepted as the source models and their platform specific

counterparts (target models) conforming to the specifications of Java Card or Basic Card

metamodels are automatically achieved.

In fact, benefits of the definition and application of the model transformations on generic

smart card models are twofold. 1) We provide an operational semantics for the generic smart

card models designed according to the PIMM since the models can be transformed into the

models of card execution platforms such as JCF or Basic Card environment. 2) Developers

model their card applications by just concentrating on the smart card domain without dealing

with the specifications of various card platforms and later they obtain real implementations of

their designed models by first the application of the model transformations and then code

generation.

Entity mappings between our smart card PIMM and Java Card and Basic Card PSMMs pave

the way for the definition and implementation of the model transformations that are applied

on platform independent smart card model instances at runtime in order to obtain their

counterparts in real smart card infrastructures. Mappings, which we determine between smart

card PIMM and PSMM entities, are in n-to-m manner. That means n number of PIMM

entities can be mapped to m number of Java Card PSMM entities (or k number of Basic Card

PSMM entities). Table 3 lists some of these mappings. For instance, Application entity of the

PIMM is mapped to Applet in Java Card PSMM and DefinitionFile in Basic Card PSMM. On

21

ACCEPTED MANUSCRIPT

the other hand, APDUOperation, CommandApdu and ResponseApdu of PIMM are mapped to

Method of Java Card PSMM and Command of Basic Card PSMM.

Table 3: Some of the entity mappings between smart card PIMM, Java Card PSMM and Basic

Card PSMM

Smart card PIMM entity Java Card PSMM entity Basic Card PSMM entity

SCProject JCProject ZCardProgram

Application Applet DefinitionFile

APDUOperation

CommandApdu

ResponseApdu

Method Command

PIN OwnerPIN Attribute

Constant Field Constant

Condition CodeBlock CodeBlock

After determination of the entity mappings between PIMM and above discussed target

PSMMs, we need to provide model transformation rules which are applied at runtime on

platform independent instances to generate platform specific counterparts of these instances.

For that purpose, transformation rules should be formally defined and written according to a

model transformation language. To this end, many languages are proposed (e.g. [24], [25],

[26], [27]). In this study, we prefer to use ATL Transformation Language (ATL) to define

required model transformations. ATL [27] is one of the well-known model transformation

languages which is specified as both a metamodel and a textual concrete syntax. An ATL

transformation program is composed of rules that define how source model elements are

matched and navigated to create and initialize the elements of the target models. Besides,

22

ACCEPTED MANUSCRIPT

ATL can define an additional model querying facility which enables to specify requests onto

models [28]. ATL has a transformation engine and an integrated development environment

(IDE) that can be used as a plug-in on Eclipse platform [29]. Finally, ATL can be used on the

metamodels that conform to Eclipse Ecore meta-metamodel. Those features of ATL caused us

to prefer ATL as the implementation language for the transformations between our platform

independent and specific smart card models.

To give some flavor of the written transformations, some of the defined rules are discussed in

here. For instance, Listing 1 includes a fragment of the ATL rule written for the

transformation of platform independent smart card application instances into Java Card

applets. While transformation rules are being defined, source and target metamodels must be

indicated in ATL code as shown in lines 2-3 of Listing 1. This information is also given in the

properties of the created ATL project on Eclipse platform. As shown in Listing 1,

"SmartCard.ecore" file is the input metamodel for transformation rules (denoted with “IN”

keyword in line 4) and "Javacard.ecore" file is the output metamodel (denoted with “OUT”

keyword in line 4).

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

module SmartCardtoJavaCard;
-- @path MM=/SmartCard/model/PIMModel/SmartCard.ecore
-- @path MM1=/SmartCard/model/PSMModels/JavaCard/Javacard.ecore
create OUT : MM1 from IN : MM;

rule Application2Applet{
 from
 appl : MM!Application
 to
 applet : MM1!Applet(
 name <- appl.name,
 fields <- Sequence{appl.constants, appl.datas},
 methods <- appl.getAssociations())
 ...
}

Listing 1: A fragment from the ATL rule for the transformation of smart card application

instances into Java Card applets.

23

ACCEPTED MANUSCRIPT

"Application2Applet" rule will execute on a platform independent smart card model and for

each Application instance (Listing 1, line 8), it will generate a corresponding Java Card

Applet (line 10). In order to provide that generation, data and constants of the application are

transformed into instance fields of an applet object by executing some inner rules (line 12).

For example, during transformation of each data in the application into a field in the applet,

"Data2Field" rule, shown in Listing 2, is executed. Every data attribute is converted into a

field attribute (lines 6-11 of Listing 2). Default values for the unmapped attributes are also

given (e.g. "static" and "final" is specific to the Java Card so just default values are given

(lines 7 and 9 of Listing 2) instead of a transformation since there is no counterpart in the

PIMM for these attributes).

01
02
03
04
05
06
07
08
09
10
11
12

rule Data2Field{
 from
 dts : MM!Data
 to
 flds : MM1!Field(
 name <- dts.name,
 static <- true,
 comment <- dts.comment,
 final <- false,
 dataType <- dts.getDataType(),
 IsArray <- dts.IsArray())
}

Listing 2: Rule for the transformation of application data into Java Card applet fields

It is worth noting that some helper rules are used during entity transformations. These helpers

are the realization of the constraints to query the source models. The constraints in ATL are

specified with using OCL [18], [19]. Same helper rules and constraint repetitions may be

required both for other rules in the same target model transformation or other platform

specific model transformations (e.g. for Basic Card). Hence this kind of rule decomposition

makes the definitions easier. The helpers correspond to the constraint part of the related rules.

There are two types of helpers in our transformations. The first type helpers are used to check

24

ACCEPTED MANUSCRIPT

if the smart card model element is the part of the required pattern or not. The second type

helpers are used to select the smart card elements for creating relations between target

elements. For example, as a second type helper, the execution of "getDataType" helper rule in

line 10 of "Data2Field" rule (in Listing 2) provides the determination of the appropriate Java

Card data type for the source data. A fragment from that helper rule is given in Listing 3.

Likewise, execution of "getAssociations" helper rule in line 13 of Listing 1 creates Java Card

applet methods for APDU operations modeled in the platform independent smart card model

while "IsArray" helper rule returns boolean true value when it encounters a string or a number

array in the smart card application model.

01
02
03
04
05
06
07

helper context MM!Data def : getDataType() : String =
 if (self.type = #number)then 'JCShort'
 else if (self.type = #string)then 'JCByte' endif
 else if (self.type = #boolean)then 'JCBoolean' endif
 else if (self.type = #byte) then 'JCByte' endif
 ...
 endif;

Listing 3: A fragment from getDataType helper rule

In order to transform platform independent smart card software models into file-oriented

Basic Card program models, another group of transformations are defined between the entities

of PIMM and Basic Card PSMM and they are written in again by using ATL. For example,

"SmartCard2BasicCard" rule given in Listing 4, creates a Basic Card program with all

required components based on the transformation from a platform independent SCProject into

a Basic Card ZCardProgram. Basic Card commands corresponding to APDUs,

DefinitionFile(s) for each smart card Application instances and other remaining attributes are

all determined and set by processing the source model (lines 12-16 in Listing 4).

25

ACCEPTED MANUSCRIPT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

module SmartCardtoBasicCard;
-- @path MM=/SmartCard/model/PIMModel/SmartCard.ecore
-- @path MM1=/SmartCard/model/PSMModels/BasicCard/BasicCard.ecore
create OUT : MM1 from IN : MM;

rule SmartCard2BasicCard{
 from
 smartCard : MM!SCProject
 to
 basicCard : MM1!ZCardProgram(
 name <- smartCard.title,
 commands <- Set{MM!APDUOperation.allInstances()->
 select(a|a.oclIsKindOf(MM ! CommandApdu) = false)},
 attributes <- Set{MM!PIN.allInstances()->
 select(a|a.oclIsKindOf(MM ! APDUOperation) = false)},
 defFile <- Set{MM!Application.allInstances()}
)
}

Listing 4: The ATL rule for the transformation of platform independent smart card software

instances into Basic Card programs.

7. Automatic Code Generation from Platform Specific Smart Card Instance

Models

Although both the graphical modeling and M2M transformations may facilitate the

development of smart card software systems, it is not sufficient for real life implementations

of such systems. Proposed software development methodologies should provide a step in

order to assist developers for code generation. Within this perspective, various M2T

transformations for each platform specific smart card framework are designed and

implemented in this study.

We implement the related transformations by using the MOFScript [30]. MOFScript is a

language specifically designed for the transformation of models into text files and it deals

directly with metamodel descriptions as input. Also, it provides a tool as an Eclipse plug-in

and hence MOFScript transformations can be written and directly executed inside the Eclipse

environment. Taking into account all of these advantages, we chose MOFScript as the

26

ACCEPTED MANUSCRIPT

implementation language for the M2T transformations that produce program codes for smart

card applications.

The output smart card system models, achieved as the result of applying M2M

transformations discussed in the previous section, now become the inputs of the defined M2T

transformations. When a developer completes the visual modeling of a platform independent

smart card system and executes above discussed M2M transformations to obtain that model's

platform specific (Java Card or Basic Card) counterparts, the Ecore representation of the

output model is stored in a file. The MOFScript engine applies our M2T transformations on

this file and produces smart card program codes for the related application. It is worth noting

that a developer may prefer to work just in the platform specific level and visually model a

platform specific card application (e.g. a Java Card applet) by using the appropriate platform

specific modeling editor(s) (introduced in Sections 4 and 5 of this paper) and finally that

model can directly be accepted as an input for the M2T transformations to generate codes.

An excerpt from the prepared MOFScript transformation for Java Card programs is given in

Figure 7. This text transformation uses the metamodel of the Java Card discussed in Section 4.

The transformation, in here, reads a Java Card system model, determines each Applet instance

and generates codes for each Applet class. Codes for each Java Card component are generated

according to the rules and constraints of the Java Card programming language. These auto-

generated program codes are ready to be both compiled and converted to the CAP format.

Transformation script, given in Figure 7, first controls whether the applet instance implements

any interface and generates required Java Card codes. Later instance fields of the applet are

determined and codes for their visibility, modifiability and type are generated based on the

27

ACCEPTED MANUSCRIPT

input model. For each attribute, their type (object reference, array, JCByte, JCShort, etc.) are

set. However amount of scripts required for that transformation is too big to be included here

and hence it is not completely shown in Figure 7. In the next step, generation of the install

method for the applet takes place. As its name already denotes, codes required for the

installation of the software on the smart card are generated in here (see middle part of Figure

7). Scripts for APDU command detection and process selection are shown at the lower part of

Figure 7. Reaction of the applet for each received command is determined in the process

method of the applet. So, related transformation provides automatic generation of the process

method’s body. At the bottom part of Figure 7, code generation scripts for remaining methods

of the applet are shown. However, full listing of scripts prepared for the generation of both

process and other methods needs much more space and hence not discussed in this paper.

Figure 7 approximately here

Figure 7: An excerpt from the MOFScript transformation for Java Card programs

Figure 8 includes an excerpt from the auto-generated code of the example Purse applet

previously discussed in Section 4. The transformation engine applies the transformation on

the Java Card model of the e-purse application and Java class files belonging to each model

component are achieved. For instance, excerpt in Figure 8 includes some of the auto-

generated codes of Purse applet for hexadecimal APDU processing and packet control.

Application of the transformation, shown in Figure 7, outputs the JavaCard applet body

including applet instance fields, constructor, install, process and remaining APDU methods.

Figure 8 approximately here

Figure 8: An excerpt from the auto-generated code of the example Purse applet

28

ACCEPTED MANUSCRIPT

In this study, another M2T transformation was defined and written in MOFScript for the

generation of Basic Card programs according to the ZC-Basic Language. The serialized Basic

Card models (in Ecore) are processed by the transformation engine and written rules are

applied on these models to generate ZC-Basic codes. In Figure 9 (a), an excerpt from the

MOFScript transformation for Basic Card is given.

 Figure 9 (a) and (b) approximately here

Figure 9: (a) An excerpt from the MOFScript transformation for Basic Card programs. (b) An

excerpt from the auto-generated ZC-Basic code of the example Purse program

In the above script (Figure 9 (a)), external definition files and card command procedures for a

ZCardProgram are determined in a Basic Card model. ZC-Basic codes for each determined

model element are generated. For instance, ZC-Basic code of our example Purse program is

automatically generated when the model depicted in Figure 6 of this paper is given into this

transformation. Figure 9 (b) includes an excerpt from the auto-generated ZC-Basic code of

our example Purse program. Generated codes also include subroutines and functions but they

are not shown in the figure to keep simplicity.

8. Evaluation

In order to evaluate applicability of our proposed MDA and practicality of the introduced

methodology and modeling toolkits, we needed feedback from the smart card developers. For

this purpose, the participation of the smart card software developers from the Kentkart

Company has been provided. Kentkart2 is one of the important IT companies in Turkey which

manufactures smart card hardware and produces smart card based information systems. Main

2 Kentkart Automatic Fare Collection & Vehicle Tracking Systems: http://www.kentkart.com/en (last access:
December 2013)

29

ACCEPTED MANUSCRIPT

expertise of the company lies within automatic fare collection, passenger information services

and vehicle tracking systems. Currently, smart card based mass-transit systems of the

Kentkart are being used in more than 15 cities of Turkey and some other locations in Europe

and Middle East.

Software developers, willing to participate in this evaluation, were asked to test the modeling

environment introduced in this study. We paid attention to gain feedback from a group of

participants with varying experience from 2 years to 10 years on smart card software

development. The assessments of the participants were retrieved by making an interview with

each participant individually.

Graphical interface of the modeling tools was generally approved by the developers. The

whole environment was found user friendly and easy-to-use. Almost all of the developers

agreed that the design environment based on the derived metamodels fully supports related

smart card programming constructs.

Capability of both modeling in general and without dealing with the specifications of different

smart card platforms by employing the platform independent smart card metamodel and

related modeling environment got mainly two different responses. All of the evaluators

(developers in the company) encountered such a platform independent smart card software

development environment for the first time. In fact, for many of them, it is the first time to use

an IDE for smart card software development with visual modeling feature and automatic code

generation. Most of the developers indicated that it is really a major benefit of our IDE not to

be dependent on the specific smart card program constructs and provide a higher abstraction

for modeling software. We have to note that those developers, who welcomed the use of

30

ACCEPTED MANUSCRIPT

platform independent components of the proposed modeling environment, are mostly

engineers with little experience on smart card development. However, that attraction

contradicts a bit with the feedback gained from the other group of developers with substantial

experience on software development for Java Card. Instead of the general smart card

modeling environment, they favored the use of platform specific components and code

generation. They advised to improve capabilities of the modeling environment by inserting

the built-in support for CAP or IMG conversions for different types of Java or Basic smart

cards. That needs the modeling environment to be specialized for every smart card type

manufactured by different vendors. Inclusion of some template models (e.g. for simple purse

applet or mass-transit card) inside the modeling environments was also suggested. Hence, a

developer can open one of these application template models inside the related editor

environment, visually make specializations for the desired system and then automatically

obtain codes for the card software.

Two important modifications were made to the environment according to the common

suggestions of the participants. Ability to include some code blocks during the visual

modeling was strongly suggested. Sometimes card developers prefer to note an algorithm or

just write a trivial (mostly not working) code segment for a model element at the design time.

For this purpose, a meta-entity called CodeBlock was inserted with its associations with other

meta-entities into the metamodels of both Java Card and Basic Card as previously discussed

in Section 4 and 5 (shown in Figure 3 and 5). Related editor palettes include corresponding

drag and drop elements and hence developers may add some notes or code fragments (e.g. as

shown at the center of Figure 4) and associate them with the desired model instances. The

content of a CodeBlock element can also be accepted as an annotation for a model element in

some situations. During M2T transformation, content of a CodeBlock instance is directly

31

ACCEPTED MANUSCRIPT

inserted into the generated code of the model instance associated with this CodeBlock. The

content is inserted into the generated code as comment line(s).

Second modification is the automatic inclusion of the command detection and process

selection structure for the Java Card applets. In a Java Card applet, once a command APDU is

received, the type of the command is determined and the related method for processing the

APDU packet is selected for execution. Traditionally, Java Card developers write codes for

this command detection and selection structure in the process method of an Applet class.

Developers advised to directly add template codes for this structure into the generated Java

Card applet codes. Current MOFScript M2T transformation for Java Card programs supports

automatic insertion of codes for this detection and selection structure. If each type of the

command APDU and related processing methods is modeled for an application, auto-

generated codes for this structure become complete and do not need any extra intervention of

the developer. Considering the assessment of the evaluators, automatic inclusion of the

command detection and process selection structure of the proposed environment is perhaps

the best acknowledged feature.

Within the evaluation, we also took into account the code generation capability of the

proposed MDA. Since it is less useful and in fact not appropriate to just measure the

generated codes and give a quantitative result (such as a ratio between the number of lines of

the generated code and lines of code pertaining to the full implementation), we preferred to

determine which parts of a smart card application can or can not be produced completely just

after the code generation. Table 4 summarizes the feedback on the assessment of the code

generation for Java Card.

32

ACCEPTED MANUSCRIPT

Table 4: Java Card code components which are fully or partially generated via automatic code

generation

Code Component Assessment of the automatically generated code

Fundamental Java Card

methods (e.g. “process”,

“install” and PIN validation)

Methods can be fully created. Related codes can be executed

on smart cards directly without any addition.

User defined methods All method signatures are generated. However methods

need to be modified/completed before execution on the

smart card.

Constant data types All of them can be fully generated.

Attributes and Method fields All of them (both system and user-defined ones and arrays)

can be fully generated.

Exception mechanism Codes for handling two types of exceptions: “Wrong

Length” exception and “PIN Verification Required”

exception, defined in Java Card Platform Specification [31],

can be fully generated. Handlers for remaining exceptions

need further intervention.

Critical code components (listed at the left column of Table 4) for Java Card applications

were determined first and developers were asked to examine generated codes for these

components. Assessment result for each component is listed next to the related component in

Table 4. Likewise, code components for a Basic Card application were determined and

generated codes for these components were evaluated. Results for this evaluation are listed in

Table 5.

33

ACCEPTED MANUSCRIPT

Table 5: Basic Card code components which are fully or partially generated via automatic

code generation

Code Component Assessment of the automatically generated code

“Command” procedures (for

APDU packet exchange)

Procedure signatures, parameters, return values and

condition statements can be fully created.

User defined “subroutine”s

and “function”s

Only signatures can be generated.

Constant data types All of them can be fully generated.

Variable data types All of them can be fully generated.

Finally, it is worth reporting the effort needed for the development of the proposed MDA with

its supporting components and tools. Despite using appropriate MDE tools ([17], [19], [20],

[21], [29], [30]) and techniques ([8], [32]), the whole development was accomplished over 12

month period. Three metamodels covering more than 60 entities with inner and inter-relations

were required to be constructed inside the Eclipse platform. More than 400 lines of code

(LOC) were produced as the result of the metamodel creation. Related process provided the

production of graphical modeling editors and toolkits based on the Eclipse GMF. Further, 17

ATL rules for Java Card platform and 7 ATL rules for Basic Card platform were written for

the implementation of M2M transformations. Approximately 550 LOC were written for these

M2M transformations. Automatic code generation from the platform-specific smart card

models needed the implementation of M2T transformations as MOFScript rules with more

than 1000 LOC.

34

ACCEPTED MANUSCRIPT

9. Related Work

The challenge of smart card software development naturally causes some researchers to study

on new approaches and define new methodologies for easy development. Since JCF is the

most available and open framework, related work almost covers just the development of Java

Cards. For instance, the independent certification mechanism introduced in [9] includes a

generator and checker to develop Java Card applets with high assurance. The checker takes an

applet specification, generated code and a proof, and returns an answer, depending on whether

the proof is the valid evidence of the correctness of the code with respect to the specification.

However, only the shallow embedding of a subset of Java Card specification is considered in

the study. The formal specification of the approach is discussed in [12]. An approach to

correctness, in which a generator generates checkable proofs from the transformations that it

performs, is proposed in the paper. The approach is exemplified with the description of a

generator of Java Card applets. Our study differs in supporting the checking of models via

metamodels and generation of codes from the system models.

Bonnet et al. [33] propose a framework for personalizing on-card software relying on the

MDE and software product lines. The adaptation of this framework to the context of smart

card configuration is further detailed in [34]. Since configuring a smart card is a multi-level

process involving actors such as customers, marketers or engineers, the customization level

ranges from clients (e.g. a bank) to individual card holders. The architecture of the proposed

model driven software product line consists of modeling the core software artifacts that define

product families and marking these models with variability-specific annotations [33]. Within

this context, Bonnet et al.'s study deals with the layered configuration process for smart cards

and mostly involves card production issues while our study considers the MDD of software

regardless of the card configuration.

35

ACCEPTED MANUSCRIPT

SecureMDD, introduced in [35], is a model driven software development method which

intends to facilitate the development of security-critical applications that are based on the

cryptographic protocols. The applications are first modeled using a UML profile which is

tailored to model security-relevant aspects and extend UML activity diagrams. As the result

of a series of some transformations, the implementation of the system is realized. However,

the way of implementing model transformation and code generation is not included in [35].

Also, specific application of the proposed methodology is investigated again only for the Java

Card code generation. Furthermore, instead of concentrating on providing an MDD for smart

card development, main aim of the work is to formally prove the correctness and security of

the generated code for security-critical distributed applications in general. Only Java Card

platform is chosen for the exemplification purposes.

A methodology based on the B Method [36] is introduced in [11] for the development of Java

Card applications. The B method is used to specify the functionality of the card-side

components. Platform-specific code can then be automatically obtained by the refinement and

code generation process. This work is based on a previous study [10] and aims to provide

automated support to generate Java Card methods from B specifications. In Tatibouet et al.'s

work [10], the generated code needs to be manually modified to combine the communication

and code aspects particular to the Java Card platform. Gomes et al.'s effort [11] is important

with bridging the above mentioned gap by proposing to generate Java Card platform-specific

codes automatically during the introduced methodology. However, their study just covers

ideas. A tool, which implements all the identified steps, needs to be developed as already

admitted by the authors.

36

ACCEPTED MANUSCRIPT

Similar to works in [9], [10] and [11], our previous work [37] also deals with the automatic

generation of Java Card applications. Modeling smart card software according to Java Card

specifications and code generation from the designed models are guided with a graphical tool.

However, neither the assessment of the proposed methodology nor platform independent

modeling of the smart card software is considered in that study.

The work introduced in [38] considers platform independent and platform specific modeling

of smart card applications according to MDA. However, instead of constructing metamodels,

and creating instance models conforming to those metamodels, authors propose the

construction of system models just based on UML class diagrams. In fact, every platform

independent model (PIM) is a class model (only covering instance fields) of a system

intended to be built. PIMs only conform to UML and do not include any specifications for the

smart card domain. Besides, every platform specific model (PSM) is just the improved

version of a PIM in which previous classes now encapsulate the signatures of some new

methods. Hence, considering any smart card execution platform, the generated PSM is in the

form of a general and ordinary class diagram so it is still a PIM. We can conclude that

Nikseresht and Ziarati [38] propose a framework for the development of only file-oriented

smart card applications.

Taking into account all of the above discussed related work, we believe that our MDA-based

methodology contributes to the noteworthy studies of those researchers by enabling both

abstract and generic smart card modeling based on a PIMM, supporting more than Java Card

framework in the platform specific level and also providing convenient modeling tools that

are required for the application of a model driven smart card software development.

37

ACCEPTED MANUSCRIPT

Finally, it is worth indicating that there exist various successful MDD/MDE applications on

different domains. For instance, Jimenez et al. [39] introduce a new model-driven

methodology with its supporting domain-specific language for home automation system

design. Heijstek and Chaudron [40] discuss the impact of MDE for the implementation of a

system for supporting sales of mortgages in a large financial institution. Fister Jr. et al. [41]

discuss the MDD of software required for the measurement of time in sporting competitions

and present a domain-specific language for this purpose. MDE practices on three different

domains, imaging system manufacturing, car manufacturing and telecommunication

respectively, are reported in [42]. Kos et al. [43] introduce a domain-specific language, called

Sequencer, for modeling data acquisition and measurement process control and discuss the

application of Sequencer on the automotive industry. Moreover, the most recent studies

introduce the use of MDE for the development of air traffic control systems [44], control

command software in nuclear power plants [45] and model extraction tool for healthcare data

annotation [46]. Those examples may signify the expectation of similar achievements in the

smart card domain as the result of fruitful MDA application.

10. Conclusion

An MDA for the development of smart card software was designed and implemented in this

study. Metamodels for smart card systems both in platform independent and platform specific

levels were derived and M2M transformations were defined and applied for the instances of

these metamodels residing on different abstraction levels. Furthermore, M2T transformations

based on the introduced smart card PSMMs were constructed for the automatic generation of

the card software. The engineering methodology based on our proposed MDA is supported

with integrated development environments in which developers can easily model smart card

38

ACCEPTED MANUSCRIPT

software conforming to the specifications and restrictions of the related smart card

frameworks and finally obtain auto-generated, ready-to-compile program codes.

Based on the feedback gained from the smart card software developers, we believe that the

application of the method and use of the modeling environments provide easy and efficient

development of resource-restricted smart card software and save the developers from the

tedious and error-prone work. Within this context, main advantages of the approach can be

listed as follows: 1) Easy modeling that enables automatic preparation of smart card software

components. For instance, incoming and outgoing hexadecimal data packages for smart cards

can be visually designed instead of hard coding. Hence, there is no need to prepare byte-by-

byte message preparation. 2) Graphical design and automatic code generation of the process

methods for smart card applications. 3) An integrated development environment for rapid

code generation. That is especially welcomed by card programmers during our evaluation.

Again based on the feedback gained as the result of the developers' assessments, we can state

that the proposed MDA and supporting modeling tools have the potential of fulfilling the

requirements and/or expectations of the smart card software developers within a wide range.

Specifically, we determined that the unexperienced developers tend to start from scratch and

hence use platform independent card modeling environment first and then apply M2M

transformations to work for the details of the specific card platforms (such as Java Card or

Basic Card). However, experienced developers mostly prefer employing the platform specific

modeling and M2T transformations in order to directly achieve codes for the dedicated smart

card frameworks as the main artifacts.

39

ACCEPTED MANUSCRIPT

Finally, we can also add that the introduced PIMM and defined transformation in this study

may pave the way for the derivation of a Domain-specific Language (DSL), especially a

Domain-specific Modeling Language (DSML) for smart card software. DSLs ([32], [47],

[48], [49]) have notations and constructs tailored toward a particular application domain (e.g.

smart cards). The end-users of DSLs have the knowledge from the observed problem domain

[50], but usually they have little programming experience. Domain-specific modeling

languages (DSMLs) further raise the abstraction level, expressiveness and ease of use, since

models are specified in a visual manner and they represent the main artifacts instead of

software codes [51]. The development of a DSML is usually driven with the language model

definition [52]. That is, concepts and abstractions from the domain need to be defined to

reflect the target domain (language model). Then, relations between language concepts need

to be defined. Both form an abstract syntax of modeling language and usually, language

model is defined with a metamodel. Within this context, the PIMM we introduced in this

paper can naturally enable us to achieve the abstract syntax of a smart card DSML.

Furthermore, the GMF-based representations of the meta-entities discussed here may provide

a visual concrete syntax for the desired DSML. It is not sufficient to complete a DSML

definition by only specifying the notions and their representations. The complete DSML

definition requires the language semantics. One way of fulfilling this requirement is to derive

an operational semantics in which the semantics of the language concepts is provided in terms

of other concepts whose meaning is already established. In our case, we can achieve the

semantics over the model transformations between the smart card PIMM and PSMMs of the

dedicated smart card environments. However, the challenges for specifying DSML semantics

may still remain in this approach. As discussed in [53], restrictive well-formedness constraints

may prevent the construction of valid models. Even if such models are constructed, that does

not mean they generate acceptable behaviors. Further, composition, verification and

40

ACCEPTED MANUSCRIPT

reusability of semantics may also be challenging. Finally, the semantics definition of a DSML

should be clear and comprehensible for all of its users. But, it would be probably difficult to

support that comprehension at the same level both for the language designers and the domain

experts who are supposed to benefit from the DSML in question [53].

As the future work, we can consider the enrichment of current MDA's platform-specific

support; such that smart card software, designed according to the PIM specifications

introduced in this study, can be also implemented and executed in other smart card platforms

not covered in here (e.g. Microsoft .Net based smart card framework of Gemalto Inc. [54]).

Similar to the generation of platform specific modeling environments for Java Card or Basic

Card, we first need to derive the metamodel of such smart card frameworks. Upon completion

of the metamodel(s) creation, it is straightforward to build up M2M transformations from our

smart card PIMM to those platform’s models and finally define M2T transformations to

gather smart card executables for those platforms as discussed in this paper.

Acknowledgments

We would like to thank software developers from Kentkart Automatic Fare Collection and

Vehicle Tracking Systems for their cooperation and valuable feedbacks.

References

[1] Rankl W., Effing W. Smart Card Handbook. 4th ed. John Wiley & Sons: 2010.

[2] ISO/IEC 7816 Standards. ISO/IEC 7816 Standards family for Identification cards -
Integrated circuit cards. http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_tc_browse.htm?commid=45144 (last access: December 2013).

[3] Erdur RC, Kardas G. Personalized Access to Semantic Web Agents Using Smart Cards.
Lecture Notes in Computer Science 2005; 3648: 1110-9.

41

ACCEPTED MANUSCRIPT

[4] Kardas G, Tunali ET. Design and Implementation of a Smart Card Based Healthcare
Information System. Computer Methods and Programs in Biomedicine 2006; 81(1): 66-78.

[5] Kardas G, Celikel E. A Smart Card Mediated Mobile Platform for Secure E-Mail
Communication. In: 4th International Conference on Information Technology: New
Generations (ITNG 2007), Las Vegas, USA: IEEE Computer Society Press 2007: p. 925-6.

[6] Schmidt DC. Guest Editor's Introduction: Model-Driven Engineering. IEEE Computer
2006; 39(2): 25-31.

[7] Object Management Group. Model Driven Architecture. http://www.omg.org/mda/ (last
access: December 2013).

[8] Frankel DS. Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley;
2003.

[9] Coglio A. Code generation for high-assurance Java Card applets. In: 3rd NSA Conference
on High Confidence Software and Systems 2003: p. 85-93.

[10] Tatibouet B, Requet A, Voisinet JC, Hammad A. Java Card code generation from B
specifications. Lecture Notes in Computer Science 2003; 2885: 306-18.

[11] Gomes BEG, Moreira AM, Deharbe D. Developing Java Card Applications with B.
Electronic Notes in Theoretical Computer Science 2007; 184: 81-96.

[12] Coglio A, Green C. A Constructive Approach to Correctness, Exemplified by a
Generator for Certified Java Card Applets. Lecture Notes in Computer Science 2008; 4171:
57-63.

[13] Sun Microsystems. Java Card Technology. http://java.sun.com/javacard/ (last access:
December 2013).

[14] ZeitControl Card Systems GmbH. Basic Card. http://www.basiccard.com/ (last access:
December 2013).

[15] Hansmann U, Nicklous MS, Schack T, Seliger F. Smart Card Application Development
using Java, Springer: 2000.

[16] Saritas HB, Kardas G. Model Driven Development of Smartcard Software. In: 3rd
Turkish Software Architecture Conference (UYMK 2010), Ankara, Turkey, 2010: p. 34-44
(in Turkish).

[17] Eclipse Community. Eclipse Modeling Framework. http://www.eclipse.org/modeling/
emf/ (last access: December 2013).

[18] Warmer J., Kleppe A. The Object Constraint Language: Getting Your Models Ready for
MDA. 2nd ed. Addison-Wesley Professional: 2003.

[19] Object Management Group. Object Constraint Language (OCL).
http://www.omg.org/spec/OCL/2.3.1/ (last access: December 2013).

42

ACCEPTED MANUSCRIPT

[20] Eclipse Community. Eclipse Platform. http://www.eclipse.org/ (last access: December
2013).

[21] Eclipse Community. Graphical Modeling Framework. http://www.eclipse.org/modeling/
gmf/ (last access: December 2013).

[22] Chen Z. Java Card Technology for Smart Cards: Architecture and Programmer’s Guide.
Massachusetts, USA: Addison-Wesley; 2000.

[23] Sendall S, Kozaczynski, W. Model transformation - the heart and soul of model driven
software development. IEEE Software 2003; 20: 42–5.

[24] Duddy K, Gerber A, Lawley M, Raymond K, Steel J. Model Transformation: A
declarative, reusable patterns approach. In: 7th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2003), Brisbane, Queensland, Australia; 2003: 174-85.

[25] Kalnins A, Barzdins J, Celms E. Model Transformation Language MOLA. Lecture Notes
in Computer Science 2005; 3599: 62-76.

[26] Agrawal A, Karsai G, Neema S, Shi F, Vizhanyo A. The design of a language for model
transformation. Software and Systems Modeling 2006; 5(3): 261-88.

[27] Jouault F, Allilaire F, Bezivin J, Kurtev I. ATL: A model transformation tool. Science of
Computer Programming 2008; 72(1-2): 31-9.

[28] ATLAS Group. ATL User Manual. http://www.eclipse.org/m2m/atl/doc/ATL_User_
Manual[v0.7].pdf (last access: December 2013).

[29] Eclipse Community. ATL Model Transformation Language and Toolkit.
http://www.eclipse.org/atl/ (last access: December 2013).

[30] Oldevik J, Neple T, Gronmo R, Aagedal J, Berre AJ. Toward Standardised Model to
Text Transformations. Lecture Notes in Computer Science 2005; 3748: 239-53.

[31] Oracle Corporation. Java Card 3.0.1 Platform Specification. http://java.sun.com/javacard/
3.0.1/specs.jsp (last access: December 2013).

[32] Mernik M, Heering J, Sloane A. When and how to develop domain-specific languages.
ACM Computing Surveys 2005; 37(4): 316-44.

[33] Bonnet S, Potonniee O, Marvie R, Geib, J-M. A Model-Driven Approach for Smart Card
Configuration. Lecture Notes in Computer Science 2004; 3286: 416-35.

[34] Bonnet S, Marvie R, Geib J-M. Putting Concern-Oriented Modeling into Practice. In:
2nd Nordic Workshop on UML, Modeling, Methods and Tools, Turku, Finland; 2004.

[35] Moebius N, Stenzel K, Grandy H, Reif W. SecureMDD: A Model-Driven Development
Method for Secure Smart Card Applications. In: 4th International Conference on Availability,
Reliability and Security, IEEE Computer Society Press 2009; p. 841-6.

43

ACCEPTED MANUSCRIPT

[36] Abrial J-R. The B-Book: Assigning Programs to Meanings. Cambridge University Press:
1996.

[37] Saritas HB, Kardas G. Model Driven Development of Java Card Software. Turkish
Informatics Foundation Journal of Computer Science and Engineering 2011; 4: 19-28 (in
Turkish).

[38] Nikseresht A, Ziarati K. MDA Based Framework for the Development of Smart Card
Based Application. In: 2011 International MultiConference of Engineers and Computer
Scientist, Hong Kong; 2011; p. 1-6.

[39] Jimenez M., Rosique F., Sanchez P., Alvarez B., Iborra A. Habitation: A Domain
Specific Language for Home Automation. IEEE Software 2009; 26(4): 30-38.

[40] Heijstek W., Chaudron M.R.V. Empirical investigations of model size, complexity and
effort in a large scale, distributed model driven development process. In: 35th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA 2009), IEEE
Computer Society Press 2009, p. 113-20.

[41] Fister Jr. I., Fister I., Mernik M., Brest J. Design and implementation of domain-specific
language easytime. Computer Languages, Systems & Structures 2011; 37: 151-167.

[42] Hutchinson J., Rouncefield M., Whittle J. Model-driven engineering practices in
industry. In: 33rd International Conference on Software Engineering (ICSE 2011), ACM
Press 2011; p. 633-42.

[43] Kos T., Kosar T., Mernik M. Development of data acquisition systems by using a
domain-specific modeling language. Computers in Industry 2012; 63(3): 181-192.

[44] Carrozza G., Faella M., Fucci F., Pietrantuono R., Russo S. Engineering Air Traffic
Control Systems with a Model-Driven Approach. IEEE Software 2013; 30(3): 42-48.

[45] Ceret E., Calvary G., Dupuy-Chessa S. Flexibility in MDE for scaling up from simple
applications to real case studies: illustration on a Nuclear Power Plant. In: 25ème conférence
francophone sur l'Interaction Homme-Machine (IHM 2013) 2013, p. 1-10.

[46] Van Gorp P., Vanderfeesten I., Dalinghaus W., Mengerink J., van der Sanden B.,
Kubben P. Towards Generic MDE Support for Extracting Purpose-Specific Healthcare
Models from Annotated, Unstructured Texts. Lecture Notes in Computer Science 2013; 7789:
213-221.

[47] van Deursen A, Klint P, Visser J. Domain-specific languages: an annotated bibliography.
ACM SIGPLAN Notices 2000; 35(6): 26-36.

[48] Mernik M, Zumer V. Incremental programming language development. Computer
Languages, Systems & Structures 2005; 31: 1-16.

[49] Fowler M. Domain-specific Languages. Addison-Wesley Professional: 2011.

44

ACCEPTED MANUSCRIPT

[50] Sprinkle J, Mernik M, Tolvanen J-P, Spinellis D. Guest Editors' Introduction: What
Kinds of Nails Need a Domain-Specific Hammer?. IEEE Software 2009; 26(4): 15-8.

[51] Gray J, Tolvanen J-P, Kelly S, Gokhale A, Neema S, Sprinkle J. Domain-Specific
Modeling. In Fishwick PA, editor. Handbook of Dynamic System Modeling: CRC Press;
2007, p. 1-7.

[52] Strembeck M, Zdun U. An approach for the systematic development of domain-specific
languages. Software: Practice and Experience 2009; 39(15): 1253-92.

[53] Bryant B.R., Gray J., Mernik M., Clarke P.J., France R.B., Karsai G. Challenges and
directions in formalizing the semantics of modeling languages. Computer Science and
Information Systems 2011; 8(2): 225-253.

[54] Gemalto Inc. Gemalto .NET Smart Card Framework. http://www.gemalto.com/products/
dotnet_card/dotnet_framework.html (last access: December 2013).

Hidayet Burak Saritas received his B.Sc in Mathematics (Computer Science division) and
M.Sc in Information Technologies from Ege University in 2007 and 2011 respectively. He is
currently working as a senior software developer at Kentkart Ege Electronics Company. His
main research interests are model-driven development, smartcards and embedded systems.

Geylani Kardas received his B.Sc. in computer engineering and both M.Sc., and Ph.D.
degrees in information technologies from Ege University in 2001, 2003 and 2008
respectively. He is currently an assistant professor at Ege University, International Computer
Institute. His research interests include model-driven software development, domain-specific
(modeling) languages, agent-oriented software engineering and smartcard systems. He is a
member of the ACM.

45

