
 

 

 

 

 

 

 

 

 

 

 

  

Accepted Manuscript 
 
Software agents for peer-to-peer video streaming 
 
Kemal Deniz Teket, Muge Sayit, Geylani Kardas 
 
 
DOI: 10.1049/iet-sen.2013.0181 
 
 
To appear in: IET Software 
 
 
Published online: 25 February 2014 

 
 
 
 

 
Please cite this article as: Kemal Deniz Teket, Muge Sayit, Geylani Kardas, Software agents for peer-
to-peer video streaming, IET Software, doi: 10.1049/iet-sen.2013.0181 
 
 
This is a PDF file of an unedited manuscript that has been accepted for publication. The manuscript 
will undergo copyediting, typesetting, and review of the resulting proof before it is published in its 
final form. Please note that during the production process errors may be discovered which could 
affect the content, and all legal disclaimers that apply to the journal pertain. 
 
 
 

http://dx.doi.org/10.1049/iet-sen.2013.0181
http://dx.doi.org/10.1049/iet-sen.2013.0181


ACCEPTED MANUSCRIPT 
 

1 
 

 

Software Agents for Peer-to-Peer Video Streaming 

Kemal Deniz Teket, Muge Sayit, Geylani Kardas 

International Computer Institute, Ege University, 35100, Izmir, Turkey 

denizkemal@gmail.com, muge.fesci@ege.edu.tr, geylani.kardas@ege.edu.tr 

 

ABSTRACT 

Peer-to-peer (P2P) video streaming systems enable video data exchange between peers by reducing 

the overload of the servers while utilizing network resources.  Multi-agent systems (MAS), including 

many autonomous and intelligent software agents working on behalf of video peers, may also 

provide a feasible infrastructure for the implementation of P2P video streaming systems. Within this 

context, research on the use of software agents in video streaming systems has recently emerged. In 

this paper, we discuss the development of an agent-based P2P video streaming system. Software 

engineering of the MAS with covering various aspects such as agent internals and interactions in the 

system is described. Performance evaluation of the proposed agent-based P2P system comparing 

with the popular in-use streaming application is also reported. Results show that a well-defined 

behavior of a parent selection software agent can improve the continuity index in P2P video 

streaming systems. Therefore, the users in the system can watch video in a better quality and lower 

end-to-end delay comparing with the currently used video streaming applications. We also examine 

that peer welcoming (traffic localization) behavior of the agents decreases the internal Internet 

service provider (Inter-ISP) traffic significantly.  

Keywords: Software agent, agent-oriented software engineering, peer-to-peer (P2P), video streaming  



ACCEPTED MANUSCRIPT 
 

2 
 

1. INTRODUCTION 

Nowadays, much of the network resources are consumed by video streaming applications running 

over the Internet. Peer-to-peer (P2P) video streaming systems enable video data exchange between 

peers by reducing the overload of the servers while utilizing network resources. Hence, it is possible 

that large number of peers enjoy video streaming. An end-user plays video over the Internet and also 

acts as a content provider to other end-users by using popular P2P live streaming applications (e.g. 

Coolstreaming [1], PPLive [2], PPStream [3], UUSee[4], SopCast [5]). Furthermore, time constraints, 

minimization of the delay and efficient utilization of network resources should be taken into 

consideration during ideal P2P streaming. We believe that software agents can be employed inside 

P2P video streaming applications especially during both scheduling video data dissemination and 

efficient network resource allocation. 

Multi-agent systems (MAS) [6], including many autonomous and intelligent software agents working 

on behalf of video peers, may also provide a feasible infrastructure for the implementation of P2P 

video streaming systems. Within this context, research on the use of software agents in video 

streaming systems has been recently emerged [7-11]. However parent selection and network 

awareness are not addressed in those leading studies. In order to fill this gap, we discuss the 

development of an agent-based P2P video streaming system in this paper. Software engineering of 

the MAS with covering various aspects such as agent internals and interactions in the system is 

described in the paper. Performance evaluation of the proposed agent-based P2P system comparing 

with the popular in-use streaming application is also reported. 

The rest of the paper is organized as follows: Section 2 presents a brief description of the P2P video 

streaming for readers who are unfamiliar to this domain. Software engineering of the proposed MAS 

within the scope of the applied methodology is discussed in Section 3. Section 4 includes the 

evaluation of the proposed system. Section 5 discusses the previous studies which make use of 



ACCEPTED MANUSCRIPT 
 

3 
 

software agents in P2P video streaming applications. Finally, we conclude and describe future work 

in Section 6. 

2. PEER-TO-PEER VIDEO STREAMING 

P2P video streaming applications such as CoolStreaming [1], PPlive [2], PPStream [3], UUSee [4], 

Sopcast [5] enable users to watch video while collaborating for the dissemination of the video data. 

In these systems, nodes help to reduce server(s) load since video streaming is based on sending video 

data between peers. 

In this section, we discuss CoolStreaming-like P2P video streaming and explain P2P video streaming 

challenges. In order to evaluate the performance of the proposed MAS over a comparison with the 

current classic P2P systems, we chose CoolStreaming as the opponent system model because it has 

lower message complexity than pure pull systems while providing higher quality of service. 

Coolstreaming is also one of the most popular and industrious P2P video streaming applications 

widely used especially in China. In the following, we first list the basic terms and then discuss the 

operation mechanism of P2P video streaming. Later, challenges of the domain are given in a separate 

subsection. 

Membership (MS): This is also known as the partial view of the overlay. Peers have MS lists. Peers in 

a MS list do not have to communicate with each other. 

Partnership (PS): PS list is selected from the MS list. PS is mutual and partners exchange buffermaps 

periodically. 

Parent: A peer gets video from its parents. Parents are the subset of the PS List and a peer controls 

its parents periodically in case of peer churn and low bitrate. 



ACCEPTED MANUSCRIPT 
 

4 
 

Substream: One stream is divided into multiple substreams. Each substream can be downloaded 

from different parents. Hence, if one stream is decomposed into e.g. eight substreams, a peer can 

have at most eight parents. 

Buffermap (BM): Buffermap represents the availability of the latest blocks of different substreams in 

a buffer. BM information is exchanged periodically among partners to select/re-select parents and to 

control status (online/offline). The buffermap vector records the sequence number of the latest 

received block from each substream. 

Heartbeat (HB): Peers have to communicate with a Tracker Server periodically to inform its status 

(online/offline). This is called Heartbeat Message. 

In live P2P video streaming systems, there must be at least one video server and one tracker server. 

The video server initiates video distribution in the system. The tracker server provides a partial list of 

the currently active nodes to newly joined nodes. This partial list is called MS list. 

A newly joined node communicates with its members in order to establish the PS list. Then it selects 

a few of them to initiate video download. The partner and the parent are different. A peer does not 

have to download any video content from one of its partners but they must communicate 

periodically in order to exchange the information on video availability. If a peer (child) selects one of 

its partners as a parent, it means the peer is downloading video data from that partner (parent). 

In push-pull based mesh streaming, the video data are partitioned into k substreams and each node 

subscribes to one or more parents to receive these k substreams. In CoolStreaming, the nodes in the 

system periodically exchange their BMs which show buffer position for each substream between 

them and their partners. Parents are selected from the set of partners according to their BM values. 

During streaming, BMs of both partners and parents are compared periodically in order to detect 

insufficient video retrieval. 



ACCEPTED MANUSCRIPT 
 

5 
 

The video dissemination model is based on a push-pull mechanism as illustrated in Figure 1. Here, 

the video is partitioned into 4 substreams. Peer 3 subscribes to Video Server for substream-1, 

substream-2 and substream-4 (as shown in the list just below the outgoing arrow from Peer 3). 

Subscription process can be defined as pull mechanism. Video server registers Peer 3 as a child and 

starts sending video. Additionally, Peer 42 has two children: Peer 13 and Peer 84. Peer 42 sends 

substream-1, substream-2 and substream-3 to Peer 13 and substream-1 and substream-4 to Peer 84 

(push) (see the list at the left of Peer 42). This sending process can be defined as push mechanism. 

Peer 42 sends video to Peer 13 and Peer 84 until it receives an unsubscribe message.  

 

Figure 1. Push-Pull mechanism 

Once a peer (child) selects its parent, it sends video request to its parent. Parent initiates the video 

stream. Until the peer (child) sends unsubscribe message to its parent, parent continues to send 

video data. Peer also controls its parent’s performance periodically since parent may leave the 

system (peer churn), or the video download rate may decrease due to the network dynamics. If the 

performance of its parent decreases, peer compares BM information of its partners and selects a 

new parent among its partners. 



ACCEPTED MANUSCRIPT 
 

6 
 

This control mechanism provides a node to detect congestion or inadequate bandwidth of a link in 

the path between the source and itself. Parents, who fail to meet these requirements, are changed 

with any node from the partners whose BM value for the requested substream is consistent with the 

node’s BM. For instance, in CoolStreaming, if the BM values of more than one node are consistent 

with the node requiring the parent change, then one of them is selected randomly. 

2.1. P2P VIDEO STREAMING CHALLENGES 

Similar to the file sharing systems, the main challenge of the P2P systems in general is to provide a 

system which is both distributed and scalable by considering the upload capacity distribution of the 

peers and peer churn. The negative effects of upload capacity limitations and the peer churn can be 

minimized if smart algorithms are implemented in peer selection process.  

In addition to abovementioned common challenges for all P2P applications, specifically P2P video 

streaming systems are not tolerant to packet delays. Packets received later than playout deadline are 

considered as lost in P2P video streaming systems. Therefore timing constraints must also be 

considered. Furthermore, startup delay should be minimized. That means a user must not wait too 

long to start watching video. Also, the interval between video packets arrival time should be similar, 

in other words, jitter should be as low as possible in order to play video smoothly. 

In P2P video streaming systems, peer churn influences system performance much more when 

compared to ordinary P2P file sharing systems. File sharing has no timing constraints, so peer churn 

does not affect P2P file sharing systems as much as P2P video streaming systems. Peer churn must be 

specifically considered in P2P video streaming due to timing constraints. An approach based on 

autonomous software agents may pave the way for the construction of a software system in order to 

cope with those challenges. Following sections discuss the design and implementation of such 

system. 

 



ACCEPTED MANUSCRIPT 
 

7 
 

3. SOFTWARE ENGINEERING OF THE PROPOSED AGENT-BASED P2P VIDEO STREAMING SYSTEM 

In order to develop the agent-based P2P video streaming system, we apply an agent-oriented 

software engineering (AOSE) methodology called Prometheus. Prometheus [12] is a well-known 

detailed process for specifying, designing and implementing MAS. It also defines various artifacts to 

use during and after the design of the agents. As depicted in Figure 2, Prometheus Methodology has 

three phases. In the System Specification Phase, goals, scenarios, and basic functionalities are 

described. Inputs and outputs are defined. In the Architectural Design Phase, agent types and 

interactions are defined using scenarios and functionalities. Finally, in the Detailed Design Phase, the 

internals of the agents are elaborated. 

During the design process of our system, we employ RMIT Intelligent Agents Group's graphical 

Prometheus Design Tool (PDT) [13] which supports Prometheus methodology. We also use Network 

Simulator 3 (ns-3) [14] and C++ programming language to implement the required network overlay 

and the proposed agent design respectively. Following subsections discuss software engineering of 

the proposed MAS in detail within the scope of the Prometheus AOSE methodology.  

 



ACCEPTED MANUSCRIPT 
 

8 
 

 

Figure 2. The phases of the Prometheus Methodology (adapted from [12]) 

3.1. System Specification 

Conforming to the Prometheus methodology, we first define system goals, scenarios and 

functionalities in the System Specification phase. We also describe the interaction between agent 

system and the environment (percepts, actions, and data sets). In Figure 3, System Goal Diagram is 

shown. Main agent goals, their related functionalities and scenarios within our system are described 

as follows: 

 



ACCEPTED MANUSCRIPT 
 

9 
 

 

Figure 3. System goal diagram 

Provide Entrance Service: The newly joined peer needs to communicate with other peers in order to 

download video data and it sends join request to the bootstrapping node (tracker) to obtain a list of 

peers.  

Keep System’s Information Up-To-Date: In order to keep the system up-to-date, the tracker updates 

peers’ information via heartbeat messages.  

Distribute Video in the System: Video data needs to be distributed from a source during the live 

video streaming. Therefore, there is a video server in the system and it must select good peers 

having high upload capacity and different Internet Service Providers (ISP) to construct a solid 

backbone. 

Manage Communication: A peer in the system has a MS list which is a partial view of the system, and 

it communicates with members to build the PS list. 

Manage Parent Candidates: A peer chooses parents from the PS list using BM and previous 

information about partners. 



ACCEPTED MANUSCRIPT 
 

10 
 

Play Video Smooth:  A peer needs to download video data on time to play the video smoothly. 

Therefore, it must choose appropriate parents to maximize bitrate and minimize delay. 

Provide Continuity of Video Redistribution: All peers in the system must buffer video data and send 

this data to its children. 

Manage Peer Churn: All nodes in the system must update their PS and MS lists in case of peer churn. 

3.2. Architectural Design 

In the Architectural Design phase, we use artifacts (scenarios, functionalities, actions, percepts) from 

the system specification phase and describe agent types, interactions between agents (by using 

interaction diagrams) and system’s overall structure (by using the system overview diagram). 

In our design, we define 3 agent types: Tracker Server, Video Server and Peer agent types and 

functionalities are coupled as follows: While Tracker Server agent provides Peer Maintenance Service 

and Peer Information Service, Video Server agent is responsible from the Video Distribution 

Management. Finally, Peer agent owns the following functionalities: Communication Management, 

Partnership Management, Video Download Management, Video Redistribution Management and 

Peer Churn Management. We also define interactions between agents, such as “System Join”, 

“Partnership”, “Buffermap Exchange”, “Video Request”, “Receive Video”, “Control Parent”, “Change 

Parent”, “Update Peer Lists”. 

The diagram pertaining to “System Join”, “Partnership” and “Video Request” interactions are shown 

in Figure 4. Peer agent begins with the “System Join” percept. It sends “Membership Request” to 

Tracker agent. Tracker agent sends “Membership Reply” to Peer agent in response to “Membership 

Request”. In “Membership Reply”, there is a list of peers, which are online in the system. After 

getting Membership List, Peer agent sends a “Partnership Request” to all peers in its Membership 

List. Partnership is mutual; therefore if the receiver peer’s Partnership List is not full, it accepts the 

request and sends “Partnership Reply” to the newly joined peer. Thus, the newly joined peer builds 



ACCEPTED MANUSCRIPT 
 

11 
 

its Partnership List. Each Peer agent in the system sends periodically “Buffermap” information to its 

partners. Using the partners’ BM information, Peer agent selects its parent in order to download 

video data. It also controls the performance of its parents periodically to find better parents. 

 

Figure 4. System Join, Partnership, and Video Request interactions between the system agents 

The System Overview Diagram for our MAS design is shown in Figure 5. This diagram is perhaps the 

most important artifact of the design process, since all required agent types, percepts, actions, 

messages and interactions between agents can be described. For example, in the “Update Peer Lists” 

scenario, a Peer agent’s “BM Exchange Timer” expires and yet it does not receive “BM Message" 

from one of its partners. In this case, Peer agent excludes this peer from its “MS List” and 

“Partnership List” and sends “Gossip Message” to its partners. In “Gossip Message”, there is a list of 

offline peers, and a list of newly joined peers. The whole system updates itself with “Gossip 

Message”. 



ACCEPTED MANUSCRIPT 
 

12 
 

Figure 5. System overview diagram 

3.3. Detailed Design 

In the Detailed Design Phase, we use artifacts from the previous phases and design internals of the 

agents. We describe capabilities, plans, events, and data of each agent in the proposed MAS. It is also 

worth noting that we employ the well-known Belief-Desire-Intention (BDI) architecture [15] in order 

to both design and implement the internals of our software agents. In a BDI architecture, an agent 

decides on which goals to achieve and how to achieve them. Beliefs represent the information an 

agent has about its surroundings within a beliefset, while Desires correspond to the goals that an 

agent would like to be achieved. Intentions, which are deliberative attitudes of agents, include the 

agent planning (behavior) mechanism in order to achieve goals.  Detailed design of each agent type is 

discussed individually in the following subsections.  

3.3.1. Peer Agent 

As illustrated in Figure 6, Peer agent has 5 capabilities as briefly discussed below: 

MS Managing: In this capability, Peer agent manages “Membership List”. If peer is newly joined, it 

builds MS list, or it can update MS list according to location information. 



ACCEPTED MANUSCRIPT 
 

13 
 

PS Managing: In PS Managing capability, Peer agent manages the “Partnership List”, and related 

functions. It builds PS list, updates PS list according to the location and upload capacity information. 

It is also responsible from BM exchange and HB messages. 

Churn Handling: Peer agent periodically controls other peers’ online status and updates its lists 

within this capability. Related update is performed when the agent receives a “Gossip Message” or 

“BM Exchange Timer” expires. 

 

Figure 6. Overview diagram of Peer Agent 

Download Managing: In this capability, Peer agent manages its parents and updates partners’ 

information periodically via “Buffermap”. In addition to the "Buffermap", update of parents’ 

information can also occur as the result of the evaluation on bitrate and delay values of the parents.  

A Peer agent applies a parent scoring method within this capability. During its Parent Scoring 

behavior, a Peer agent gives points to its parents according to their bitrates and end-to-end delays. 

Higher bitrate and lower end-to-end delay get higher score. The parent scores are stored 

cumulatively. For example, if the bitrate is higher than the bitrate threshold and end-to-end delay is 

lower than the delay threshold, parent gets 4 points. If the bitrate is higher than the bitrate threshold 



ACCEPTED MANUSCRIPT 
 

14 
 

but end-to-end delay is higher than the delay threshold then the agent gives 3 points to the parent. 

Detailed discussion on this scoring approach can be found in [16].  

Distribution Managing: Peer agent manages video distribution with this capability. It uses the list of 

members ("MS List") for this purpose. Members are potential partners, but Peer Agent does not have 

to communicate with members. MS List can also be named as the partial view of the system. The 

structure of the MS List has two parts: PeerID (a unique ID that is given by Tracker Server) and IPAddr 

(IP address of the peer). 

On the other hand, Peer agent must communicate with its partners periodically to inform about the 

video availability and the system status (online/offline). That communication is performed by using 

the list of partners (“PS List”). Partnership is mutual. In the PS List, partners also have rankings. One 

partner may have higher rank if it is in the same ISP or sends video data on time. The structure of the 

PS List is composed of PeerID, IP Addr, SameISP, Buffermap, ParentScore, ParentInfo, ChildInfo and 

ChildBuffermap. PeerID is a unique ID given by Tracker Server and IPAddr is the IP address of peer. 

SameISP is a flag for ISP information. If it is “true”, the peer and the partner are in the same ISP. 

Buffermap is an array of four integers and keeps partner’s BM information. ParentScore stores 

parents’ scores cumulatively using above discussed behavior. The default value is set to zero. 

ParentInfo is an array of four booleans and keeps parent information of substreams. If it is “true”, the 

peer downloads the substream from the partner. ChildInfo is an array of four booleans and keeps 

child information of substreams. If it is “true”, the peer sends the substream to the partner. Finally, 

ChildBuffermap is an array of four integers and keeps the information of packets to be sent. 

Peer agent tries to achieve 5 goals: Manage Communication, Manage Parent Candidates, Play Video 

Smooth, Provide Continuity of Video Redistribution and Manage Peer Churn. For instance, in order to 

achieve “Play Video Smooth” goal, the Peer agent uses PS Managing and Download Managing 

capabilities. The Peer agent updates its PS List (beliefset in other words) periodically via BM 

messages and controls its parents every 10 seconds. The agent updates parents’ information by 



ACCEPTED MANUSCRIPT 
 

15 
 

Parent Scoring behavior. If a problem occurs with a parent (e.g. parent goes offline or video packets 

are missing due to the low upload capacity), Peer agent will select a new parent using “Buffermap”, 

“ParentScore” and “SameISP” information in its PS List.  

3.3.2. Video Server Agent 

Taking into consideration the Video Server agent type, four capabilities are defined as follows: (see 

Figure 7). 

Child Managing: Video Server agent constructs its Child List in this capability. It chooses its children 

via location information and upload bandwidth capacity while executing its Child Managing behavior. 

In Child Managing behavior, Video Server agent manages its children according to its available ISP 

slots. For every ISP, the agent has limited slots. Video Server agent also controls its children’s upload 

capacity in order to guarantee the video redistribution. If a peer meets these requirements, Video 

Server agent selects this peer as a child and starts video streaming. 

 

 

Figure 7. Overview diagram of Video Server Agent 



ACCEPTED MANUSCRIPT 
 

16 
 

Churn Handling: In Churn Handling capability, Video Server agent controls other peers’ online status 

and updates its Child List. 

BM Managing: This capability is responsible from Buffermap Exchange Messages.  

Distribution Managing: In this capability, Video Server agent manages video distribution and 

scheduling. For this purpose, the agent uses the “Child List” which is the list of children connected to 

the agent. Video Server agent communicates with its children (Peer agents) periodically to inform 

about the video stream. The structure of the Child List is composed of PeerID, IP Addr, 

UploadCapacity, ChildInfo and ChildBuffermap. PeerID is a unique ID that is given by Tracker Server 

and IPAddr is the IP address of peer as usual. UploadCapacity keeps the upload capacity of the peer. 

ChildInfo is an array of four booleans and keeps child information of substreams. If it is “true”, peer 

sends the substream to the partner. ChildBuffermap is an array of four integers and keeps the 

information of packets to be sent. 

Main goal of Video Server agent is to “Distribute Video in the System”. In order to achieve this goal, 

the agent shows Child Managing and Distribution Managing capabilities. It chooses its children via 

Child Managing behavior and distributes video packets. 

3.3.3. Tracker Server Agent 

Third type of the system agents is Tracker Server agent (Tracker agent shortly)As can be seen from 

the agent overview diagram given in Figure 8, Tracker agent  has 3 capabilities: 

Peer Welcoming: In this capability, Tracker agent manages newly joined peers and sends MS List to 

newly joined peers according to its location information and other peers’ upload capacities. Tracker 

agent also sends unique ID to each newly joined peer. All of these actions take place while the agent 

executes “Peer Welcoming” behavior. Inside this behavior, Tracker agent groups the online nodes 

and controls whether the ISP of newly joined node and ISP of the selected node are the same. If the 

nodes are in the same ISP and the selected node’s upload capacity is high, these nodes get the high 



ACCEPTED MANUSCRIPT 
 

17 
 

priority. If the nodes are in the same ISP and the selected node’s upload capacity is low, these nodes 

get medium priority. If they are not in the same ISP, these nodes get the low priority as expected. 

More information about how this traffic localization is performed can be found in [17]. 

 

 

Figure 8. Overview diagram of Tracker Server Agent 

Peer Info Managing: In Peer Info Managing Capability, Tracker agent evaluates peers’ location 

information and upload capacity. Peers send this required information via HB Messages. 

Churn Handling: In this capability, Tracker agent periodically controls other peers’ online status and 

updates its list when it receives a “Gossip Message” or “Heartbeat Timer” expires. “Tracker List” is 

the list in question which includes online peers. Peer agents communicate with Tracker agent 

periodically via HB Messages to inform about the video stream. The structure of the Tracker List is 

composed of PeerID, IP Addr, UploadCapacity and ISPNo. PeerID is a unique ID that is given by 

Tracker Server and IPAddr is the IP address of the peer as expected. UploadCapacity keeps the 

upload capacity of the peer and ISPNo stores the ISP information of the peer. 

Tracker agent is responsible from achieving 2 separate goals: “Provide Entrance Service” and “Keep 

System’s Information Up-To-Date”. In order to achieve “Keep System’s Information Up-To-Date” 

goal, the Tracker agent uses its Peer Info Managing, Churn Handling and Peer Welcoming capabilities. 



ACCEPTED MANUSCRIPT 
 

18 
 

Peer agents, which are online in the system, must send HB messages for every 5 seconds. If the 

Tracker agent does not receive heartbeat message from a Peer agent (i.e. Peer 67) for 5 seconds, 

heartbeat timer triggers the execution of the tasks defined in Churn Handling capability and the 

Tracker agent erases Peer 67 from the tracker list. That means Peer 67 is not online anymore. 

4. EVALUATION 

In this section, we discuss the performance evaluation of our MAS by taking into account its 

comparison with a CoolStreaming-like system. For the comparison with our agent-based video 

streaming system, we implemented a CoolStreaming-like system which represents a regular video 

streaming environment that is popular and currently used in the related research field. It does not 

involve any agentified components or agent capabilities. Furthermore, traffic localization and upload 

bandwidth of the nodes in the system are not implemented in agentified parent selection process. It 

is also worth noting that the performance of the proposed MAS has been first reported in our 

previous work [18]. However that work only covers the sole performance of the system in various 

network sizes. 

Both CoolStreaming-like system and the proposed MAS are tested in ns-3 environment. ns-3 [14] is a 

very famous discrete-event network simulator, implemented in C++ and especially used for research 

and educational purposes.  

Simulations are run for a MAS with 300 agents (nodes). The network topology is generated by BRITE 

[19]. The simulation duration is 900 seconds. There is a video server which distributes the video in 

the system. There is also a tracker server which owns all network topology information. There are 4 

different regions (ISP) in the system. In each region there are 75 nodes. Tracker server groups these 

nodes according to their ISP information and upload capacity. More information about the topology 

can be found in [17]. Number of substreams is 4 and each substream bitrate is equal to 75 kbps (total 

video bitrate is equal to 300 kbps). All the packets are sent over TCP. The bandwidth distribution of 

all agents in the system is given in Table I. 



ACCEPTED MANUSCRIPT 
 

19 
 

Table I. Bandwidth distribution of the agents in the simulations 

Percentage Upload Bandwidth  

10% <100 Kbps 

50% < 300 Kbps 

90% < 1000 Kbps 

100% < 5000 Kbps 

 

The simulation results are given in the following. Since continuity index and startup duration are 

important for quality of experience (QoE) and P2P systems cause extra load on network backbones, 

we give the results in terms of continuity index, startup delay and network traffic amount. 

Average continuity index values of our MAS and CoolStreaming-like system are given in Table II. 

Above discussed parent selection, Peer Welcoming and Child Managing behaviors performed by the 

agents make the performance of the proposed MAS higher than the CoolStreaming-like system. 

Table II. Average continuity index values  

 Continuity Index 

CoolStreaming-like 87.7% 

MAS 92.2% 

 

In Table III, average startup delay of the MAS and CoolStreaming-like system are given. Startup delay 

is the duration which a Peer agent waits until the video starts. Since the CoolStreaming-like system 

does not consider the network locality, the average startup delay is about 21 seconds. On the other 

hand, in our MAS, a network locality capability is implemented on the Tracker agent and hence 

startup delay decreases about 5 seconds. 

 

 



ACCEPTED MANUSCRIPT 
 

20 
 

Table III. Average startup delay values 

 Startup Delay 

CoolStreaming-like 21.2 

MAS 16.1 

 

Finally, the percentage of traffic over the network is given in Table IV. The CoolStreaming-like system 

does not have any information about the network topology. So peers select their partners randomly 

and this increases the traffic on the backbone. On the other hand, the Tracker agent of the proposed 

MAS possesses the network information and performs the Peer Welcoming behavior. Thereby, Peer 

agent selects its partners from the same ISP and hence Inter-ISP traffic is decreased. While the Inter-

ISP traffic of the CoolStreaming-like system constitutes 54% of the overall traffic, the Inter-ISP traffic 

of the proposed MAS constitutes only 9%. 

Table IV. Percentage of traffic over the network 

 Intra-ISP Video Intra-ISP Control Inter-ISP Video Inter-ISP Control 

CoolStreaming-like 34% 12% 36% 18% 

MAS 64% 27% 5% 4% 

 

5. RELATED WORK 

Taking into account the use of software agents in P2P video streaming systems, we encounter a few 

studies in this young research field. Pournaras et al. [7] propose a model to build robust tree 

topologies. In tree-based topologies, node departure or failure can cause serious problems in the 

system. Agents are used to fix these problems in their study. But the proposed method cannot be 

directly implemented to mesh-based systems since tree-based overlay architecture is different from 

mesh-based overlay architecture.  



ACCEPTED MANUSCRIPT 
 

21 
 

Carrera and Iglesias [8] present an agent-based design for the diagnosis of multimedia streaming 

faults. The agent detecting an unusual symptom such as quality degradation chooses to perform the 

best action. However P2P streaming-specific actions such as parent selection are not addressed in 

the work. On the other hand, Molina et al. [9] propose a P2P video file sharing architecture for 

mobile networks. In P2P file sharing approaches, the time of video packets delivery does not directly 

affect the system performance while the timing constraint in P2P live video streaming systems is 

crucial.  

Orynczak and Kotulski [10] propose an agent-based infrastructure for real-time applications. In this 

infrastructure, agents analyze parameters like link bandwidth usage and number of lost packets and 

they establish routing table dynamically. Chen et al. [11] use evolutionary games for cooperative P2P 

video streaming. To reduce traverse links and increase streaming performance, they implement 

software agents for real-time streaming systems. Menkovski and Liotta [20] introduce an adaptive 

video streaming system in which agents examine the traffic and make decisions based on the 

reinforcement learning. 

Our work contributes to above studies by discussing the design and implementation of a MAS that 

supports agent-based parent selection, traffic localization and overlay construction for P2P live 

streaming. In this study, we also present the internals of the agents which we believe indispensable 

for the development of such autonomous software. Considering the complementary studies, the 

inference mechanisms of the software agents described in this paper are given in previous works 

[16], [17]. Finally, fundamentals of the engineering of such a MAS can also be found in our prior work 

[18]. However, that work does not cover the behavior mechanism of Peer agents applied for peer 

selection as discussed in this paper. Moreover, comparative evaluation of the agent-based video 

streaming approach with non-agentified solutions is not considered. 

 

 



ACCEPTED MANUSCRIPT 
 

22 
 

6. CONCLUSION 

In this study, a multi-agent software design for P2P video streaming system is discussed. Both the 

internals of each software agent in the system (including their behaviors executed for the effective 

streaming) and the exact MAS implementation inside ns-3 environment are given. Finally, the 

performance of the proposed MAS is compared to the popular CoolStreaming-like system.  

We have investigated that a well-defined software for parent selection behavior can improve the 

continuity index in P2P video streaming systems. This means the users in the system watch video in a 

better quality and lower end-to-end delay. 

We have also examined that Peer Welcoming (traffic localization) behavior decreases the Inter-ISP 

traffic significantly. Since the network-awareness level of P2P video streaming applications is not 

sufficient, these applications cause extra load on the backbone. Additionally, agents having traffic 

localization behavior provide decrease in the end-to-end delay and increase in the quality of 

experience. Finally, the software required for the child managing behavior in Video Server agent has 

also been implemented in this study and we have observed that the proposed system is more robust 

and more resilient to peer churn comparing with CoolStreaming-like system.  

For future work, we plan to implement negotiation mechanisms as first. These mechanisms can be 

used for bandwidth allocation and video quality adaptation. Additionally, retransmission and path 

selection alternatives can be implemented to improve performance of video streaming. On the other 

hand, current system's single point of failure, that can be encountered on the peer maintenance 

(when Tracker agent goes down) or video distribution (when Video Server agent is unavailable), also 

needs to be resolved in the future work. Our aim is to investigate the alternative solutions which are 

feasible to be applied for the elimination of such system failures. In order to keep robustness of the 

MAS within this perspective, cloning the Tracker and/or Video Server agents at runtime can be an 

option. Moreover, a solution, in which Peer agents may immediately undertake the duty of tracker or 

video server in case of these agents' failures, can also be applied. Finally, load balancing for the Peer 



ACCEPTED MANUSCRIPT 
 

23 
 

agents and system security against the harmful peers are the remaining open issues which also need 

to be considered in the future work. 

7. ACKNOWLEDGEMENT 

This work is funded by the Scientific and Technological Research Council of Turkey (TUBITAK) Electric, 

Electronic and Informatics Research Group (EEEAG) under grant 111E022. 

8. REFERENCES 

[1] Xie, S., Qu, Y., Keung, G.Y., Lin, C., Liu, J., Zhang, X.Y.: “Inside the New Coolstreaming: Principles, 

Measurements and Performance Implications”. Proc. IEEE Int. Conf. Computer Communications, 

Arizona, USA, 2008, pp. 1031-1039 

[2] “PPLive”, http://www.pplive.com, accessed December 2013 

[3] “PPStream”, http://www.ppstream.com, accessed December 2013 

[4] Liu, Z., Wu, C., Li, B., Zhao, S.: “UUSee: Large-Scale Operational On-Demand Streaming with 

Random Network Coding”. Proc. IEEE Int. Conf. Information Communications, New Jersey, USA, 2010, 

pp. 2070-2078 

[5] “SopCast”, http://www.sopcast.com, accessed December 2013 

[6] Wooldridge, M.: "An Introduction to Multi-agent Systems" (John Wiley & Sons, 2nd edn. 2010) 

[7] Pournaras, E., Warnier, M., Brazier, F.: "Adaptive Agent-Based Self-Organization for Robust 

Hierarchical Topologies". Proc. Int. Conf. Adaptive and Intelligent Systems, Washington, USA, 2009, 

pp. 69-76 

[8]Carrera, A., Iglesias, C.A.: "Multi-agent Architecture for Heterogeneous Reasoning under 

Uncertainty Combining MSBN and Ontologies in Distributed Network Diagnosis". Proc. 



ACCEPTED MANUSCRIPT 
 

24 
 

IEEE/WIC/ACM Int. Conf. Web Intelligence and Intelligent Agent Technology, Lyon, France, 2011, 

pp.159-162 

[9] Molina, B., Pileggi, S.F., Esteve, M., Palau, C.E.: "A negotiation framework for content distribution 

in mobile transient networks", Journal of Network and Computer Applications, 2009, 32, (5), pp. 

1000-1011 

[10] Orynczak, G., Kotulski, Z.: "Agent based infrastructure for real-time applications", Annales UMCS, 

Informatica, 2011, 11, (4), pp. 33-47 

[11] Chen, Y., Wang, B., Lin, W.S., Wu, Y., Liu, K.J.R.: "Evolutionary games for cooperative P2P video 

streaming". Proc. IEEE Int. Conf. Image Processing, Hong Kong, 2010, pp. 4453-4456 

[12] Padgham, L., Winikoff, M.: “Prometheus: A methodology for developing intelligent agents”, 

Lecture Notes in Computer Science, 2003, 2585, pp. 174-185 

[13] Padgham, L., Thangarajah, J., Winikoff, M.: “Prometheus Design Tool”. Proc. AAAI Conf. Artificial 

Intelligence, Chicago, USA, 2008, pp. 1882-1884 

[14] “Network Simulator 3”, http://www.nsnam.org/, accessed December 2013 

[15] Rao, A., Georgeff, M.: "BDI Agents: From Theory to Practice". Proc. Int. Conf. Multi-Agent 

Systems, San Francisco, USA, 1995, pp. 312-319 

[16] Sayit, M., Kaymak, Y., Teket, K.D., Cetinkaya, C., Demirci, S., Kardas, G.:  “Parent selection via 

reinforcement learning in mesh-based P2P video streaming”. Proc. Int. Conf. Information Technology: 

New Generations, Las Vegas, USA, 2013, pp. 546-551 

[17] Teket K.D., Sayit, M.: “P2P Video Streaming with ALTO Protocol: A Simulation Study”. Proc. IEEE 

Int. Symp. Broadband Multimedia Systems and Broadcasting, London, UK, 2013, pp. 1-6 



ACCEPTED MANUSCRIPT 
 

25 
 

[18]Teket, K.D., Kaymak, Y., Sayit, M., Kardas, G.: “Engineering a Multi-agent System for Peer-to-Peer 

Video Streaming”. Proc. IEEE Int. Symp. Innovations in Intelligent Systems and Applications, Albena, 

Bulgaria, 2013, pp. 1-7 

[19] Medina, A., Lakhina, A., Matta, I., Byers J.: “BRITE: An Approach to Universal Topology 

Generation”. Proc. IEEE Modeling, Analysis and Simulation of Computer and Telecommunication 

Systems, Ohio, USA, 2001, pp. 346-353 

[20] Menkovski, V., Liotta, A.: “Intelligent control for adaptive video streaming”, Proc. IEEE Int. Conf. 

Consumer Electronics, Las Vegas, Nevada, USA, pp. 127-128 

 


