

Accepted Manuscript

The formal semantics of a domain-specific modeling language for
semantic web enabled multi-agent systems

Sinem Getir, Moharram Challenger, Geylani Kardas

DOI: 10.1142/S0218843014500051

To appear in: International Journal of Cooperative Information Systems

Published: 4 July 2014

Please cite this article as: Sinem Getir, Moharram Challenger, Geylani Kardas, The formal semantics of a
domain-specific modeling language for semantic web enabled multi-agent systems, International Journal of
Cooperative Information Systems, doi: 10.1142/S0218843014500051

This is a PDF file of an unedited manuscript that has been accepted for publication. The manuscript will
undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1142/S0218843014500051
http://dx.doi.org/10.1142/S0218843014500051

ACCEPTED MANUSCRIPT

The Formal Semantics of a Domain-specific Modeling Language for
Semantic Web enabled Multi-agent Systems

Sinem Getir, Moharram Challenger, and Geylani Kardas1

International Computer Institute, Ege University, 35100, Bornova, Izmir, Turkey

sinem.getir@ege.edu.tr, moharram.challenger@mail.ege.edu.tr, geylani.kardas@ege.edu.tr

Abstract

Development of agent systems is without question a complex task when autonomous, reactive and proactive
characteristics of agents are considered. Furthermore, internal agent behavior model and interaction within the agent
organizations become even more complex and hard to implement when new requirements and interactions for new
agent environments such as the Semantic Web are taken into account. We believe that the use of both domain specific
modeling and a Domain-specific Modeling Language (DSML) may provide the required abstraction and support a
more fruitful methodology for the development of Multi-agent Systems (MASs) especially when they are working on
the Semantic Web environment. Although syntax definition based on a metamodel is an essential part of a modeling
language, an additional and required part would be the determination and implementation of DSML constraints that
constitute the (formal) semantics which cannot be defined solely with a metamodel. Hence, in this paper, formal
semantics of a MAS DSML called Semantic Web enabled Multi-agent Systems (SEA_ML) is introduced. SEA_ML
is a modeling language for agent systems that specifically takes into account the interactions of semantic web agents
with semantic web services. What is more, SEA_ML also supports the modeling of semantic agents from their
internals to MAS perspective. Based on the defined abstract and concrete syntax definitions, we first give the formal
representation of SEA_ML’s semantics and then discuss its use on MAS validation. In order to define and implement
semantics of SEA_ML, we employ Alloy language which is declarative and has a strong description capability
originating from both relational and first-order logic in order to easily define complex structures and behaviors of
these systems. Differentiating from similar contributions of other researchers on formal semantics definition for MAS
development languages, SEA_ML’s semantics, presented in this paper, defines both static and dynamic aspects of the
interaction between software agents and semantic web services, in addition to the definition of the semantics already
required for agent internals and MAS communication. Implementation with Alloy makes definition of SEA_ML’s
semantics to include relations and sets with a simple notation for MAS model definitions. We discuss how the
automatic analysis and hence checking of SEA_ML models can be realized with the defined semantics. Design of an
agent-based electronic barter system is exemplified in order to give some flavor of the use of SEA_ML's formal
semantics. Lessons learned during the development of such a MAS DSML semantics are also reported in this paper.

Keywords: Multi-agent System, Semantic Web, Domain Specific Modeling Language, Semantics, Alloy

1. Introduction

Agents can be defined as encapsulated computer systems, mostly software systems, situated in an
environment and capable of flexible autonomous action in this environment in order to meet their design
objectives (Wooldridge and Jennings, 1995). These autonomous, reactive and proactive agents have also
social ability and they constitute systems called Multi-agent Systems (MASs) in which they can interact
with other agents in order to accomplish their tasks.

Development of agent systems is naturally a complex task when aforementioned characteristics are
considered. In addition, internal agent behavior model and interaction within the agent organizations
become even more complex and hard to implement when new requirements and interactions for new agent
environments such as the Semantic Web (Berners-Lee et al., 2001; Shadbolt et al., 2006) are taken into
account.

1 Corresponding author. Tel: +90-232-3423232-3223 Fax: +90-232-3887230

1

ACCEPTED MANUSCRIPT

The Semantic Web (Shadbolt et al., 2006) improves the current World Wide Web (WWW) such that web
page contents can be organized in a more structured way tailored toward specific needs of end-users. The
web can be interpreted with ontologies (Berners-Lee et al., 2001) that help machines to understand web
content. Within the Semantic Web environment, software agents can be used to collect Web content from
diverse sources, process the information and exchange the results. Besides, autonomous agents can also
evaluate semantic data and collaborate with semantically defined entities of the Semantic Web such as
semantic web services by using content languages (Kardas et al., 2009). Semantic web services can be
simply defined as web services with semantic interface to be discovered and executed (Sycara et al., 2003).
In order to support semantic interoperability and automatic composition of web services, capabilities of
web services are defined in service ontologies that provide the required semantic interface. Such interfaces
of semantic web services can be discovered by software agents and then the agents may interact with those
services to complete their tasks. Engagement and invocation of a semantic web service are also performed
according to the service’s semantic protocol definitions.

However, agent interactions with semantic web services add more complexity for both design and
implementation of MASs. Therefore, it is natural that methodologies are being applied to master the
problems of defining such complex systems. One of the possible alternatives represents domain-specific
languages (DSLs) (van Deursen et al., 2000; Mernik et al., 2005; Pereira et al., 2008; Fowler, 2011) that
have notations and constructs tailored toward a particular application domain (e.g. MAS). The end-users of
DSLs have knowledge from the observed problem domain (Sprinkle et al., 2009), but usually they have
little programming experience. Domain-specific modeling languages (DSMLs) further raise the abstraction
level, expressiveness and ease of use, since models are specified in a visual manner and they represent the
main artifacts instead of software codes (Schmidt, 2006; Gray et al., 2007).

We believe that both domain specific modeling and use of a DSML may provide the required abstraction
and support in creating a more fruitful methodology for the development of MASs especially when they
are working on the Semantic Web environment. Within this context, prior to work discussed in here, we
first sketched out the general perspective (Kardas et al., 2010) and defined a metamodel in several
viewpoints (Challenger et al., 2011) for a MAS DSML which is called Semantic web Enabled Agent
Modeling Language (SEA_ML). Later, we presented the concrete syntax of SEA_ML and provided
supporting visual modeling tools (Getir et al., 2011). Furthermore, an interpreter mechanism for SEA_ML
has also been defined over model-to-model transformations which pave the way of the code generation for
the implementation of SEA_ML agents in various agent platforms (e.g. JADE (Bellifemine et al., 2001),
JADEX (Pokahr et al., 2005) or JACK (Howden et al., 2001)).

Although syntax definition based on a metamodel is an essential part of a modeling language, an additional
and required part would be the determination and implementation of DSML constraints that constitute the
(formal) semantics which cannot be defined solely with a metamodel. Usually, these constraints are given
in some dedicated constraint languages (e.g. Object Constraint Language (OCL) (OMG, 2012)). With
these constraints, the semantics of a DSML includes some rules that restrict the instance models created
according to the language. In other words, the formal semantics presents the meaning of associations and
constraints for the language in a formal way. Moreover, formal representation of the semantics helps to
identify an unambiguous definition and precise meaning of a program and to have a possibility for more
accurate code generation of language-based tools (Bryant et al., 2011). A successful system verification
and validation can also be achieved with a proper formal semantics definition. To define the formal
semantics of a language, a definition is required by means of mathematics. Unfortunately there is a big gap
between model engineering and formal mathematics. Plus, there is no standard formalism to specify the

2

ACCEPTED MANUSCRIPT

semantics of modeling languages even though the syntax of modeling languages is commonly specified by
metamodels. The lack of a formal definition of DSML semantics contributes to several problems (e.g.
difficulty in tool generation and analysis, formal language design and composition of modeling language)
as listed in (Bryant et al., 2011).

Considering the advantages discussed above, defining the formal semantics of a DSML is one of the
crucial tasks of a DSML’s development. On that account, in this paper, we present the formal semantics of
SEA_ML and discuss the use of the related semantics definitions on MAS model checking and validation.
In this way, accurate models, conforming to the predefined specifications and constraints of SEA_ML can
be achieved which in turn leads to more feasible code generation for real implementation of SEA_ML
models in various MAS platforms in the future. Differentiating from similar contributions of other
researchers on formal semantics definition for MAS DSL/DSMLs (e.g. (Hilaire et al., 2000), (Brandao et
al., 2004), (Boudiaf et al., 2008), (Hahn and Fischer, 2009)), SEA_ML’s semantics presented in this paper
defines both static and dynamic aspects of the interaction between software agents and semantic web
services, in addition to the definition of the semantics already required for agent internals and MAS
communication.

In order to implement the defined formal semantics of SEA_ML, we employ Alloy language (Jackson,
2012) which is based on first order and relational logics. As can be noticed in further sections of the paper,
implementation with Alloy makes the definition of SEA_ML’s semantics to include relations and sets with
a simple notation for MAS model definitions. Moreover, we also discuss how the automatic analysis and
hence checking of SEA_ML models can be realized with the defined semantics. Finally, a demonstration
of the model checking in question is given with a case study in the paper.

The remainder of the paper is organized as follows: In section 2, a brief discussion of Alloy language is
given to warm up for the following discussion of SEA_ML’s semantics. Semantics of SEA_ML along
with defined language syntax is discussed in section 3. Analysis and checking of SEA_ML instance
models by using the defined semantics are discussed and demonstrated in section 4. In section 5, related
work is given and finally, the paper concludes in section 6.

2. The Alloy Language

In this paper, we define formal semantics of SEA_ML with Alloy specification language which also has a
useful tool, Alloy analyzer, to check defined model and validate instance models according to the
constraints. Alloy analyzer can find counter-examples that violate the system constraints. This is fulfilled
by using a Satisfiability (SAT) solver (Jackson et al., 2000). In this way, contradictions among rules can be
extracted. Alloy constructs yields efficient representations containing static and dynamic semantics for
SEA_ML structures. Alloy logic comprises objects, relations and functions which are all based on first
order predicate and relational logic. Atoms are primitive entities which constitute sets and relations. The
relations can be composed of atoms with various arities (such as unary, binary and ternary).

Inspired from Z language (Spivey, 1988), Alloy (Jackson, 2002) has a strong description capability
with presenting a declarative language based on first-order logic to define complex structures and
behaviors of systems. Everything is considered as a relation in Alloy and therefore it does not propose
a specialized logic for state machines, traces and concurrency to keep simplicity. Alloy is also based
on the idea of finding counter-examples that detects the system faults.

3

ACCEPTED MANUSCRIPT

SEA_ML semantics benefits from the system constraints by representing Alloy signatures and
constraints. Signatures represent meta-elements and their relations as meta-attributes allowing
inheritance and subset/superset hierarchy. Constraint Paragraphs include Facts, Predicates and
Functions. Fact constraints are always held for metamodel element relations whenever a model is
checked. Predicates are reusable constraints to analyze the model during its evolution. On the other
hand, Functions are reusable expressions to omit recurrent operations in the model. Assertions are
conjectures to check the model by considering the facts. Considering Commands, one of them is Run
which runs the predicates and finds some instance models according to defined Alloy model. The
other command is Check which generates counter-examples for Assertions (Jackson, 2012).

While defining the rules of the SEA_ML, we represented all meta-model elements with Signatures
and added appropriate relations and attributes as Fields in Signatures. Most static semantic constraints
which come from the metamodel are represented with multiplicity properties such as one, some and
set which means “exactly one”, “at least one” and “zero or more” respectively in signatures (Sig) (for
meta-elements) and fields in signatures (for relations or attributes). Time signature is also added to
realize the dynamic semantics.

Additionally, each relation field implicitly defines a relation from a domain set to a co-domain set by
using Cartesian product (→). On the other hand, Dot join (e.g.: p.q) is handled by taking every
combination of a tuple in relation p and same for relation q and their join if it exists. Transitive
closure (p^) bases on the transitive operation in mathematics such that every transitive combination of
tuples in a relation p is added to transitive closure of p until there is no combination. Transpose
operation (~p) replaces the atoms in every tuples such that ~ (A1, B1) = (B1, A1). Cardinality (#p)
gives the number of all elements in a relation (Jackson, 2012).

While choosing a specification language, we considered its semantic complexity and tool possibility
among variable languages for the SEA_ML semantics definition. In addition to Alloy’s widely-
accepted capabilities and tool support, a more enhanced way of describing dynamic semantics
contributed in our preference to use Alloy instead of its alternatives such as Z (Spivey, 1992), Object-
Z (Duke et al., 1995; Smith, 2000), OCL (OMG, 2012) or Maude (Meseguer, 2000; Clavel et al.,
2002). Regarding tool support, Alloy analyzer gives developers the chance to simulate runtime issues
and show possible scenarios (instance models) visually. Alloy’s easy specification, appropriate kernel
semantics and formal specification style within its analyzer tool make it suitable for our DSML’s
semantics definition.

3. Semantics of SEA_ML

In a Semantic Web enabled MAS, software agents can gather Web contents from various resources,
process the information, exchange the results and negotiate with other agents. Within the context of these
MASs, autonomous agents can evaluate semantic information and work together with semantically defined
entities like semantic web services using content languages.

SEA_ML’s abstract syntax which basically describes MAS concepts and their relationships is provided by
SEA_ML’s platform independent metamodel (PIMM). This PIMM, which will be discussed in this paper,
is an extended and updated version of the metamodel introduced in (Challenger et al., 2011). The PIMM is

4

ACCEPTED MANUSCRIPT

divided into eight viewpoints supporting the modeling of agent internals, MASs architecture and semantic
web service interactions. Before going into the depths of their explanations, these viewpoints are listed and
briefly described as below:

1. Agent’s Internal Viewpoint: This viewpoint is related to the internal structures of semantic web
agents (SWAs) and defines entities and their relations required for the construction of agents. It
covers both reactive and Belief-Desire-Intention (BDI) (Rao and Georgeff, 1995) agent
architectures.

2. Interaction Viewpoint: This aspect of the metamodel expresses the interactions and
communications in a MAS by taking messages and message sequences into account.

3. MAS Viewpoint: This viewpoint solely deals with the construction of a MAS as a whole. It
includes main blocks which compose the complex system as an organization.

4. Role Viewpoint: This perspective delves into the complex controlling structure of the agents. All
role types such as OntologyMediatorRole and RegistrationRole are modeled in this viewpoint.

5. Environmental Viewpoint: Agents may need to access some resources (e.g. services and
knowledgebase covering the facts about the surrounding) in their environment. Use of resources
and interaction between agents with their surroundings are considered in this viewpoint.

6. Plan Viewpoint: This viewpoint especially deals with an agent’s Plan’s internal structure. Plans
are composed of some Tasks and atomic elements such as Actions.

7. Ontology Viewpoint: SWAs know various ontologies as they work with Semantic Web Services
(SWSs) and also some ontological concepts which constitute agent’s knowledgebase (such as
belief and fact).

8. Agent - SWS Interaction Viewpoint: It is probably the most important viewpoint of SEA_ML’s
metamodel. Interaction of agents with SWSs is described within this viewpoint. Entities and
relations for service discovery, agreement and execution are defined. Also the internal structure
of SWSs is modeled.

SEA_ML semantics is constituted by defining the system constraints and investigating both static
semantics and dynamic semantics (which concentrates on behavioral actions and runtime issues).

During the determination of the static semantics for each viewpoint, some controls are considered such as
min-max detection which restricts all multiplicity properties for MAS and SWS entities. Moreover, these
controls enable the check on instance creation such as preventing null attribute assignments or setting
unique names.

One of the important controls pertaining to SEA_ML’s dynamic semantics is to provide the execution
ordering among agent Plans. We provide ordering constraints among Plans in two state diagrams that
consider both ordering of Plan types’ execution during the SWS interactions and transitions of the possible
behavior flow for a Plan type. Hence, we provide both internal Plan constraints and intra-Plan constraints.
Finally, Time module in our semantic definitions not only contributes to building up a dynamic structure of
the elements, but also gives a facility to order relations for the same element or among the elements.
Specifically these two features of SEA_ML's semantics cause SEA_ML to be advantageous in MAS
design comparing with other alternatives. Remaining controls covered in SEA_ML’s dynamic semantics
can be listed as: communication control of agents by defining some operations for message passing among
agents, mutual execution and resource sharing control and finally providing the consistency between the
beliefs of an agent and the facts in the environment within a time period.

5

ACCEPTED MANUSCRIPT

Alloy has enabled us to neatly represent the static and dynamic semantics of SEA_ML. As mentioned in
section 2, SEA_ML meta-elements are defined as signatures and relations; and attributes are defined as
fields in the signatures. Constraints are defined as facts, predictions and functions. In addition, assertions
are used to certify the constraints. In order to provide clear understanding and simplicity, defined semantics
for SEA_ML is discussed in the following subsections each focusing on a specific viewpoint of the
language.

Some transitions among viewpoints are needed during the definition of some semantic rules. Transitions
among the viewpoints and meta-elements that play an important role for these transitions are shown in
Figure 1. For instance, SWA meta-entity, which in fact belongs to Agent’s Internal viewpoint of SEA_ML,
is imported and used in the description of the semantics for MAS viewpoint. Such transitions are shown in
the figure with dotted arrows. Throughout the listing and discussion of the semantics definitions, all Alloy
keywords are given in bold. Also, all meta-entities belong to SEA_ML’s metamodel and facts are given in
italic inside the text. Moreover, names of the relations between the meta-entities are used as verbs in the
sentences throughout the paper.

Figure 1: Overview of SEA_ML viewpoints (VPs)

3.1 MAS Viewpoint

SEA_ML’s MAS viewpoint solely deals with the construction of a MAS as an overall aspect of the
metamodel. It includes main blocks which compose the complex system as an organization (Figure 2).
Semantic Web Organization (SWO) entity of SEA_ML metamodel is the main element of this viewpoint
and includes SWAs which have various goals or duties. SemanticWebAgent (SWA) is imported from
Agent’s Internal viewpoint and Role is imported from the Role viewpoint. Alloy signature definitions
which belong to MAS viewpoint are presented in Figure 3.

6

ACCEPTED MANUSCRIPT

Figure 2: SEA_ML’s MAS viewpoint

An agent cooperates with one or more agents inside an organization (Figure 3, Line 6) and it may also
reside in more than one organization by playing various roles over time (Figure 3, line 5). SWOs include
various roles that are to be played by the agents in the organization in accordance with their goals (Line
16). We provide the denotation of this change in an agent’s role bound to the change on the MAS
organization with “Time” column. More precisely, let 𝑆𝑆𝑆𝑆𝑆𝑆0 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆; 𝑆𝑆𝑆𝑆𝑆𝑆0, 𝑆𝑆𝑆𝑆𝑆𝑆1 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 and
𝑇𝑇0,𝑇𝑇1 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇. Then, combination of atoms can be exemplified in the time T=1 and T=2 such that we can
have (𝑆𝑆𝑆𝑆𝑆𝑆0, 𝑆𝑆𝑆𝑆𝑆𝑆0,𝑇𝑇0) and (𝑆𝑆𝑆𝑆𝑆𝑆0, 𝑆𝑆𝑆𝑆𝑆𝑆1,𝑇𝑇1).

Moreover, a SWO can include several agents at any time and also each organization can be composed of
several sub-organizations recursively (Line 15). Each organization interacts with an Environment (Line 17)
which by itself includes all of the resources, services and non-Agent concepts such as a database. Hence,
SWAs use the resources of a SWO in which they work.

01
02
03
04
05
06
07
08
09
10

sig SWA {
 disj name,description,
 property,agent_type,
 agent_state:one Name,
 works_in:SWO one->Time,
 cooperates: some SWA
}
sig Environment{
 name: one Name
}

13
14
15
16
17
18
19
20
21

sig SWO {
 name:one Name,
 contains:set SWO,
 has:some Role,
 interacts_with: one Environment
}
sig Role{
 name:one Name
}

Figure 3: Signature definitions of MAS viewpoint meta-elements

As a basic rule of a MAS, there should be at least two agents in the system which is given in the MASInit
fact (Figure 4). The cardinality of SWA set is greater than or equal to 2. As it is seen in the metamodel,
SWA and SWO elements have self-relations. Therefore, there is a need for some constraints to handle these
relationships. irreflexive predicate in Figure 4 controls some relation r (r ∈ univ→univ) not to be reflexive.
asymmetric predicate controls the relation r not to be symmetric. On the other hand, acyclic predicate
controls the relation r not to contain a cycle. Therefore, all these constraints are used in the
selfRelationControl fact for the relation contains of SWO. That is because no SWO instance can contain
itself, which means it cannot be reflexive. In other words, if SWO1∈SWO then (SWO1, SWO1) ∉ contains,

7

ACCEPTED MANUSCRIPT

but contains is an asymmetric relation. For instance, let SWO1, SWO2∈SWO then (SWO1, SWO2) ∈
contains and (SWO2, SWO1) ∉contains.

The third operation is added to prevent the cycles from contains relation. It is not claimed that contains is
acyclic just because it is not asymmetric and irreflexive. For example, if (SWO1, SWO2) ∈ contains and
(SWO2, SWO3) ∈ contains, then an element like (SWO3, SWO1) does not break the irreflexive and
asymmetric predicates. However, SWO1 contains SWO3 via SWO2 (due to transitiveness). Therefore, an
opposite relation of (SWO3, SWO1) is a kind of a contradiction for contains relation as it is one directional
relation. This rule can also be provided by fulfilling the statement “relations r’s transitive closure is
asymmetric”. Precisely, for a relation r which is not reflexive and symmetric, representation not (^r &
iden) and asymmetric [^r] provides that r is acyclic (that means they are equal).

On the contrary, SWA’s cooperates relation should be irreflexive as a SWA does not cooperate with itself.
Hence, irreflexive [cooperates] is added in Figure 4, line 13. For cooperates relation, asymmetric or a
cyclic constraint cannot be added, since a cooperation can be in different directions and contain different
cycles.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

fact MASInıt{ #SWA>=2
}
pred irreflexive[r: univ -> univ] {
 no (iden & r)
}
pred asymmetric[r: univ -> univ] {
 no (r & ~r)
}
pred acyclic [r: univ->univ]{
 no (^r & iden)
}
fact selfContainment{ irreflexive[contains] &&
 irreflexive[cooperates] && asymmetric[contains] &&
 acyclic[contains]
}

Figure 4: Constraint definitions of MAS viewpoint

3.2 Agent’s Internal Viewpoint

This viewpoint, as a part of whole metamodel, focuses on the internal structure of every agent in a MAS
organization. As it can be seen in Figure 5, SWA in the SEA_ML abstract syntax stands for each agent
which is a member of Semantic Web enabled MAS. Hence the main element of this viewpoint is SWA. A
SWA is an autonomous entity which is capable of interacting with both other agents and semantic web
services within the environment. They can play roles and use ontologies to maintain their internal
knowledge and infer about the environment based on the known facts.

8

ACCEPTED MANUSCRIPT

Figure 5: Agent’s Internal viewpoint of SEA_ML

SWAs can be associated with more than one Role (multiple classifications) and can change these roles
over time (dynamic classification). Taking different types of roles into consideration, an agent can play for
instance a Manager role, a Broker role or a Customer Role. Signature definitions of meta-elements are
presented in Figure 6. As it is mentioned in section 3.1, “Time” column enables the agent to change its role
over time. As an example, let 𝑆𝑆𝑆𝑆𝑆𝑆0 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆, 𝑅𝑅0,𝑅𝑅1 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 and 𝑇𝑇0,𝑇𝑇1 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, then atom
examples (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅0,𝑇𝑇0) and (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅1,𝑇𝑇1) mean that agent plays different roles in the time 𝑇𝑇 =
0 and 𝑇𝑇 = 1 (Figure 6, Line 5).

“description” and “property” attributes represent the definition and general features of an agent
respectively (Figure 6, Lines 2-3). An agent can also have a type (Agent Type) during its life based on the
application in which it is going to take part, such as buyer agent/shopping bot, user/personal agent,
monitoring-and-surveillance agent, or data mining agent (Haag et al., 2003). During the execution, agent
state can change in different cases. Therefore agent state attribute is considered in the agent
communication (Line 4). An agent can only have one state (Agent State) at a time, e.g. waiting state in
which the agent is passive and waiting for another agent or resource. Similarly, it can be active while doing
the internal or external processes. Therefore, it helps an agent to decide about communication with another
agent by considering its state. In addition, an agent can include zero, one or more Capabilities (Line 6).
SEA_ML's abstract syntax supports both reactive and BDI agents. As discussed in (Vidal et al., 2001), a
reactive agent does not maintain information about the state of its environment but simply reacts to current
perceptions. In fact, it is only an automation that receives input, processes it and produces an output
(Ferber, 1999). On the other hand, in a BDI architecture (Rao and Georgeff, 1995), an agent decides on
which Goals to achieve and how to achieve them. Beliefs represent the information an agent has about its
surroundings, while Desires correspond to the things that an agent would like to achieve. Intentions, which
are deliberative attitudes of agents, include the agent planning mechanism in order to achieve goals.

A Belief in a SEA_ML model is a representation of the knowledge of an agent about the environment.
“update_type” attribute of Belief shows that Belief is updated according to environment variants or Belief

9

ACCEPTED MANUSCRIPT

is independent from sensors (Figure 6, Line 32). For this reason, update type can be defined as dynamic or
static. The update frequency can depend on the update frequency variable.

An agent in a BDI architecture has some goals to realize its final aim. “retry” attribute of Goal gets
Boolean values in case the Goal is unsuccessful to process the Goal again. Hence, Goals are reconsidered
or given up (Figure 6, Line 24).

Agents execute Plans to achieve their Goals. Goal meta-entity should be realized by the Plan which is
applied for that Goal (Figure 6, Line 27). On the other hand, Goal meta-element is in an interaction with
every “Event” of the agent. According to this interaction, Goal is connected to Belief with precondition
before an event (Line 33) and Belief is connected to Goal with post-condition after an event (Line 25). In
this case, during an event by SWA, precondition which belongs to the Goal is retrieved by Belief and
informed to Belief after the event. The Event column is defined as a signature in the definitions, but it does
not belong to the metamodel. It is added as a Time column. Apart from the “Time” column, the Event
column enables a dependency between these two meta-elements, Goal and Belief. For instance, let 𝐺𝐺0 ∈
𝐺𝐺𝑅𝑅𝐺𝐺𝑅𝑅,𝐵𝐵0 ∈ 𝐵𝐵𝑇𝑇𝑅𝑅𝑇𝑇𝑇𝑇𝐵𝐵 and 𝐸𝐸0,𝐸𝐸1 ∈ 𝐸𝐸𝐸𝐸𝑇𝑇𝐸𝐸𝐸𝐸, then the instances such as (𝐺𝐺0,𝐵𝐵0,𝐸𝐸0) and (𝐺𝐺0,𝐵𝐵0,𝐸𝐸1)
mean that same Goal and Belief instances can depend on each other with different Events.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

sig SWA {
 disj name, description,
 property, agent_type,
 agent_state: one Name,
 plays: Role -> Time,
 includes: Capability
}
sig Capability {
 disj name: one Name,
 priority: one Int,
 appliesPlan: some Plan,
 includesBelief: set Belief,
 usesGoal: set Goal
}
sig Plan {
 disj name, type,
 description: one Name,
 priority: one Int,
}
sig Event{
}

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

sig Goal {
 disj name, description: one
 Name, retry: one Bool,
 postcondition: set Belief->
 one Event,
 realized_by: some Plan
}
sig Belief {
 disj name, description: one
 Name,
 update_type:one Type,
 precondition: set
 Goal-> one Event
}
sig Role {
 name: one Name,
 has: Goal
}
abstract sig Type {}
one sig Dynamic, Static extends
Type{}

Figure 6: Signature definitions of Agent’s Internal viewpoint

Considering BDI supported agent platforms (e.g. JADEX (Pokahr et al., 2005) and JACK (Howden et al.,
2001)), Capability, which covers Plans, Goals and Beliefs, is included in this viewpoint. Capability
provides reusability by collecting the BDI elements together. Plan, Belief and Goal meta-elements are
connected to Capability by the relations appliesPlan, includesBelief and usesGoal respectively (Figure 6,
Lines 11-13).

In a BDI architecture, a capability which obtains functionality for the “library routines” (Padgham and
Winikoff, 2004) should be a well-defined collection of Plans, Beliefs and Goals. CapabilityComposition
and CapabilityCoverage facts in Figure 7 provide related BDI elements inside a Capability. This presents
modularity of SEA_ML Agent’s Internal viewpoint. Line 3 in Figure 7 states that if a Goal is realized by a
Plan, the Goal and the Plan should be in the same Capability. An example for the left hand side operation
is as follows:

10

ACCEPTED MANUSCRIPT

Let 𝑃𝑃0 ∈ 𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸, 𝐶𝐶0,𝐶𝐶1 ∈ 𝐶𝐶𝐺𝐺𝐶𝐶𝐺𝐺𝐶𝐶𝑇𝑇𝑅𝑅𝑇𝑇𝐸𝐸𝐶𝐶 and (𝐶𝐶0,𝑃𝑃0), (𝐶𝐶1, 𝑃𝑃1) ∈ 𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸 then ~𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸 =
{(𝐶𝐶0,𝑃𝑃0), (𝑃𝑃1,𝐶𝐶1))} and (𝑃𝑃0. ~𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸) = {𝐶𝐶0}.

Right hand side:
Let 𝐺𝐺0,𝐺𝐺1 ∈ 𝐺𝐺𝑅𝑅𝐺𝐺𝑅𝑅, 𝐶𝐶0,𝐶𝐶1 ∈ 𝐶𝐶𝐺𝐺𝐶𝐶𝐺𝐺𝐶𝐶𝑇𝑇𝑅𝑅𝑇𝑇𝐸𝐸𝐶𝐶 and (𝐶𝐶0,𝐺𝐺0), (𝐶𝐶1, 𝐺𝐺1) ∈ 𝑢𝑢𝑎𝑎𝑇𝑇𝑎𝑎𝐺𝐺𝑅𝑅𝐺𝐺𝑅𝑅 then ~𝑢𝑢𝑎𝑎𝑇𝑇𝑎𝑎𝐺𝐺𝑅𝑅𝐺𝐺𝑅𝑅 =
{(𝐺𝐺0,𝐶𝐶0), (𝐺𝐺1,𝐶𝐶1))} and (𝐶𝐶0. ~𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸) = {𝐶𝐶0}

Hence, (𝐺𝐺0,𝑃𝑃0) ∈ 𝑟𝑟𝑇𝑇𝐺𝐺𝑅𝑅𝑇𝑇𝑟𝑟𝑇𝑇𝑟𝑟_𝐶𝐶𝐶𝐶 and 𝐺𝐺0 and 𝑃𝑃0 are in the same 𝐶𝐶0. Therefore, dot join (.) operation here
yields to compare Capabilities.

Lines 4-5 in Figure 7 provides a similar constraint which means that for all Goal and Belief elements, if a
Capability uses a Goal element and a Goal element is connected to a Belief with postcondition depending
on an “Event”, then that Belief is in the same Capability which the Goal is used by. Firstly, dot join
operator in Line 5 is used between Goal and postcondition relation elements (this gives the tuples like
G.(G,B,E) = (B,E)) then, that operator joins the result with “Event” ((B,E).E = B). The final result gives a
set of Belief to check whether this set of Belief is in the same Capability with Goal.

On the other hand, modeling relationships such as composition and aggregation are not defined in Alloy
(Anastasakis et al., 2007). Therefore, CapabilityComposition fact controls existence of BDI elements in a
Capability. Line 9 of Figure 7 holds that for all Plans, a Capability which applies the Plan cannot be an
empty set (!none) which means every Plan is connected to a Capability. For example, 𝑃𝑃0 ∈ 𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸,
𝐶𝐶0,𝐶𝐶1 ∈ 𝐶𝐶𝐺𝐺𝐶𝐶𝐺𝐺𝐶𝐶𝑇𝑇𝑅𝑅𝑇𝑇𝐸𝐸𝐶𝐶 and (𝐶𝐶0,𝑃𝑃0), (𝐶𝐶1, 𝑃𝑃1) ∈ 𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸, then, ~𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸 =
{(𝑃𝑃0,𝐶𝐶0), (𝑃𝑃1,𝐶𝐶1))}. (𝑃𝑃0. ~𝐺𝐺𝐶𝐶𝐶𝐶𝑅𝑅𝑇𝑇𝑇𝑇𝑎𝑎𝑃𝑃𝑅𝑅𝐺𝐺𝐸𝐸) is a non-empty set and is equal to 𝐶𝐶0. The same rule is given
in Line 9 of Figure 7 for Belief elements. However, such a rule is unnecessary for Goal elements, because
metamodel forces a Goal to have at least one Plan and Lines 2-3 already forces the Plan and the Goal to
be in the same Capability.

Unlike Beliefs, both Plans and Goals can be sharable in a MAS since agents can apply various plan codes
and have common Goals. Therefore, a fact called ForbiddingSharing is added (Figure 7, Lines 11-15) for
Belief instances. According to this fact, there is no such a Belief that it is included by a Capability which is
included by a different SWA.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

fact CapabilityCoverage {
 all g:Goal|some p:Plan|
 g.realized_by = p && p.~appliesPlan = g.~usesGoal
 all b:Belief,g:Goal|some c:Capability,e:Event|c.usesGoal=g
 && g.postcondition.e=b => b in c.includesBelief
}
fact CapabilityComposition{
 all p:Plan, b:Belief|
 p.~appliesPlan!=none && b.~includesBelief ! = none
}
fact ForbiddingSharing{
 no b:Belief|some disj swa1,swa2:SWA|some
 c:Capability|c.includesBelief=b &&
 (swa1.includes=c&&swa2.includes=c)
}

Figure 7: Semantic constraints of Agent’s Internal viewpoint

11

ACCEPTED MANUSCRIPT

3.3 Role Viewpoint

SWAs and SWOs (as a whole) can play roles and use ontologies to maintain their internal knowledge and
infer about the environment based on the known facts. As discussed in subsection 3.2, agents can also use
several roles and can alter these roles over the time. Role is a general model entity and should be
specialized in the metamodel according to architectural and domain tasks (Figure 8).

Figure 8: SEA_ML’s Role viewpoint

An ArchitectureRole defines mandatory roles for a Semantic Web enabled MAS which should be played
with at least one agent inside the platform regardless of the organization. On the other hand, a DomainRole
depends completely on the requirements and task definitions of a specific SWO created for a specific
business domain. Since a Role can have various duties, it can have different interactions with different
agents. So Roles realize the Interaction in which they participate. Two specialization of the
ArchitecturalRole are also defined in the model: RegistrationRole and OntologyMediatorRole.
RegistrationRoles are played by one or more SWAs which store capability advertisements of SWSs.
OntologyMediatorRole in the metamodel defines basic ontology management functionality that should be
supported by some agents in the SWO. Signature definitions for Role viewpoint are given in Figure 9.

01
02
03
04
05
06
07
08
09
10

sig Role {
 name: one Name,
 realizes: some Interaction,
}
sig Interaction{
 name: one Name,
}
sig RegistrationRole extends
ArchitectureRole{
}

11
12
13
14
15
16
17
18

sig ArchitectureRole extends
Role{
}
sig DomainRole extends Role{
}
sig OntologyMediatorRole
extends ArchitectureRole{
}

Figure 9: Signature definitions of Role viewpoint

In this viewpoint, it is provided that a SWO has Role instances and each role is played by an agent. This
control is given with RoleModularity fact listed in Figure 10. SWO - Role and SWA - Role relations are
added from other viewpoints (see Figure 3, Line 16 and Figure 6, Line 5) to Role entity in Alloy model to
support this constraint.

Figure 10: Role Modularity

01
02
03

fact RoleModularity{
 all r:Role| r.~has!= none || r.~plays!= none
}

12

ACCEPTED MANUSCRIPT

According to this rule, the dot join of Role and the transpose of the relation has (SWO×Role=has) will be a
set of SWO and should be a non-empty set. Or the dot join of Role and the transpose of plays relation
(SWA×Role = plays) will be a SWA set and this should be a non-empty set.

3.4 Environment Viewpoint

SEA_ML’s Environment viewpoint (Figure 11) focuses on the relations between agents and what they
access. Environment, in which agents reside, contains all non-agent Resources (e.g. database, network
device), Facts and Services. Each service may be a web service or another service with predefined
invocation protocol in real-life implementation. Facts are environment-based which means they can
change over time, in case the Environment has new knowledge from different resources.

Environment meta-entity, which is the main element of this viewpoint, has a relation to Fact, Service and
Resource with hasFact, hasService and hasResource respectively as can be seen in the signature
definitions in Figure 12 (Lines 9-11). SWA, which is imported from Agent’s Internal viewpoint, has access
to Environment in order to use its components (Line 5). Fact meta-entity is extended from ODM OWL
Class (which is imported from Object Management Group’s (OMG) Ontology Definition Metamodel
(ODM) (OMG, 2009)) and has a triple structure. Therefore, it has “subject”, “predicate” and “object”
attributes forming a Resource Description Framework (RDF) triple structure (Lines 18-20). Fact inherits
these attributes from ODM OWL Statement, however ODMOWLStatement is not included in this
viewpoint. The relation of Fact and ODMOWLStatement is included in the Ontology viewpoint (see
subsection 3.7).

Figure 11: SEA_ML’s Environment viewpoint

01
02
03
04
05
06
07
08
09
10
11
12

sig SWA {
 disj name, description,
 property,agent_type,
 agent_state : one Name,
 access_to: some Environment
}
sig Environment {
 name: one Name,
 hasFact: set Fact,
 hasService: set Service,
 hasResource: set Resource
}

15
16
17
18
19
20
21
22
23
24
25

sig Service{ name: one Name }
sig Fact {
 name: one Name,
 subject: one Name,
 predicate: one Name,
 object: one Name
}
sig Resource{
 name: one Name
 IsSharable: Boolean
}

Figure 12: Signature definitions of Environment viewpoint

13

ACCEPTED MANUSCRIPT

To enable Resource, Service and Fact to exist within Environment, EnvironmentComposititon fact is built
(Figure 13). That provides the composition of Resource, Service and Fact in Environment as similar to
Capability modularity constraint. According to this constraint every Environment set is a non-empty set
which is related to Service, Fact and Resource (Figure 13, Lines 2-5).

One of the required constraints is a control for sharing mechanism when agents use Resources. On the
other hand, access from an agent to resource is a kind of dynamic behavior. There is no direct relation
between an agent and resource in the metamodel. This relation is provided indirectly with the relations
“SWA (SemanticWebAgent) accesses to Environment” and “Environment has some Resources”. This can
be seen in ResourceAccess fact in Figure 13. Therefore, in Line 8, the Time column which provides the
dynamic behavior is added to the dot join of access_to and hasResource.

More precisely, let 𝑆𝑆𝑆𝑆𝑆𝑆0, 𝑆𝑆𝑆𝑆𝑆𝑆1 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆; 𝐸𝐸0,𝐸𝐸1 ∈ 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑟𝑟𝑅𝑅𝐸𝐸𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸 and (𝑆𝑆𝑆𝑆𝑆𝑆0,𝐸𝐸0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝐸𝐸0),
(𝑆𝑆𝑆𝑆𝑆𝑆1,𝐸𝐸1) ∈ 𝐺𝐺𝑎𝑎𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎_𝐸𝐸𝑅𝑅. It means that agent 𝑆𝑆𝑆𝑆𝑆𝑆0 accesses to Environment 𝐸𝐸0, while agent 𝑆𝑆𝑆𝑆𝑆𝑆1
accesses to both Environments 𝐸𝐸0 and

𝐸𝐸1. Let 𝑅𝑅0,𝑅𝑅1,𝑅𝑅2 ∈ 𝑅𝑅𝑇𝑇𝑎𝑎𝑅𝑅𝑢𝑢𝑟𝑟𝑎𝑎𝑇𝑇 and

(𝐸𝐸0,𝑅𝑅0), (𝐸𝐸0,𝑅𝑅1), (𝐸𝐸1,𝑅𝑅2) ∈ ℎ𝐺𝐺𝑎𝑎𝑅𝑅𝑇𝑇𝑎𝑎𝑅𝑅𝑢𝑢𝑟𝑟𝑎𝑎𝑇𝑇. Since there is no direct relation from SWA to Resource,
dot join of access_to and hasResource relations gives the relation set SWA and Resource. Then,
 access_to.hasResource = {(𝑆𝑆𝑆𝑆𝑆𝑆0,𝐸𝐸0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝐸𝐸0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝐸𝐸1)}. {(𝐸𝐸0,𝑅𝑅0), (𝐸𝐸0,𝑅𝑅1), (𝐸𝐸1,𝑅𝑅2)} =
{(𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅0), (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅1), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅1), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅2)}.

In this case, 𝑅𝑅2 is not in the intersection set but 𝑅𝑅0,𝑅𝑅1 are. Resources SWA0 and SWA1 are able to access
R0 and R1. This access should happen at different times. When we get the Cartesian (“arrow”) product of
this set and “Time” column, ∃ {𝑇𝑇0,𝑇𝑇1,𝑇𝑇2,𝑇𝑇3} ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇;
access_to.hasResource →Time = {(𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅0,𝑇𝑇0), (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅0,𝑇𝑇1),(𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅1,𝑇𝑇0),
(𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅1,𝑇𝑇1), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅0,𝑇𝑇0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅0,𝑇𝑇1), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅1,𝑇𝑇0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅1,𝑇𝑇1),
(𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅2,𝑇𝑇0), (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅2,𝑇𝑇1)}.

In Line 8, the created set is assigned to access set by using let keyword. For all SWAs, if dot join of SWAs
and access are equal to each other (this operation results like (R,T) Timesource×∈Re), then SWA
instances are equal to each other. For example, one of the elements of (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅0,𝑇𝑇0) and
(𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅0,𝑇𝑇0), one of the elements of (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅0,𝑇𝑇1) and (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅0,𝑇𝑇1), one of the elements of
(𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅1,𝑇𝑇0) and (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅1,𝑇𝑇0) or one of the elements (𝑆𝑆𝑆𝑆𝑆𝑆0,𝑅𝑅1,𝑇𝑇1) and (𝑆𝑆𝑆𝑆𝑆𝑆1,𝑅𝑅1,𝑇𝑇1)
should be removed from access set to order this constraint true. As a result, this constraint provides that
different agents cannot access the same non-sharable resource at the same time. Note that such complex
constraint is provided easily with this language.

One of the semantic rules, which provides transition between viewpoints, is given with EnvAccess fact in
Figure 13 (Lines 12–16). SWO element from MAS viewpoint, SWA element from agent internal viewpoint
and their relations are added to this constraint. In this manner, for all SWAs and such a SWO in which these
SWAs work, SWAs can access the Environment to which this specific SWO interacts at any time.

14

ACCEPTED MANUSCRIPT

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16

fact EnvironmentComposition {
 all s:Service, f:Fact, r:Resource|
 s.~hasService != none &&
 f.~hasFact != none &&
 r.~hasResource != none
}
fact ResourceAcccess{
 let access = access_to.hasResource ->Time { if
 all a1,a2:SWA| a1.access=a2.access => a1=a2
 }
}
fact EnvAccess{
 all swa: SWA | some t:Time, swo: SWO |
 swa.works_in.t =swo &&
 swa.access_to in swo.interacts_with
}

Figure 13: Semantic rules for Environment viewpoint

3.5 Plan Viewpoint

Plan viewpoint defines the internal structure of an agent's plans. Plan entity is the main element of this
viewpoint and has some attributes such as name, type, description and priority as illustrated in Figure 14.
Plan viewpoint elements are defined with signatures given in Figure 15. When an agent applies a Plan, it
executes its Tasks which are composed of the atomic elements called Actions. Send and Receive elements
extend Action (Figure 15, Lines 14 and 17). These action types are connected with a Message entity.
Sending a message to another agent or querying an ontology are some examples of Action.

Figure 14: SEA_ML’s Plan viewpoint

Some constraints are required during the Plan executions according to their priorities. Priority attribute can
define the execution order. For this purpose, some functions such as next and prev from Alloy ordering
module are imported and used (Figure 16, Line 2). Ordering module can be used to order sets mostly
states, numbers and so on (Jackson, 2012). As Plans and internal components represent states and state
transitions in our system, we use ordering module for these components as states. Therefore, we define

15

ACCEPTED MANUSCRIPT

ordering module such as Util/Ordering[Plan], Util/Ordering[Action] and Util/Ordering[Task]. Function
Next[] returns the next element of an element and Prev[] returns the previous element of the element in the
ordering. Prevs and Nexts return the set which is the previous set and the next set of the element
respectively.

01
02
03
04
05
06
07
08
09
10
11
12
13

sig Plan {
 disj name, type,
 description: one Name,
 priority: one Int,
 composed_of: set Task
}
sig Task{
 id: one Int,
 composed_of: set Action,
}
sig Action{
 id: one Int
}

14
15
16
17
18
19
20
21
22
23
24
25
26
27

sig Send extends Action{
 send: one Message
}
sig Receive extends Action{
 receive: one Message
}
sig Message{
 content,
 content_language,
 message_type,
 performative: one Name,
 sender: one SWA,
 receiver: some SWA
}

Figure 15: Signature definitions of Plan viewpoint

PlanPriority fact in Figure 16 provides that Plans with a smaller priority number execute earlier. The same
control is supplied for Task and Action inside the Plan internal. In Line 5, Task, which has a smaller id, is
executed first. It is similar with the control for Action elements in Line 6.

The other constraint is about the composition relations. Every Plan executes as a composition of Tasks and
every Task executes as a composition of Actions. Therefore in Lines 9-11, Plan set which belongs to Task
and Task set which belongs to Action are non-empty sets.

On the other hand, processing of a message shows that it is either a “send message” or “receive message”.
Hence, for all Messages, a Message is connected to either Send or Receive entity (Lines 14 and 15).

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

fact PlanPriority{
 all p1, p2:Plan| p1.priority<p2.priority => plan/prev[p2]=p1
}
fact ActionTaskOrdering{
 all disj T1,T2: Task| T1.id<=T2.id => task/next [T1] = T2
 all disj A1,A2: Action| A1.id<=A2.id =>action/next[A1] = A2
}
fact PlanInternal{
 all t:Task, a:Action|
 t.~composed_of != none &&
 a.~composed_of != none
}
fact MessageFact{
 all m:Message| some s:Send, r:Receive | m.~send=s ||
 m.~receive=r
}
fact MessageAccess{
 some rl: Role, g:Goal, t:Task, s:Send, r:Receive,
 i:Interaction, p:Plan| all m:Message |
 rl.has = g && g.realized_by = p && p.composed_of = t &&
 {t.composed_of = r || t.composed_of = s} &&
 {s.send = m || r.receive=m} => rl.realizes=i && i.includes=m
}

Figure 16: Semantic rules for Plan viewpoint

16

ACCEPTED MANUSCRIPT

MessageAccess constraint which provides the transition between the Plan viewpoint and the other
viewpoints is given in Figure 16 (Lines 17-23). The whole constraint, in summary, enables the control of
identification and uniqueness of each Message element by accessing the same Message instance over
different relationship paths. Interpretation of the constraint is illustrated in Figure 17. Interaction set from
Interaction viewpoint; Goal set from Agent’s Internal viewpoint, Role set from Role viewpoint are added
to the model as signatures. This constraint suggests that the Message received by ‘Receive’ or sent by
‘Send’ actions (already in the agent’s Task contained by the Plan that figured out the Goal is owned by the
Role (path 2 in Figure 17)) should be the same with the Message which is contained by the Interaction
realized by the same Role (path 1 in Figure 17).

Figure 17: Transition among the viewpoints for the MessageAccess rule

3.6 Interaction Viewpoint

This viewpoint focuses on agent communications and interactions in a MAS and defines entities and
relations such as Interaction, Message, and MessageSequence (Figure 18). Interaction is the main element
of this viewpoint (Figure 19, Line 12). Agents interact with each other based on their social abilities. Each
interaction, by itself, consists of some Message submissions (Figure 19, Line 17) each of which should
have a message type, (Figure 19, Line 3) such as "inform", "request", or "acknowledgement". Specifically,
each communication between initiator and participant agents can be modeled with Messages which can
also have performative property (e.g. inform, query, or propose) compatible with IEEE FIPA standards
(FIPA, 2002a). The content language property of Message entity is used for the communication between
agents and can be one of the communication languages such as Knowledge Query and Manipulation
Language (KQML) (Finin et al., 1994) or FIPA Agent Communication Language (ACL) (FIPA, 2002b).
Interaction element extends FIPAContractNet element. FIPAContractNet represents IEEE FIPA's
specification for the interactions of agents, which applies the well-known Contract Net Protocol (CNP)

17

ACCEPTED MANUSCRIPT

(Smith, 1980). In addition, each Interaction should have a MessageSequence to control the communication
flow (Figure 19, Line 16). Communication of distributed agents can be handled by a sequence diagram or
an activity diagram with using this entity.

Figure 18: SEA_ML’s Environment viewpoint

Agent interaction rules are important for this viewpoint. In Figure 19, Lines 5, 6 and 10, a co-domain set of
the relations is defined as SWA. Notice that, a SWA actually is not included in this viewpoint; however, a
part of SWA signature set is defined here again to model this viewpoint and to define the rules (Figure 19,
Lines 22-24).

01
02
03
04
05
06
07
08
09
10
11
12

sig Message{
 content, content_language,
 message_type,
 performative: one Name,
 sender: one SWA,
 receiver: some SWA
}
sig MessageSequence {
 id: one Int,
 agent_set: some SWA
}
sig Interaction extends

13
14
15
16
17
18
19
20
21
22
23
24

FIPAContractNet{
 name: one Name,
 has: one
 MessageSequence,
 includes: some Message,
}
sig FIPAContractNet{
 spec_no: one Int
}
sig SWA {
 cooperates: set SWA
}

Figure 19: Signature definitions of Environment viewpoint

In Figure 20, AgentTalking fact provides cooperation for sender and receiver agents. In Line 2, for all
Messages and for any two SWAs, let swa1 in SWA’s receiver set and let swa2 in SWA’s sender set, either
swa2 should be in the set which swa1 cooperates with or swa1 should be in the set which swa2 cooperates
with. Shortly, if two SWAs send messages to each other, they should be in cooperation.

On the other hand, AgentSet fact in Figure 20 provides that all sender and receiver SWA sets are in the set
which message sequence includes. In Line 7, for all Interactions and MessageSequences and for such a
Message; a Message is in the set “Interaction includes” and MessageSequence is in the set “Interaction
has” (Line 8). Therefore the receiver and the sender of the same Message should be in a SWA set of the
same MessageSequence (Line 9).

SelfMessage fact provides that sender and receiver of a Message should not be the same agent. Since
Message concept is considered as a structure for messaging between the agents, messaging between the
internal components of the agents are prevented.

18

ACCEPTED MANUSCRIPT

01
02
03
04
05
06
07
08
09
10
11
12
13

fact AgentTalking{
 all m: Message| some swa1,swa2: SWA| swa1 in m.receiver
 &&swa2 in m.sender=>swa2 in swa1.cooperates || swa1 in
 swa2.cooperates
}
fact AgentSet{
 all i:Interaction | some m:Message, ms: MessageSequence|
 m in i.includes && ms in i.has &&
 m.receiver in ms.agent_set && m.sender in ms.agent_set
}
fact SelfMessaging{
 all m:Message| m.sender != m.receiver
}

Figure 20: Semantic rules for Interaction viewpoint

At the same time, some constraints are supplied to be used during the model analysis such as functions or
predicates for reusability especially on message sending and receiving. These constraints can be defined as
pred or fun in Alloy (Taghdiri and Jackson, 2003). Pred definition is preferred here to be able to run the
cases separately. MsgReceivePrecondition in Figure 21 supplies the preconditions for message receiving.
Message Receiving is provided with ReceiveMsg predicate and sending message is provided with
SendMsg predicate.

A relation called getMessage to associate a Message with “Time” (their Cartesian product with SWA) is
defined in Line 2 of Figure 21 for MsgReceivePrecondition predicate. In Line 3, it is provided that current
Message is not in the set of received Messages before and in Line 4 the Message is in the set of sent
Messages to be able to be received. Precondition operation is used in Line 8 for ReceiveMsg predicate and
t’ is the previous time before t. Following messages are defined (Line 10) similar to the one in Line 2.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

pred MsgReceivePrecondition (swa: SWA, msg:Message, t:Time){
 let getMessage = SWA->Time->Message {
 msg !in swa.getMessage[prev[t]]
 msg.sentTime in prevs[t]
 }
}
pred ReceiveMsg (swa: SWA, t:Time, msg: Message){
 MsgReceivePrecondition [swa, msg, t]
 let t' = prev[t] {
 let getMessage = SWA->Time->Message{
 swa.getMessage[t] = swa.getMessage[t'] + msg
 }
 }
 msg.receiver = SWA
}
pred SendMsg (swa: SWA, t:Time, msg: Message){
 let t' = prev[t] {
 let sendMessage = SWA->Time->Message{
 swa.sendMessage[t] = swa.sendMessage[t'] + msg
 }
 }
 msg.sender = SWA && msg.sentTime =t
}

Figure 21: Messaging Constraints

Finally, current message set is defined as the union of current message and previous messages (Line 11).
Current message is associated with aforementioned SWA’s receiver (Line 14). On the other hand, there is
no precondition for message sending. SendMsg predicate is defined in a similar way to receiveMsg.
Additionally, current Message’s sender is associated with the SWA and current time is associated with the
SWA’s sent time (sentTime).

19

ACCEPTED MANUSCRIPT

3.7 Ontology Viewpoint

A MAS Organization in Semantic Web is inconceivable without ontologies. An ontology represents any
information gathering and reasoning resource for MAS members. SEA_ML’s Ontology viewpoint brings
all ontology sets and ontological concepts together as shown in Figure 22. Signature definitions for the
elements of this viewpoint are shown in Figure 23. ODM OWL Ontology from OMG's ODM (OMG,
2009) is the adopted standard for all of our ontology sets such as Role, Organization and Service
Ontologies. Therefore, they extend the ODM OWL Ontology class (in Figure 23, Lines 9, 12 and 15
respectively) which has the attribute description and contains one or more ODMOWLStatements and
ODMOWLClasses.

According to this viewpoint, all of the ontologies are known by their related elements. Collection of the
ontologies creates knowledgebase of the MAS that provides domain context. These ontologies are
represented in SEA_ML models as OrganizationOntology instances. Inside a domain role, an agent uses a
RoleOntology which is defined for the related agent role concepts and their relations. Semantic interfaces
and capabilities of SWSs are described according to ServiceOntologies.

Figure 22: SEA_ML’s Ontology viewpoint

Finally, for the Semantic Web environment, each fact or an agent's belief is an ontological entity and they
are modeled as an extension of ODMOWLStatement. ODMOWLStatement has a structure as a triple of
RDF in semantic web: “subject”, “predicate”, “object” (Lines 20-22). Although Belief and Fact elements
have the same attributes; they have different interpretations. For instance, a Fact in the Environment keeps
the current market value as 1.803 TL (Turkish Liras) for one US dollar. An agent extracts this information
and keeps it in its knowledgebase. However, when the value changes to 1.700 TL, agents may not update
the information. Therefore, Fact and Belief may keep different values for the same variable. This can result

20

ACCEPTED MANUSCRIPT

in an agent having inconsistencies in its knowledgebase regarding the real world. Some constraints can
provide an updated Beliefbase with some frequencies such as the abovementioned example.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

sig ODMOWLOntology{
 name: one Name,
 description:one Name,
 includesStatement: some
 ODMOWLStatement,
 includesClass: some
 ODMOWLClass
}
sig RoleOntology extends
 ODMOWLOntology{
}
sig OrganizationOntology extends
 ODMOWLOntology{
}
sig ServiceOntology extends
 ODMOWLOntology{
}
sig ODMOWLStatement{
 name: one Name,
 subject: one Name,
 predicate: one Name,
 object: one Name
}
sig ODMOWLClass{
 name: one Name }

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

sig Fact extends
 ODMOWLStatement{
}
sig Belief extends
ODMOWLStatement{
 description: one Name,
 update_type: one Type
}
sig Role {
 name: one Name,
 knowsOrganizationOntology:
 some OrganizationOntology,
 knowsRoleOntology:
 some RoleOntology,
}
sig SWO {
 has: some Role,
 knowsOrganizationOntology:
 some OrganizationOntology
}
sig SWS{
 name: one Name,
 depends_on:
 some ServiceOntology
}

Figure 23: Concepts of Ontology viewpoint

KnowledgeConsistency predicate is written to eliminate the inconsistencies between Belief and Fact by
comparing their corresponding attributes (see Figure 24). For this, it is appropriate to compare a SWA’s
Belief and Fact which is accessed by the same SWA. Therefore SWA, Capability and Environment sets are
added with required relations. Exemplarily, this pred can run for the triples (weather, is, 15 degrees
Celcius) and (weather, is, 30 degrees Celcius) without conflict.

Another constraint is needed to control the relationships between the meta-elements and the ontologies
they use. OntologyDependency fact in Figure 24 associates a SWO and a Role which use
OrganizationOntology. According to this constraint, if a SWO knows an OrganizationOntology and a Role
knows that OrganizationOntology, then the SWO has that Role.

01
02
03
04
05
06
07
08
09
10
11
12
13

pred KnowledgeConsistency (b:Belief, f:Fact){
 all swa:SWA| some e:Environment, c:Capability|
 e in swa.access_to && f in e.hasFact &&
 c in swa.includes && b in c.includesBelief &&
 f.subject = b.subject && f.predicate = b.predicate =>
 f.object = b.object
}
fact OntologyDependency{
 all swo:SWO, r:Role | some OrgOnt:
 OrganizationOntology| swo.knowsOrganizationOntology =
 OrgOnt && r.knowsOrganizationOntology = OrgOnt =>
 swo.has = r
}

Figure 24: Ontological constraints

21

ACCEPTED MANUSCRIPT

3.8 Agent – Semantic Web Service Interaction Viewpoint

Agent-SWS Interaction viewpoint (Figure 25), models the interaction between agents and SWSs. Concepts
and their relations for appropriate service discovery, agreement with the selected service and execution of
the service are all defined in this viewpoint. Furthermore, the internal structure of SWS is modeled inside
this viewpoint. The preliminary version of the semantics pertaining to this viewpoint is first discussed in
(Getir et al., 2012).

Semantic Web Agents apply Plans to perform their tasks. In order to discover, negotiate and execute
Semantic Web Services dynamically, the extensions of the Plan entity are defined in the metamodel.
Semantic Service (SS)_Finder Plan is a Plan in which the discovery of candidate semantic web services
takes place. SS_AgreementPlan involves the negotiation on QoS metrics of the service (e.g. service
execution cost, running time or location) and agreement settlement. After service discovery and
negotiation, the agent applies the SS_ExecutorPlan to execute appropriate semantic web services. As we
discussed before, Semantic Service Matchmaker Agents (SS_MatchmakerAgent) which are extensions of
SWAs represent service registry for agents to discover services according to their capabilities. In addition, a
SS_RegisterPlan can be applied with a SS_MatchmakerAgent to register a new SWS.

Figure 25: SEA_ML’s Agent–SWS Interaction Viewpoint

22

ACCEPTED MANUSCRIPT

SWS modeling approaches (e.g. OWL-S (Martin et al., 2004)) mostly cover three important pieces of
information about semantically enriched web services which are also modeled in SEA_ML: Service
Interface, Process Model and Physical Grounding. Service Interface is the capability representation of the
service in which service’s inputs, outputs and any other necessary descriptions are listed. Process Model
defines service’s internal combinations and service execution dynamics. Finally, Physical Grounding
defines the service’s real execution protocol. Since the operational part of today’s semantic services is
mostly a web service, Web Service concept is also included in SEA_ML’s metamodel associated with the
physical grounding mechanism. These meta-entities are shown in Figure 25 with Interface, Process and
Grounding entities respectively. These components can use Input, Output, Precondition and Effect (a.k.a.
IOPE), which model the fundamental properties of a service and extend OWLClass from OMG’s ODM
(OMG, 2009). The meta-elements of this viewpoint are also defined in Alloy signatures which are shown
in Figure 26.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

sig SWA {
 plays: Role some -> Time,
 applies: some Plan,
}
sig SS_MatchmakerAgent extends SWA{
 appliesSS_RegisterPlan:
 SS_RegisterPlan some->one Time,
 playsRegistrationRole:RegistrationRole some->one Time
}
sig Role {
 name: one Name,
 interacts_with: some SWS,
}
sig RegistrationRole extends Role {
 advertises: some SWS
}
sig SWS{
 name: one Name,
 composed_of: set WebService
}
sig Interface{
 presents: some SWS
 hasInputt:Input,
 hasOutput:Output,
 hasEffect:Effect,
 hasPrecondition:Precondition
}
sig Process{
 described_by: some SWS
 hasInputt:Input,
 hasOutput:Output,
 hasEffect:Effect,

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

 hasPrecondition:Precondition
}
sig Grounding{
 supports: some SWS
 calls: one WebService
}
sig Input extends ODMOWLClass{}
sig Output extends ODMOWLClass {}
sig Effect extends ODMOWLClass {}
sig Precondition extends ODMOWLClass {}
sig Service{
 name: one Name
}
sig WebService extends Service{
}
sig Plan {
 disj name,type,description:one Name,priority:one Int,
}
sig SS_RegisterPlan extends Plan{
 advertises: Interface some ->Time
}
sig SS_FinderPlan extends Plan {
 interacts_with: some SS_MatchmakerAgent
 discovers: set Interface,
}
sig SS_AgreementPlan extends Plan{
 negotiates: some Interface
}
sig SS_ExecutorPlan extends Plan{
 executes: some Process,
 uses: some Grounding
}

Figure 26: Concepts of Agent–SWS Interaction

One type of static semantic rules we define for this viewpoint deals with the composition relationships
between Service-Environment and SWS–WebService elements. For instance, ServiceComposition fact is
provided (in Figure 27, between Lines 1 and 4). According to that fact, every WebService should be
connected to SWS via composed_of relation.

On the other hand, SEA_ML metamodel specifically focuses on agent-SWS interaction. As a result of that,
Agent_SWS_Interaction fact in Figure 27 guaranties that if there is a WebService in an Environment, there
is at least one interaction between an agent and that web service (over related web service’s semantic

23

ACCEPTED MANUSCRIPT

interface). Line 7 in Figure 27 stipulates that each Environment has a Web Service. This provides a SWS in
the environment since a WebService requires at least one SWS as a precondition of implication. There are
two ways which provide the interaction between an agent (SWA) and a SWS. sws1 represents the first way
which yields that a SWA plays a Role and this Role interacts_with the SWS. On the contrary, sws2
represents the second way for agent-SWS interaction which means a SS_FinderPlan is applied by a SWA
and this plan discovers an Interface and the Interface presents the SWS. Finally cardinality sum of sws1
and sws2 should be at least one. The other ways from SWA through the plan types to SWS are not added as
a constraint, because the other plan types cannot be applied without an existence of a SS_FinderPlan. In
other words, if there is a SWS in the environment, a SWA should interact with it anyway. In order to make
a clear understanding of this semantics, the visualization of this constraint’s application is illustrated in
Figure 28. Path 1 represents sws1 variable and path 2 represents sws2 variable in Agent_SWS_Interaction
fact.

A SWA can apply all kinds of plan types. However, in this system a SWA focuses on finder, agreement
and execution plan types and registration is not its task. But according to inheritance, a SWA can apply
SS_RegisterPlan as it extends Plan. Therefore, InheritanceBreak fact is added to break the effect of this
inheritance (see Figure 27). In Line 17, this control is fulfilled. SS_MatchmakerAgent’s task is to register
the services, advertise them and help SWAs to find them.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

fact ServiceComposition{
 all s:Service | s.~has != none
 all wb:WebService | wb.~composed_of != none
}
fact Agent_SWS_Interaction{
 all e: Environment| some ws:WebService
 ws in e.hasService =>
 {some swa1,swa2:SWA, sws1,sws2:SWS, r:Role,
 t1,t2,t3,t4:Time, f:SS_FinderPlan, i:Interface, x:Int
 |swa1.plays.t1= r && r.interacts_with.t2=sws1
 && swa2.applies.t3 = f && f.discovers.t4 =i &&
 i.presents= sws2
 && #sws1 =x && x.plus[#sws2] >=1
 }
}
fact InheritanceBreak{
 no a:SWA,rp:SS_RegisterPlan, t:Time| a.applies.t= rp
}

Figure 27: Static semantics control for Agent–SWS Interaction

Another behavioral control is given with the InterfaceControl fact in Figure 29. This control restricts meta-
elements such as SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan to reach an unregistered
Interface. In other words, a SS_FinderPlan should try to discover a new Interface which is in the set of
Interface(s) that is advertised by a SS_RegisterPlan earlier (Line 4). Analogously, a SS_AgreementPlan
should try to negotiate with an Interface which is in the set of Interface(s) discovered previously (Line 5 in
Figure 29). It is also similar for a SS_ExecutorPlan’s Interface access (Lines 7- 8). For this reason, (in)
relations on Interface subset are held in this fact.

24

ACCEPTED MANUSCRIPT

Figure 28: Agent–SWS Interaction Paths

01
02
03
04
05
06
07
08
09

fact InterfaceControl{
 all f:SS_FinderPlan, r:SS_RegisterPlan,
 a:SS_AgreementPlan | some t1,t2,t3: Time|
 f.discovers.t3 in r.advertises.t1 &&
 a.negotiates.t1 in f.discovers.t2
 all i:Interface, p:Process, g:Grounding, e:SS_ExecutorPlan |
 p in e.executes && g in e.uses &&
 p.described_by in i.presents && g.supports in i.presents
}

Figure 29: Behavioral controls

Additionally, the SWS which is supported by a Grounding that a SS_ExecutorPlan uses and the SWS
element which is described by a Process that a SS_ExecutorPlan executes should be in the SWS set which
is presented by an Interface (Lines 6-8 in Figure 29).

In our study, behavioral and dynamic semantics are especially detailed for supporting the execution
ordering of SWA Plans. Required state transitions are illustrated with two state diagrams as depicted in
Figure 30. Figure 30-a focuses on the sequence of plan types that needs an exact order and Figure 30-b
focuses on the execution of all plan types which handle cascading records of SWS discovery, agreement
with SWS and execution of SWS processes. It draws the whole procedure of agent-SWS interaction steps
within plan types.

25

ACCEPTED MANUSCRIPT

Figure 30: State diagram of Plan types in SEA_ML. a) execution order of Plan types b) Agent-SWS

Interaction Procedure

To order the Plan states, we used util/ordering module of Alloy. This is appropriate to define the order of
plan types for the intra-plan control. These transitions are provided with PlanStates fact (Figure 31) which
explains that previous element of a SS_FinderPlan can be a SS_RegisterPlan (Line 3), previous element of
a SS_AgreementPlan can be a SS_FinderPlan (Line 4) and finally previous element of a SS_ExecutorPlan
can be a SS_AgreementPlan (Line 7). This order provides a dependency among plan types for the SWS
Interaction process.

01
02
03
04
05
06
07
08

fact PlanStates{
 all disj f:SS_FinderPlan| some r:SS_RegisterPlan|
 prevs[f]=r
 all a:SS_AgreementPlan| some f:SS_FinderPlan |
 prevs[a] =f
 all e:SS_ExecutorPlan|some a:SS_AgreementPlan |
 prevs[e]=a
}

Figure 31: Semantics of plan state transitions

We model the inner relation ordering from the beginning of the interaction between agent and SWS until
the execution of SWS. SWSInteractionProcedure fact in Figure 32 handles this procedure. Line 6 extracts
the times of relations “SS_MatchmakerAgent applies SS_RegisterPlan” and “SS_RegisterPlan advertises
Interface” to the t1 and t2 time variables respectively. In Line 7, we order them in such a way that events
pertaining to t1 should be realized before t2 (prev[t2]=t1).We use util/ordering module to order the times
as well, since a definition like t1<t2 is not allowed in Alloy. While prev[] and next[] are used for the
predecessor and successor element, prevs[] and nexts[] are used for an element of processor and successor
sets. Line 8 extracts the time “SWA applies the SS_FinderPlan” and assigns it to the time t3. Before
applying the SS_FinderPlan, at any time, there should be a registration in the previous events. Therefore,
we add the prevs[t3]=t2 constraint. On the other hand, roles played by a SWA or SS_MatchmakerAgent can
be realized at any time in the system.

Line 9 in Figure 32 extracts the times of events “SS_FinderPlan interacts_with SS_MatchmakerAgent”
and “SS_FinderPlan discovers Interface” and orders in such a way that t3<t4<t5 (Line 10). Similar
assignments of t6 and t7 are handled for the events “SWA applies SS_AgreementPlan” and
“SS_AgreementPlan negotiates Interface”. If the result of SS_FinderPlan (finding_result) exists, we order
the events in the order of t5<t6<t7 (Line 12 in Figure 32), otherwise, event times of “SWA applies
SS_AgreementPlan” and “SS_AgreementPlan negotiates Interface” are assigned as an empty set (Line 13
in Figure 32). Analogously, in Lines 13, 14 and 16, the times t8, t9, t10,t11 are assigned to events “SWA
applies SS_ExecutorPlan”, “SS_ExecutorPlan executes Process”, “SS_ExecutorPlan uses Grounding” and

26

ACCEPTED MANUSCRIPT

“Grounding calls WebService” respectively. If the result of SS_AgreementPlan (agreement_result) is
negative (Line 14 in Figure 32), t8 and t9 will be assigned as empty sets (not applied) (Line 15).
Otherwise, we order the events in an ordering such as t8<t9<t10<t11 (Lines 15 and 17 in Figure 32).

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

fact SWSInteractionProcedure {
 all a: SWA, ma:SS_MatchmakerAgent, rp:SS_RegisterPlan,
 fp:SS_FinderPlan, ap:SS_AgreementPlan,ep:SS_ExecutorPlan,
 i:Interface, p:Process, g:Grounding,ws:WebService | some
 t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11: Time |
 ma.appliesSS_RegisterPlan[rp]=t1 && rp.advertises[i] = t2 &&
 prev[t2]=t1 &&
 (a.applies[fp] = t3&& prevs[t3]=t2 &&
 fp.interacts_with[ma]=t4 && fp.discovers[i]=t5 &&
 prev[t5] = t4 && prev[t4]=t3) && (a.applies[ap] = t6 &&
 ap.negotiates[i]=t7&& (fp.finding_result = True =>
 (next[t5]=t6 && next[t6]= t7) else
 (t6=none && t7= none)))&&(a.applies[ep] = t8 &&
 ep.executes[p]=t9 && (ap.agreement_result!=True =>
 (t8=none && t9= none) else (next[t7]=t8 && next[t8]=t9 &&
 (ep.uses[g] = t10&& g.calls[ws] =t11 &&
 (next[t9] = t10 && next[t10] = t11)))))
}

Figure 32: Semantics of Agent–SWS interaction based on Time

The “Time” column is added for ordering the relations during agent–SWS interaction. Every event is
realized in a specified time. System sequence is provided by ordering these events, in other words, times of
events. This constraint is important because it represents the events based on time. Time ordering gives a
representation to sort every event in an exact order. However, this constraint needs a huge memory and
time complexity during the analysis and creating the subset space as is discussed in Section 4.1 of this
paper. Therefore, another type of constraint with subset definitions, which provides the meaning of
ordering plan types by reducing to two dimensional relations, is also supplied in our study (Figure 33).
According to Agent-SWSPlanOdering constraint, if a SS_FinderPlan is applied by a SWA, at least one
SS_RegisterPlan should be applied by a SS_MatchmakerAgent (Lines 3- 4 in Figure 33). Other plan types
are controlled in the same way. If SS_AgreementPlan is applied, SS_FinderPlan should already be in the
related set. In other words, “SS_FinderPlan should be applied before SS_AgrementPlan” constraint is
provided (Lines 5-6). Same constraint is applied for SS_ExecutorPlan in Lines 7-8.

01
02
03
04
05
06
07
08
09

fact Agent_SWSPlanOrdering {
 all swa:SWA, sm:SS_MatchmakerAgent|
 (SS_FinderPlan in swa.applies =>
 #(sm.appliesSS_RegisterPlan) >=1)&&
 (SS_AgreementPlan in swa.applies =>
 SS_FinderPlan in swa.applies) &&
 (SS_ExecutorPlan in swa.applies =>
 SS_AgreementPlan in swa.applies)
}

Figure 33: Semantics of Agent–SWS process based on Subset definitions

4. Formal Model Analysis

Model analysis contributes in three ways to the abstraction of software. Firstly, it supports to simulate
some possible scenarios by generating concrete examples. Secondly, it keeps the model and instance
consistent. Finally, it can extract the faults which could be seen later (Jackson, 2012). On the other hand,
model checking and model analysis are becoming critical in the use of DSMLs. Since DSMLs deal with

27

ACCEPTED MANUSCRIPT

complex systems’ domains, they have huge instances and models. Therefore, it needs a system simulation
and checking in the abstract level before applying the system. For example, complicated structure of some
agent behaviors or interactions of agents with semantic web services should be taken into account during
the development of SEA_ML instance models.

Development with Alloy specification language is also supported with a fully automated analyzer tool
which visualizes and checks the models, and produces instances. Every analysis in this tool works through
the aim of solving a constraint that either produces a counter-example or produces an instance. Alloy
analyzer translates constraints (facts) to Boolean constraints and then these constraints are transferred to an
off-the-shelf SAT solver (Moskewicz et al., 2001; Goldberg and Novikov, 2002).

Alloy model analyzer is based on the idea of finding counter-examples and witnesses which come from
model checking (Clarke et al., 2000). This idea is applied with scope size which defines the maximum
number of instances for every element in the instance model that Alloy analyzer generates. Counter-
examples find the system faults by generating the negative formula of claim. Hence, they can detect the
possible errors according to the assertions.

On the other hand, Alloy simulates the possible scenarios by generating some combinations from instance
space. It is also possible to specify an instance model and check it. In this case, analyzer looks for this
model inside the instance model combination sets. It does not mean that Alloy finds the model which the
user intended if no restriction is applied. However, if a user specifies the predicates and restricts the scope
for every instance, it is possible to create the desired model within this scope. If a model is not found, it
means that there is no instance model that satisfies the needs of the intended model; in other words Alloy
cannot find an instance for that specific scope. Assertion checking or model finding can be performed in
some scope. As the scope size increases, it may take too much time to find a result. Hence, scope size is a
limitation of Alloy.

Considering the DSML perspective, the analyzer has a model structure control. When the analyzer is
executed, it controls all sets. Some static semantics which come from the metamodel such as multiplicity
relations can be provided easily in set definitions. Dynamic semantics can be defined based on logic and
simulated with the analyzer by using the Time column to observe system behavior in runtime. Analyzer
does not only check the runtime execution of a rule, but also it detects the inconsistencies among all
constraints (facts) and set definitions. Following subsections discuss scope analysis and use of the defined
semantics within a case study.

4.1 Scope Analysis

Scope size defines the maximum number of element instances in a model. Every analysis scans all
instances in the space of defined scope until finding an instance. If there is not any instance, the result
returns null. If the command is an assertion it means that there is no example which disproves the formula
in that scope. Unfortunately it does not guarantee that there is no instance in a larger scope. If the
command is a predicate, it does not have this kind of scenario in this scope, but it may have in larger
scopes. Default scope size is three in Alloy. Scope size can be specified differently for all elements in the
model. If Alloy analyzer finds an instance or a counter-example, it means that it will find in the larger
scope as well. This case is called Scope Monotonicity. Hence, it provides simplicity for instance models or
scenarios.

28

ACCEPTED MANUSCRIPT

Property Checking:
We provided model validation with particular assertions in particular scopes. Scope size defines the
maximum number of every super set (non-subset) in the instance model. According to the relations in the
model, we can define a scope size which can be increased step by step until finding an example. As the
scope size increases, it may take hours to have a result. However, it is quite valuable if we can show
validation of the model for a possible scope size.

We created some assertions according to SEA_ML properties and obtained results in different scopes.
Properties are held for agent-SWS interaction viewpoint since it is crucial for evaluating SEA_ML
capabilities. Some of the defined assertions are given in Figure 34. All assertions are checked in a
computer with Intel i7 1.73 Ghz CPU and 4 GB RAM. Achieved results are presented in Table 1.

SWSInteractionProcedure fact given previously in Figure 32 creates a huge space for analysis. Assertions
in Figure 34 were tried to be tested with this constraint. However, even for the scope size 4, it lasted 3
hours and resulted with out-of-memory error in the computer with above mentioned configuration. The
same example was tried for one month with a better computer which has Intel i7 3.20 Ghz CPU and 16 GB
RAM. No result was obtained after one month nonstop execution. Therefore, to reduce the space from
triples to binary, Agent_SWSPlanOrdering fact (Figure 33), which gives the same meaning in a different
way, is considered for simulations and property checking.

During Agent-SWS interaction, SWA’s plan types are expected to be applied in an order.
PlanTypeProperty assertion (Figure 34) claims that if the number of SS_AgreementPlan is greater than or
equal to 1 (which means an SS_AgreementPlan exists in the instance model being processed),
SS_FinderPlan is also greater than or equal to 1. Same stands for SS_AgreementPlan and
SS_ExecutorPlan. It is expected that there is no counter-example which breaks this order and we
experienced no counter example until scope size 25 (Table 1). This scope size is selected based on our
processing machine power and implies that all combinations of maximum 25 elements for each signature
are considered to find possible instances. In the system, services should be registered by
SS_MatchmakerAgent before a SWA applies a plan and executes them. Hence, RegistrationProperty
claims that if the set of Plans which SWA applies is not empty then SS_RegisterPlan set, which
SS_MatchmakerAgent applies, should not be empty too.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

assert PlanTypeProperty {
 all fp: SS_FinderPlan, ap:SS_AgreementPlan, ep:SS_ExecutorPlan|
 #ap>=1 => #fp >=1 && #ep >=1 => #ap >=1
}
assert RegistrationProperty{
 all swa:SWA, sm:SS_MatchmakerAgent|
 swa.applies !=none => sm.appliesSS_RegisterPlan ! = none
}
assert NoConflictProperty{
 no ma:SS_MatchmakerAgent|
 some rp:SS_RegisterPlan | ma.applies= rp
}
assert EnvironmentProperty{
 no wb:WebService|#wb.~has=0
}

Figure 34: Assertions pertaining to the agent-SWS interaction viewpoint

A SWA can apply different kinds of plans during its interaction with SWS. Since SS_MatchmakerAgent is
a specialization of SWA, naturally it inherits "applies" relation from SWA. As mentioned before, applying
SS_RegisterPlan is a plan type that can only be applied by SS_MatchmakerAgent instances. However, the

29

ACCEPTED MANUSCRIPT

relation between SS_RegisterPlan instances and SS_MatchmakerAgent instances is not represented with
the ordinary "applies" relationship. It is represented with "appliesSS_RegisterPlan". Therefore the
constraint called InheritanceBreak is provided (See Figure 27) to prevent accidentally establishing
"applies" relation between a SS_MatchmakerAgent and a SS_RegisterPlan. NoConflictProperty claims that
a SS_MatchmakerAgent does not have applies relation with SS_RegisterPlan because it has another
relation to access the same SS_RegisterPlan.

EnvironmentProperty claims that a WebService can exist inside an environment. More precisely, the
container set which contains a WebService is a non-empty set. No counter-example is expected because of
the composition control of these two elements. However analyzer results a counter-example in a large
scope (see Table 1). Therefore this constraint was investigated again and changed as follows. No counter-
example is found in a larger scope after that modification.

assert EnvironmentProperty2{
 no wb:WebService|wb.~has !=none

}

Table 1: Results of scope analysis on some of the properties of Agent-SWS Interaction viewpoint
Assertion Scope

Size
Counter-examples Elapsed

time (ms)
Number
of Clauses

PlanTypeProperty

3
4
10
25

No counterexample
is found, assertion
may be valid.

842
125
374
1357

5474
9857
89465
1567426

PlanTypeProperty
50 Fatal error: Memory

exceed
- -

EnvironmentProperty

5
10
15

No counterexample
is found, assertion
may be valid

115
260
380

17127
92925
304693

EnvironmentProperty
20 Counterexample is

found. Assertion is
invalid.

8967 304693

RegistrationProperty

10
25
30

No counterexample
is found, assertion
may be valid

246
1736
2271

92862
1590572
2964157

NoConflictProperty
10
20
30

No counterexample
is found, assertion
may be valid

360
1305
2982

92893
758873
2964248

Model Finding:
As the second task of the analyzer, predicates can generate instance models in a visual or textual manner
by searching a binding that is true for model formula. Further, in the case that the user specifies the
predicates, defines properties of the instance model, and restricts the scope for every instance, an intended
model can be created within this scope in the instance set. If the analyzer finds an example in a scope,
Alloy claims that it will also find an instance in larger scopes on the basis of scope monotonicity. If it
cannot find any example in a reasonable scope (due to computer memory and/or time limitations), it means
that Alloy cannot find an instance model according to the specifications in the predicate in that scope.
Nevertheless, there may be an instance model in a bigger scope.

30

ACCEPTED MANUSCRIPT

Within our study, different predicates are experienced in different scopes and resulted in Table 2. Some
predicates are presented in Figure 35. As it is possible to create models without any input, first of all pred
simple {} is run to control the constraint whether they are consistent with each other. Screenshot in Figure
36 is created in the scope size 1, 2, 1 for SWA, Role and Plan elements respectively. It simulates that a
SWA plays different Roles at different times.

01
02
03
04
05
06
07

pred simple {}
pred Initialize {
 one appliesSS_RegisterPlan
}
pred SWAstart { some SWA && one SS_MatchmakerAgent &&
one SS_FinderPlan && SS_MatchmakerAgent.applies = none
}

Figure 35: Predicates for agent-SWS interaction viewpoint

Figure 36: Pred Simple simulation screenshot. A SWA can play different roles at different times

Note that the projection feature of Alloy is used during model generation. When a predicate is run and an
instance model is found, signature instances exist as elements in the model as can be seen in Figure 36. But
some elements, for example Name and Time, do not belong to the metamodel. Therefore, it is not required
to keep them as an instance element and instead, their projections are used as seen in Figure 36 for Time
instance. Projection is also used for attribute elements in the metamodel. For example, name, description
and property seem as some attributes since Name set is projected. Time projection also provides evidence
of the behavior of the system at different times by generating different instance models for the same
predicate.

Initialize predicate in Figure 35 represents the initialization of the system. SS_MatchmakerAgent applies
SS_RegisterPlan and plays RegistrationRole. System starts with the Registration. The smallest scope size
is found with 3 and 2 for Plan (Table 2).

31

ACCEPTED MANUSCRIPT

SWAstart predicate executes the system. In this scenario, a SWA enters the system and applies a
SS_FinderPlan to fulfill the user’s request. Before a SWA, a SS_MatchmakerAgent should have already
been in the system for registration of semantic web services. The smallest scope size is fixed as 3 and 2 for
SWA and Plan respectively. Example atoms are represented in Table 2.

Table 2: Results of scope analysis within Agent-SWS Interaction viewpoint and model finding
Predicate Scope Size Instance Model Spent Time

(millisecon
ds)

Number
of
Clauses

Initialize 2, exactly 1 Plan Not found. Predicate may be inconsistent. 401 1467

Initialize
2, exactly 2 Plan Not found. Predicate may be inconsistent.

47 2375

Initialize 3, exactly 1 Plan Not found. Predicate may be inconsistent. 275 3362

Initialize

3, exactly 2 Plan Pred is consistent: univ={-1, -2, -3, -4, -5, -6, -
7, -8, 0, 1, 2, 3, 4, 5, 6, 7, Environment$0,
Interface$0, Name$0, Name$1, Name$2,
Plan$0, RegistrationRole$0, Role$0,
SS_MatchmakerAgent$0, SS_RegisterPlan$0,
SWS$0, Time$0, Time$1, Time$2,
WebService$0, aplan/Ord$0, atime/Ord$0,
boolean/False$0, boolean/True$0}

109 4459

SWAstart 2 Not found. Predicate may be inconsistent. 2142 468

SWAstart
2, but exactly 2
Plan, 2 SWA

Not found. Predicate may be inconsistent.
2142 172

SWAstart
2 but exactly 3
Plan, 3 SWA

Not found. Predicate may be inconsistent.
3413 125

SWAstart
3, but exactly 3
Plan, 3 SWA

Found. Smaller scope size is tested.
5351 561

SWAstart

3, but exactly 2
Plan, 2 SWA

{-1, -2, -3, -4, -5, -6, -7, -8, 0, 1, 2, 3, 4, 5, 6, 7,
Environment$0, Grounding$0, Interface$0,
Name$0, Name$1, Name$2,
RegistrationRole$0, Role$0,
SS_FinderPlan$0, SS_MatchmakerAgent$0,
SS_RegisterPlan$0, SWA$0, SWS$0, Time$0,
Time$1, Time$2, WebService$0,
aplan/Ord$0, atime/Ord$0,
boolean/False$0, boolean/True$0}

3819 141

4.2 Case study: An Agent-based E-barter System

In this section, we discuss the design of an agent-based electronic barter (e-barter) system in order to give
some flavor of the use of SEA_ML's formal semantics. An agent-based e-barter system consists of agents
that exchange goods or services for their owners without using any currency. In our example, a Barter
Manager agent (shown in Figure 37), who is implemented as a SWA, manages all trades in the system.
This agent is responsible for collecting barter proposals, matching proper barter proposals and tracking the
bargaining process between customer agents. To infer about semantic closeness between offered and
purchased items based on some defined ontologies, barter manager may use SWS. Conforming to its
Barter Role definition, Barter Manager needs to discover the proper SWS, interact with the candidate
service and realize the exact execution of the SWS after an agreement. More information on the
development of such a system can be found in (Demirkol et al., 2011).

32

ACCEPTED MANUSCRIPT

Figure 37: e-Barter Scenario (illustration is taken from (Kardas et al., 2010))

In the system, suppose that a Barter Manager agent needs to interact with semantic web services to match
bidden and demanded goods and determine the value of the exchange. For instance, two customer agents
(one from the automotive industry and other from the healthcare sector) may need to exchange their
offered goods and services such that: A car manufacturer offers to sell car spare parts to a health insurance
company (e.g., for company’s service cars) and wants to procure health insurance for its employees.
Consider that the intention of the health insurance company is vice versa. During the bargain between the
agents of the car manufacturer and the health insurance company, our Barter Manager agent may use SWS
called Barter Service. In order to invoke that service, Barter Manager first needs to discover the proper
semantic web service. Then, Barter Manager interacts with the candidate service(s) and after an agreement;
the exact execution of the semantic web service is realized (Kardas et al., 2010).

SWA, SS_FinderPlan, SS_AgreementPlan, SS_ExecutorPlan, Role, Interface, Process, Grounding and
SWS elements are used in modeling of the e-barter system according to SEA_ML's agent-SWS interaction
viewpoint. For instance, BarterManager is a kind of SWA. This agent applies Discover, Haggle and
Invoke plans which are instances of SS_FinderPlan, SS_AgreementPlan and SS_ExecutorPlan
respectively. BarterManager agent plays BarterRole. For Barter operations, it uses BarterService which is
a kind of SWS. BarterSevice owns appropriate interface and execution mechanism. In order to create the
model of the e-barter system, eBarter predicate (Figure 38) is written. It is worth noting that predicates of
such instance models can only be written manually due to Alloy restrictions. Alloy does not provide a
graphical editor to visually create or modify the instance models which may lead also to the automatic
generation of the required predicates. Currently, Alloy only provides a visual and an uneditable
representation of a model after creating this instance model with manually given predicates.

In order to execute eBarter predicate, scope size for Plans is defined as 4, since the number of Plan types is
4. Furthermore, RegistrationRole, SWS, Interface, Process, Grounding, WebService and Environment
instances are created exactly as (1,1,1,1,1,1,1). Each instance is an argument in the predicate such as
“BarterManager is a SWA”. BarterManager, BarterRole, BarterService, BSInterface, BSGrounding,
BSProcess, TradingService, Discover, Haggle and Invoke are arguments of the predicate. In the body of
the predicate, the relation of instances can be defined. If there are wrong bindings, analyzer will give the
“inconsistent model” result. In line 5 of Figure 38, the given constraint is to provide BarterManager not to

33

ACCEPTED MANUSCRIPT

be a SS_MatchmakerAgent in this system. Therefore, it applies all plans except the one for the service
registration (Line 6).

Model of the system is generated according to the above defined semantics (see Figure 39). The analyzer
checks the relations and arguments and then generates the model if it is consistent. If the model is missing,
the analyzer is capable of supplementing the instance based on SEA_ML's semantics definitions. For
example SS_MatchmakerAgent instance is not defined in the predicate given in Figure 38. However
according to SEA_ML constraints there should be at least one SS_MatchmakerAgent for SWS
registrations. As it can be observed in Figure 39, SS_MatchmakerAgent has been generated automatically
and the model is now completed. Nevertheless, if the user specifically does not want to define
SS_MatchmakerAgent by assigning null in the predicate, then the analyzer cannot find any consistent
instance model in any scope size since at least one SS_MatchmakerAgent is mandatory for the system
initialization. Hence, beyond the model analysis in some scope, we can also check the instance model
according to defined semantics. This provides the generation of consistent instance models for SEA_ML.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

pred eBarter (BarterManager:SWA, BarterRole: Role, BarterService: SWS,
BSInterface: Interface,BSGrounding: Grounding, BSProcess: Process,
TradingService: WebService, Discover: SS_FinderPlan,
Haggle:SS_AgreementPlan, Invoke:SS_ExecutorPlan){some t:Time|
 BarterManager not in SS_MatchmakerAgent &&
 SS_MatchmakerAgent.applies= none &&
 BarterManager.plays.t = BarterRole &&
 Discover in BarterManager.applies &&
 Haggle in BarterManager.applies &&
 Invoke in BarterManager.applies &&
 Discover.discovers = BSInterface&&
 Haggle.negotiates = BSInterface && Invoke.executes = BSProcess &&
 Invoke.uses=Grounding &&
 BSProcess.described_by=BarterService &&
 BSGrounding.supports =BarterService&&
 BSGrounding.calls=TradingService &&
 BSInterface.presents=BarterService &&
 BarterService.composed_of=TradingService
}

Figure 38: E-Barter predicate which models the e-barter system according to the agent-SWS viewpoint

34

ACCEPTED MANUSCRIPT

Figure 39: Generated model of the e-Barter system

Let us consider the Ontology viewpoint of the designed system. According to the scenario, Barter
Manager agent first searches for a semantic web service which can match a “Car_Spare” OWL
concept with a “Health_Insurance” OWL concept and then executes the service to find counterpart of
a bargained car spare part: an OWL individual for BMW 520 Tyre. BMW520Tyre and
GlobalInsurance are ODMOWLClass instances for the exchange and they are included in
BarterOntology and BarterOrgOntology respectively. These ontologies are known by the BarterRole
which is played by the BarterManager. BarterOntologies predicate (Figure 40) is run with the scope
size 3 for all elements and we obtain the generated model shown in Figure 41 within these
specifications. Agent’s belief update type is static at Time0 (upper left snapshot in Figure 41) while it
is dynamic when a new fact is generated at Time1 (lower right snapshot in Figure 41) which means
the belief base should be updated. Marking the update status of a belief base as static or dynamic
originates from the related attribute specification in SEA_ML metamodel. Hence, if the belief base
remains same from its initialization up to that specific runtime, it is marked as static. In case of belief
(base) modification or new fact insertion, it is marked as dynamic.

35

ACCEPTED MANUSCRIPT

01
02
03
04
05
06
07
08
09
10
11

pred BarterOntologies(BarterManager: SWA,
BarterOntology: RoleOntology,
BMW520Tyre: ODMOWLClass, BarterRole:Role, BarterOrgOntology:
OrganizationOntology,
GlobalInsurance:ODMOWLClass){
 some t:Time | BarterOntology.includesClass=BMW520Tyre
 && BarterRole.knowsRoleOntology = BarterOntology
 && BarterManager.plays.t = BarterRole && Barter
 Role.knowsOrganizationOntology=BarterOrgOntology
 && BarterOrgOntology.includesClass= GlobalInsurance
}

Figure 40: e-Barter model with Ontologies

Figure 41: Generated model for BarterOntologies

In order to demonstrate a formal check of the dynamic aspects of the developed model, let us suppose
there exists a change in the scenario in the course of time; such that a new semantic web agent enters to the
current system and wants to interact with the semantic web services for bartering. For this purpose, we
refer to the two snapshots of the model taken in two different times. According to the first snapshot of the
system (previously given in Figure 39), a barter agent succeeded all plans and found a semantic web
service in the system at Time0 (Note that it is not a real time interval property. Time0 here just represents
the time “before” Time1 in temporal logic language). In this snapshot (Figure 39), a barter manager agent
was looking for a web service to bargain health insurances with car spare parts (see also Figure 41) and
he/she was playing the Barter role. Barter manager applied all plans to find, agree with and execute a
service and hence achieved his/her goal. In Time1 (second snapshot of the system), a new semantic web
agent (called SWA0) has joined the system (see Figure 42) in order to interact again with a web service
that enables bartering health insurances with car spare parts. By playing the Barter Role, SWA0 applied a
finder plan (SS_FinderPlan) to achieve this goal. However, as can be seen from Figure 42, SWA0 currently
can apply neither an agreement (SS_AgreementPlan) nor service execution (SS_ExecutorPlan) plan. The
reason is that SEA_ML dynamic semantics does not allow an agent to agree with or execute a semantic
web service before finding the service. In other words, this is the snapshot of the system that reflects the
instant change in the scenario. It simulates the moment when the BarterManager agent just completed the

36

ACCEPTED MANUSCRIPT

application of all types of plans and a new SWA entered into the system and started to search for a new
web service. At the same moment, that new agent can not apply SS_AgreementPlan or SS_ExecutorPlan.
In fact, if we gave another snapshot of the system (say the third snapshot after the second snapshot) while
the new agent was executing the semantic web service by applying the execution plan, we would clearly
see that both the finder and agreement plans had already been applied. Those dynamic semantics checks
are automatically performed for the developers during MAS modeling via utilizing the ordering module of
Alloy inside SEA_ML's formal definition on the agent plan orderings based on time (as previously
discussed in Section 3.8).

Finally, it is worth indicating that the Barter Manager agent had already played the Barter Role before
Time1 and according to the dynamic semantics definitions of SEA_ML, he/she now changes his/her role
into another role in the environment exactly at Time1 (Figure 42). Although it is not specified in the
predicate definition, the new role, called Role 2, is automatically assigned by Alloy analyzer in order to
comply with this SEA_ML’s dynamic semantics constraint. Further, the new agent has started to play
BarterRole which was already specified and also used by BarterManager in the past (before Time1).

Figure 42: Generated model of the e-Barter system that shows a different scenario at a different time

5. Related Work

Studies on DSL and DSMLs for agents are recently emerging. For instance, a DSL called Agent-DSL is
introduced in (Kulesza et al., 2005). Agent-DSL is used to specify the agency properties that an agent
could have to accomplish its tasks. The proposed DSL is presented only with its metamodel for the visual
modeling of the agent systems according to some agent features, such as knowledge, interaction,
adaptation, autonomy and collaboration. Likewise, Rougemaille et al. (Rougemaille et al., 2008) introduce

37

ACCEPTED MANUSCRIPT

two dedicated agent modeling languages and call those languages as DSMLs. The languages are described
by metamodels which can be seen as representations of the main concepts and relationships identified for
each of the particular domains again introduced in (Rougemaille et al., 2008). However, the study includes
just the abstract syntax of the related DSMLs and neither gives the concrete syntax nor semantics of the
DSMLs. In fact, the study only defines generic agent metamodels for model driven development of MASs.

Hahn (Hahn, 2008) introduces a DSML for MAS called DSML4MAS. The abstract syntax of the DSML
is derived from a PIMM for agents (Hahn et al., 2009), possessing different aspects of such systems
including MAS, agent, role and behavior. Hahn also discusses the use of Object-Z (Duke et al., 1995;
Smith, 2000) in definition of the static semantics of the individual concepts which ensures that all concepts
are statically well-formed by including the formalization of their attributes and invariants. Furthermore,
DSML4MAS supports the deployment of modeled MASs both in JACK (AOS, 2001) and JADE
(Bellifemine et al., 2001) agent platforms by providing an operational semantics over model
transformations. In order to provide a concrete syntax, the appropriate graphical notations for the concepts
and relations of DSML4MAS are defined in (Warwas and Hahn, 2008). DSML4MAS can be considered
as to be one of the first complete DSMLs for agents with all of its specifications including the formal
semantics (Hahn and Fischer, 2009) which will be discussed later in this section.

Another DSML is provided for MASs in (Gascuena et al., 2012) including the abstract syntax, the concrete
syntax and related development tools. The abstract syntax is presented using Meta-object Facility (MOF)
(OMG, 2002), the concrete syntax and its tool are provided with GMF (Eclipse, 2006), and finally the code
generation for the JACK agent platform is realized with model transformations. Introduced syntax is
derived from the metamodel of the well-known Prometheus (Padgham and Winikoff, 2004) MAS
development methodology. Hence, Prometheus model of the system can be constructed as first. Then,
intermediate code of the model is achieved by using the tools also presented in (Gascuena et al., 2012).
Finally, the intermediate code is imported into the JACK Development Environment in order to provide
code completion and exact system implementation. Agents on the Semantic Web and the interaction of
Semantic Web enabled agents with other environment members such as semantic web services are not
considered in (Gascuena et al., 2012).

Originating from a well-formalized syntax and semantics, Ciobanu and Juravle define and implement a
high-level DSL for mobile agents in (Ciobanu and Juravle, 2012). A text editor with auto-completion and
error signaling features is generated and a way of code generation for agent systems starting from their
textual description is presented. The introduced DSL solely takes into account the mobile agents domain
which differs from the domain of SEA_ML.

The service composition architecture introduced in (Fujii and Suda, 2006) dynamically combines
distributed components based on the semantics of the components in order to create a web application.
Implementation of the proposed architecture is based on the well-known web service definition and
execution standards. Authors also propose an appropriate way of migrating existing web services into the
architecture without implementing those services from scratch. In order to support collaboration of agents
and web services, Sycara et al. (Sycara et al., 2003) propose a capability representation mechanism for
semantic web services and discuss how they can be discovered and executed by agents. Likewise, a set of
architectural and protocol abstractions that serves as a foundation for agent - web service interactions is
introduced in (Burstein et al., 2005). Based on this architecture, how agents and semantic web services can
be integrated are discussed in (Gümüs et al., 2007) and (Gürcan et al., 2007). Instead of semantic web

38

ACCEPTED MANUSCRIPT

service profiles, use of OWL-S process models during the service discovery is proposed in (Paulraj et al.,
2011). Hence, it is aimed to find and match more relevant services with the proposed algorithm. But,
service composition and execution by the agents are open issues in the study. Varga et al. (Varga et al.,
2004) propose an approach in which descriptions of the agents providing the semantic web service are
generated for the migration of existing web services into the Semantic Web via agents. Our study
contributes to abovementioned agent-based service composition and execution studies by supporting the
model-driven engineering of the interaction between software agents and semantic web services.

The work in (Kardas et al., 2009) presents a methodology based on OMG’s well-known Model Driven
Architecture (MDA) (OMG, 2003) for modeling and implementing agent and service interactions on the
Semantic Web. A PIMM for MAS and model transformations from instances of this PIMM to two
different MAS deployment platforms are discussed in the paper. But neither a DSML approach nor
semantics of service execution is covered in the study. Hahn et al. (Hahn et al., 2008) define a DSML for
agents and provide extensions for this DSML to integrate semantic web service execution into MAS
domain. In addition to the MAS metamodel (described first in (Hahn, 2008)), a new metamodel, called
PIM4SWS, is proposed for semantic web services. A relationship between these two metamodels is
established in such a way that the MAS metamodel is extended with new meta-entities in order to support
semantic web services interoperability, and it also inherits some meta-entities from PIM4SWS. That
approach based on the use of two separate metamodels differs from SEA_ML’s in which the modeling of
agent and semantic web services’ interactions is provided with the inclusion of a special viewpoint into
MAS metamodel. The semantic internal components of agents, like an agent's knowledgebase, could also
be modeled using SEA_ML. Moreover, presenting a dedicated metamodel for SWS brings some benefits.
For instance, PIM4SWS provides the platform-independent modeling of semantic web services. After
modeling, counterparts of those semantic web service models conforming to various platform-specific
metamodels of SWS description languages (e.g. OWL-S) can be generated by employing structural and
semantic transformations as discussed in (Klusch et al., 2008). Structural transformation is applied based
on the syntactic mapping between corresponding SWS modeling concepts while semantic transformation
enables formal verification of the mappings. Z formal specification language (Spivey, 1988) is used for the
definition of PIM4SWS’s semantic transformation. Klusch et al. (Klusch et al., 2008) also describe a
model-driven semantic web service matchmaker in which semantic service selection and composition for
implementing business process workflows are provided with the help of the abstraction brought by
PIM4SWS.

On the other hand, there are some studies directly related to the formal semantics definition of agent
systems. For instance, the study in (Hahn and Fischer, 2009) uses the Object-Z language (Smith, 2000) to
define the formal semantics of DSML4MAS (Hahn, 2008). In this way, the system designer is supported
in validating and verifying the generated design. An Object-Z class for each concept in the metamodel is
given in order to define operational and denotational semantics. While denotational (static) semantics is
provided by introducing some semantic variables and invariants, operational (dynamic) semantics is
defined by introducing semantic operations and invariants. Boudiaf et al. (Boudiaf et al., 2008) present a
framework to support formal specification and verification of DIMA multi-agent models using Maude
language (Clavel et al., 2002) based on rewriting logic. DIMA model aims to decompose complex
behavior of an agent within a set of specialized behaviors. Further, DIMA allows implementing agents
having diverse granularities e.g. size, internal behavior or knowledge. Formalization of both a DIMA
agent’s behavior and inter-agent control mechanism is given in (Boudiaf et al., 2008). In (Hilaire et al.,
2000), the authors believe that Object-Z and statecharts are not powerful enough individually to specify the
complex MASs and hence they combine Object-Z and statecharts to define MASs based on an

39

ACCEPTED MANUSCRIPT

organizational model. Models are shown semi-formally over statecharts. AgentZ (Brandao et al., 2004)
extends Object-Z for specifying MASs with adding new constructs to improve its structure with adding
new agent-oriented entities such as agents, organizations, roles and environments. However, only the static
semantics is supported while our work considers both static and dynamic semantics in MAS modeling.
Furthermore, the Semantic Web environment and the interactions of agents inside this new environment
are not covered in these formal semantics definition studies.

Validation of the designed agent systems by applying formal methods can also be critical during MAS
development. Related worthwhile approaches are extensively discussed in (Dastani et al., 2010) and
(Fallah-Seghrouchni et al., 2011). Considering the use of Alloy in MAS development, Podorozhny et al
(Podorozhny et al., 2007) present an approach to design a robust MAS and check the properties of
coordination, interaction, and agent’s data structures using Alloy analyzer. Additionally, Haesevoets et al.
(Haesevoets et al., 2010) formally define the relations between the interactions, the exposed information
and provided policies and laws of an agent middleware by using Alloy. In this way, they guarantee a
number of properties which are important in the use of this middleware. Any kind of full-fledged DSL or
DSML is not provided in these studies.

6. Conclusion

In this paper, formal semantics and validation of MAS models, conforming to an agent DSML called
SEA_ML, are presented using Alloy specifications2. Semantics of agent internal structures, MAS
organizations and interactions between software agents and SWSs are discussed in both static and dynamic
aspects with their appropriate definitions and modules. Additionally, SEA_ML instance model validations
are completed by using Alloy analyzer tool. SEA_ML properties are discovered and possible scenarios,
which can occur in SEA_ML domain, are observed by using formal models. Furthermore, MAS model
analysis, based on both instance model generation and the application of rules pertaining to counter-
example model checking, is performed. We believe that the study contributes to formal semantics
definition of agent DSMLs in general and DSMLs for semantic web enabled agent systems in particular.

Modeling and validation of the interoperability between software agents and the semantic web services are
achieved with the inclusion of the semantic web service entity and its related components into the
definition of SEA_ML's formal semantics. Hence, based on both the defined constraints and the relations
between these entities and the classical MAS entities, agent developers can design the whole MAS by
including the semantic web service entities and especially checking all the behavioral and dynamic
semantics of the agent-service interaction such as the execution ordering among agent plans required for
the semantic web service discovery, agreement and invocation. Furthermore, correct transitions of the
possible behavior flow for each plan type needed for the interaction steps are automatically supported. This
may lead agents to compose web services within the semantic web environment. We believe that those
features, originating from the integration of semantic web service components into the SEA_ML's formal
semantics, also pave a way for the concrete implementation of the widely-known protocols (e.g.
extensively discussed in (Burstein et al., 2005) and (Kumar, 2012)) which are used by the agents in order
to interpret and reason with semantic descriptions in the deployment of semantic web services.

2 Complete SEA_ML metamodel, all written semantics rules along with instance models as Alloy files,
and instructions for running them are available as a bundle at:
http://mas.ube.ege.edu.tr/downloads/sea_ml.zip

40

ACCEPTED MANUSCRIPT

Lessons learned during the development of such a MAS DSML by using Alloy are worth reporting. Alloy
language provides an easy representation capability with its understandable syntax and semantics. Also, it
does not require a prior modeling language experience. We found Alloy quite useful to prepare the MAS
domain concepts and relations, which constitute the metamodel in terms of DSMLs. Since Alloy originates
from set theory, relational logic and predicate logic, constraints on agent internals, MAS organization and
service interactions can be defined based on mathematics. In fact, constraints provide the core of SEA_ML
semantics. Although some relationship types such as Unified Modeling Language's (UML) composition
and aggregation are not defined in Alloy, they can be obtained by using operations in constraints.

In SEA_ML, ontologies are utilized for modeling both semantic web services and agent internal belief
bases. When taking into account the representation and use of these ontologies inside Alloy, we examined
that the subject-predicate-object structure of RDF-based ontologies can easily be constructed in Alloy with
the use of Alloy signatures and relation entities. Specifically, ontologies conforming to ODM (OMG,
2009) (e.g. ontologies prepared by using OWL) can be represented in Alloy with all of their classes,
statements, properties and relations. Within this context, Alloy meets the requirements of ontological
aspects of SEA_ML. In addition to our experience, studies like (Wang et al., 2006; Song et al., 2012) also
show that Alloy is capable of verifying ontologies with the help of its analyzer. For instance, OWL
ontologies can be parsed and converted into an Alloy model and the consistency of an ontology model can
be checked automatically. That feature may enable the reasoning for these ontologies. However ontology
reasoning capabilities of Alloy is not within the scope of our current work and hence not covered during
our evaluation. Furthermore, Alloy’s scalability limitation we encountered during model finding has also
been reported in (Wang et al., 2006) for reasoning on large ontologies.

Alloy analyzer is a strong analyzer which is surrounded with SAT solvers and based on model checking
theorems within concepts. We observed that the generated MAS models are consistent with the
expectations. Additionally, instance models can be presented as both textual and graphical. Analyzer also
purveys some information about the executed predicates and assertions for the models such as spent time,
number of clauses and so on.

We run the predicates of SEA_ML models by running them in different scope sizes to determine whether
the models are consistent or not. The main idea is to find the desired instance in the subset space of that
model considering the constraints (facts) and scope. Hence, MAS model checking is accomplished within
that scope. However, when Alloy cannot find an instance or the defined model is inconsistent, source of
that problem (e.g. what is the missing part and/or how the predicate should be altered) is not given by the
tool. This can be considered as a disadvantage of the tool. Besides, control of the triples or analyzing the
triples can get complicated and achieving a result consumes reasonable time and a huge memory.

Finally, we experienced that counter-example approach is a good way to detect the possible system errors
in the abstract level for complex systems like the ones modeled via SEA_ML. Also, model finding is a
suitable way to observe possible scenarios of the big systems. During these analyses, scope sizes are
increased and decreased according to the results. As can be seen in Table 1 and 2, increase in the scope
size does not always increase the time elapsed for achieving the results. In some cases, when the scope size
is determined according to the model properties and constraints and the scope size is held different for each
element, it is possible to get faster results.

41

ACCEPTED MANUSCRIPT

In our future work, we plan to add more dynamic semantics such as message controls during the
interaction between agents and sequence controls among agents. Moreover, we plan to integrate semantic
checking controls introduced in this paper into the MAS DSML development tool presented in (Getir et al.,
2011). Such an integration will provide both automatic generation and modification of predicates
pertaining to the MAS model instances. Alloy does not currently support the modification of the generated
instance text definitions as previously discussed in Section 4.2. Therefore, an integration between our
graphical tool for MAS DSML and Alloy enables the creation of signature definitions and instance models
automatically which also provides a convenient way for the developers to write and modify the semantic
rules. In order to realize the integration, our aim is to define and execute transformations between Alloy
models and Ecore (Eclipse, 2005) models that can be interpreted by the DSML tool in question.

Acknowledgements
This study is partially funded by the Scientific and Technological Research Council of Turkey
(TUBITAK) under grant 109E125.

References
(Anastasakis et al., 2007) Anastasakis, K., Bordbar, B., Georg, G., and Ray, I. (2007) "UML2Alloy: A
Challenging Model Transformation", In proceedings of ACM/IEEE 10th International Conference on Model
Driven Engineering, Languages and Systems (MoDELS), pp. 436 - 450.

(AOS, 2001) Agent Oriented Software Pty. Ltd. (2001) “JACK Environment”, available at:
http://www.aosgrp.com/products/jack/ (last access: November 2013).

(Bellifemine et al., 2001) Bellifemine, F., Rimassa, G., and Poggi, A. (2001) "Developing Multi-Agent Systems
with a FIPA-compliant Agent Framework", Software: Practice and Experience, Vol. 31, Issue 2, pp. 103-128.

(Berners-Lee et al., 2001) Berners-Lee, T., Hendler, J., and Lassila, O. (2001) "The Semantic Web", Scientific
American, Vol. 284, Issue 5, pp. 34-43.

(Boudiaf et al., 2008) Boudiaf, N., Mokhati, F., and Badri, M. (2008) "Supporting Formal Verification of DIMA
Multi-Agents Models: Towards A Framework Based on Maude Model Checking", International Journal of
Software Engineering and Knowledge Engineering, Vol. 18, Issue 7, pp. 853-875.

(Brandao et al., 2004) Brandao, A.A.F., Alencar, P., and de Lucena, C.J.P. (2004) "AgentZ: Extending Object-Z
for Multi-agent Systems Specification", Lecture Notes in Artificial Intelligence, Vol. 3508, pp. 125-139.

(Bryant et al., 2011) Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., and Karsai,G. (2011)
"Challenges and directions in formalizing the semantics of modeling languages", Computer Science and
Information Systems, Vol. 8, Issue 2, pp. 225-253.

(Burstein et al., 2005) Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M.N., Paolucci, M., Sheth,
A.P., and Williams, S. (2005) "A semantic web services architecture", IEEE Internet Computing, Vol. 9, Issue
5, pp. 72–81.

(Challenger et al., 2011) Challenger, M., Getir, S., Demirkol, S., and Kardas, G. (2011) "A Domain Specific
Metamodel for Semantic Web enabled Multi-agent Systems", Lecture Notes in Business Information
Processing, Vol. 83, pp. 177-186.

(Ciobanu and Juravle, 2012) Ciobanu, G., and Juravle, C. (2012) “Flexible Software Architecture and Language
for Mobile Agents”, Concurrency and Computation: Practice and Experience, Vol. 24, Issue 6, pp. 559-571.

(Clarke et al., 2000) Clarke E.M., Grumberg O., Doron A.P. (2000) "Model Checking", MIT Press, 330p.

42

ACCEPTED MANUSCRIPT

(Clavel et al., 2002) Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., and Quesada, J.F.
(2002) " Maude: Specification and Programming in Rewriting Logic", Theoretical Computer Science, Vol. 285,
Issue 2, pp. 187-243.

(Dastani et al., 2010) Dastani, M., Hindriks, K.V., and Meyer, J.-J. (2010) "Specification and Verification of
Multi-agent Systems (1st edition)", Springer, 405p.

(Demirkol et al., 2011) Demirkol, S., Getir, S., Challenger, M., and Kardas, G. (2011) "Development of an
Agent based E-barter System", In proceedings of 2011 International Symposium on Innovations in Intelligent
Systems and Applications (INISTA 2011), Istanbul, Turkey, IEEE Computer Society, pp. 193-198.

(Duke et al., 1995) Duke, R., Rose, G., and Smith, G. (1995) "Object-Z: A specification language advocated for
the description of standards", Computer Standards & Interfaces, Vol. 17, Issue 5-6, pp. 511-533.

(Eclipse, 2005) Eclipse Consortium (2005) "Eclipse Modeling Framework", available at:
http://www.eclipse.org/modeling/emf/ (last access: November 2013).

(Eclipse, 2006) Eclipse Consortium (2005) “Graphical Modeling Framework (GMF)”, available at:
http://www.eclipse.org/modeling/gmp/ (last access: November 2013).

(Fallah-Seghrouchni et al., 2011) Fallah-Seghrouchni, A.E., Gomez-Sanz, J.J., Singh, M.P. (2011) "Formal
Methods in Agent-Oriented Software Engineering", Lecture Notes in Computer Science, Vol. 6038, pp 213-228.

(Ferber, 1999) Ferber, J. (1999) "Multi-agent Systems: An Introduction to Distributed Artificial Intelligence",
Addison-Wesley Professional, 528p.

(Finin et al., 1994) Finin, T., Fritzson, R., McKay, D., and McEntire, R. (1994) "KQML as an agent
communication language", In proceedings of the 3rd International Conference on Information and Knowledge
Management (CIKM 1994), ACM Press, pp. 456-463.

(FIPA, 2002a) IEEE Foundation for Intelligent Physical Agents (FIPA) (2002) "FIPA Standards", available at:
http://www.fipa.org, (last access: November 2013).

(FIPA, 2002b) IEEE Foundation for Intelligent Physical Agents (FIPA) (2002) "FIPA Agent Communication
Language Specification", available at: http://www.fipa.org/repository/aclspecs.html, (last access: November
2013).

(Fowler, 2011) Fowler, M. (2011) "Domain-specific Languages", Addison-Wesley Professional, 640p.

(Fujii and Suda, 2006) Fujii, K. and Suda, T. (2006) "Semantics-based Dynamic Web Service Composition”,
International Journal of Cooperative Information Systems, Vol. 15, Issue 3, pp. 293–324.

(Gascuena et al., 2012) Gascuena, J.M., Navarro, E., and Fernandez-Caballero, A. (2012) "Model-Driven
Engineering Techniques for the Development of Multi-agent Systems", Engineering Applications of Artificial
Intelligence, Vol. 25, Issue 1, pp. 159–173.

(Getir et al., 2011) Getir, S., Demirkol, S., Challenger, M., and Kardas, G. (2011) "The GMF-based Syntax Tool
of a DSML for the Semantic Web enabled Multi-Agent Systems", In proceedings of the Workshop on
Programming Systems, Languages, and Applications based on Actors, Agents, and Decentralized Control
(AGERE! 2011), held at the 2nd Systems, Programming, Languages and Applications: Software for Humanity
Conference (SPLASH 2011), Portland, USA, ACM Press, pp. 235-238.

(Getir et al., 2012) Getir, S., Challenger, M., Demirkol, S., and Kardas, G. (2012) "The Semantics of the
Interaction between Agents and Web Services on the Semantic Web", In proceedings of the 7th IEEE
International Workshop on Engineering Semantic Agent Systems (ESAS 2012), held in conjunction with the
36th IEEE Signature Conference on Computers, Software, and Applications (COMPSAC 2012), IEEE
Computer Society, pp. 619-624.

43

http://www.fipa.org/
http://www.fipa.org/repository/aclspecs.html

ACCEPTED MANUSCRIPT

(Goldberg and Novikov, 2002) Goldberg, E. and Novikov, Y. (2002) "BerkMin: a Fast and Robust SAT
Solver", In proceedings of the Conference on Design, Automation and Test in Europe, IEEE Computer Society,
pp. 142–149.

(Gray et al., 2007) Gray, J., Tolvanen, J-P., Kelly, S., Gokhale, A., Neema, S., and Sprinkle, J. (2007) "Domain-
Specific Modeling", In Fishwick, P. (Ed): CRC Handbook on Dynamic System Modeling, CRC Press, pp. 1-7.

(Gümüs et al., 2007) Gümüs, Ö., Gürcan, Ö., Kardas, G., Ekinci, E.E., and Dikenelli, O. (2007) "Engineering an
MAS Platform for Semantic Service Integration based on the SWSA", Lecture Notes in Computer Science, Vol.
4805, pp. 85-94.

(Gürcan et al., 2007) Gürcan, Ö., Kardas, G., Gümüs, Ö., Ekinci, E.E., and Dikenelli, O. (2007) "An MAS
Infrastructure for Implementing SWSA based Semantic Services", Lecture Notes in Computer Science, Vol.
4504, pp. 118-131.

(Haag et al., 2003) Haag, S., Cummings, M., McCubbrey, D.J. (2003) "Management Information Systems for
the Information Age. 4th edition), McGraw Hill.

(Haesevoets et al., 2010) Haesevoets R., Weyns, D., Torres, M.H.C., Helleboogh, A., Holvoet, T., and Joosen,
W. (2010) "A middleware model in alloy for supply chain-wide agent interactions", Lecture Notes in Computer
Science, Vol. 6788, pp. 189-204.

(Hahn, 2008) Hahn, C. (2008) "A Domain Specific Modeling Language for Multi-agent Systems", In
proceedings of the 7th International Joint Conference on Autonomous Agents and Multi-agent Systems
(AAMAS 2008), Estoril, Portugal, ACM Press, pp. 233-240.

(Hahn and Fischer, 2009) Hahn, C., and Fischer, K. (2009) "The Formal Semantics of the Domain Specific
Modeling Language for Multi-agent Systems", Lecture Notes in Computer Science, Vol. 5386, pp. 145-158.

(Hahn et al., 2008) Hahn, C., Nesbigall, S., Warwas, S., Zinnikus, I., Fischer, K., and Klusch, M. (2008)
"Integration of Multiagent Systems and Semantic Web Services on a Platform Independent Level", In
proceedings of 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT 2008), Syndey, Australia, pp. 200-206.

(Hahn et al., 2009) Hahn, C., Madrigal-Mora, C., and Fischer, K. (2009) “A platform-independent metamodel
for multiagent systems”, Autonomous Agents and Multi-agent Systems, Vol. 18, Issue 2, pp. 239-266.

(Hilaire et al., 2000) Hilaire, V., Koukam, A., Gruer, P., and Muller, J.P. (2000) "Formal Specification and
Prototyping of Multi-agent Systems", Lecture Notes in Artificial Intelligence, Vol. 1972, pp. 114-127.

(Howden et al., 2001) Howden, N., Ronnquista, R., Hodgson, A., and Lucas, A. (2001) "Jack intelligent agents:
Summary of an agent infrastructure", In proceedings of the 2nd International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS at the 5th International Conference on Autonomous Agents, Montreal,
Canada.

(Jackson et al., 2000) Jackson, D., Schechter, I., and Shlyakhter, I. (2000) "Alcoa: the alloy constraint analyzer",
In proceedings of the 22nd International Conference on Software Engineering (ICSE 2000), Limerick, Island,
pp. 730-733.

(Jackson, 2002) Jackson, D. (2002) "Alloy: A Lightweight Object Modeling Notation", ACM Transactions on
Software Engineering and Methodology, Vol. 11, Issue 2, pp.256-290.

(Jackson, 2012) Jackson, D. (2012) "Software Abstractions: Logic, Language, and Analysis (revised edition)",
The MIT Press, Cambridge, MA.

(Kardas et al., 2009) Kardas, G., Goknil, A., Dikenelli, O., and Topaloglu, N.Y. (2009) "Model Driven
Development of Semantic Web Enabled Multi-agent Systems", International Journal of Cooperative Information
Systems, Vol. 18, Issue 2, pp. 261-308.

44

ACCEPTED MANUSCRIPT

(Kardas et al., 2010) Kardas, G., Demirezen, Z., and Challenger, M. (2010) "Towards a DSML for Semantic
Web enabled Multi-agent Systems", In proceedings of the International Workshop on Formalization of
Modeling Languages (FML 2010), held in conjunction with the 24th European Conference on Object-Oriented
Programming (ECOOP 2010), Maribor, Slovenia, ACM Press, pp. 1-5.

(Klusch et al., 2008) Klusch, M., Nesbigall, S., and Zinnikus, I. (2008) “Model-Driven Semantic Service
Matchmaking for Collaborative Business Processes”, In proceedings of the 2nd International Workshop on
Service Matchmaking and Resource Retrieval in the Semantic Web, Karlsruhe, Germany, CEUR Workshop
Proceedings, Vol. 416, pp. 51-65.

(Kulesza et al., 2005) Kulesza, U., Garcia, A., Lucena, C., and Alencar, P. (2005) "A Generative Approach for
Multi-agent System Development", Lecture Notes in Computer Science, Vol. 3390, pp. 52-69.

(Kumar, 2012) Kumar, S. (2012) “Agent-Based Semantic Web Service Composition”, Springer Briefs in
Electrical and Computer Engineering, Springer, 57p.

(Martin et al., 2004) Martin, D., Burstein, M., Hobbs, J. Lassila, O., McDermott, D., McIlraith, S. Narayanan, S.
Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. (2004) "OWL-S: Semantic Markup
for Web Services", available at: http://www.w3.org/Submission/OWL-S/, (last access: November 2013).

(Mernik et al., 2005) Mernik, M., Heering, J., and Sloane, A. M. (2005) "When and how to develop domain-
specific languages", ACM Computing Surveys, Vol. 37, Issue 4, pp. 316-344.

(Meseguer, 2000) Meseguer, J. (2000) "Rewriting Logic and Maude: A wide-spectrum semantic framework for
object-based distributed systems", IFIP Advances in Information and Communication Technology, Vol. 49, pp.
89-117.

(Moskewicz et al., 2001) Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., and Salik, S. (2001) "Chaff:
engineering an efficient SAT solver", In proceedings of the 38th Conference on Design Automation, ACM
Press, pp. 530–535.

(OMG, 2002) Object Management Group (2002) “Meta Object Facility (MOF)”, available at:
http://www.omg.org/spec/MOF/ (last access: November 2013).

(OMG, 2003) Object Management Group (2003) “Model Driven Architecture Specification”, available at:
http://www.omg.org/mda/ (last access: November 2013)

(OMG, 2009) Object Management Group (2009) "Ontology Definition Metamodel (ODM Version 1.0",
available at: http://www.omg.org/spec/ODM/1.0/ (last access: November 2013).

(OMG, 2012) Object Management Group (2012) "Object Constraint Language (OCL) Version 2.3.1", available
at: http://www.omg.org/spec/OCL/2.3.1/ (last access: November 2013).

(Padgham and Winikoff, 2004) Padgham, L. and Winikoff, M. (2004) "Developing Intelligent Agent Systems -
A practical guide", John Wiley & Sons, 240p.

(Paulraj et al., 2011) Paulraj, D., Swamynathan, S., and Madhaiyan, M. (2011) "Process Model Ontology-based
Matchmaking of Semantic Web Services”, International Journal of Cooperative Information Systems, Vol. 20,
Issue 4, pp. 357–370.

(Pereira et al., 2008) Pereira, M.J.V., Mernik, M., Cruz, D.d., Henriques, P.R. (2008) "Program Comprehension
for Domain-Specific Languages", Computer Science and Information Systems, Vol. 5, Issue 2, pp. 1-17.

(Podorozhny et al., 2007) Podorozhny R., Khurshid S., Perry D., and Zhang X. (2007) "Verification of multi-
agent negotiations using the alloy analyzer", In proceedings of the 6th International Conference on Integrated
Formal Methods (IFM 2007), Oxford, UK, pp. 501-517.

(Pokahr et al., 2005) Pokahr, A., Braubach, L., Lamersdorf, W. (2005) "Jadex: A BDI Reasoning Engine", Book
chapter in Bordini, R.H. et al. (Eds): Multi-Agent Programming, Springer, pp 149-174.

45

http://www.w3.org/Submission/OWL-S/

ACCEPTED MANUSCRIPT

(Rao and Georgeff, 1995) Rao, A. and Georgeff, M. (1995) "BDI Agents: From Theory to Practice". In
proceedings of the 1st International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, pp. 312-
319.

(Rougemaille et al., 2008) Rougemaille, S., Migeon, F., Maurel, C., and Gleizes, M-P. (2008) "Model Driven
Engineering for Designing Adaptive Multi-Agent Systems", Lecture Notes in Computer Science, Vol. 4995, pp.
318-332.

(Schmidt, 2006) Schmidt, D.C. (2006) "Guest Editor's Introduction: Model-Driven Engineering", IEEE
Computer, Vol. 39, Issue 2, pp. 25-31.

(Shadbolt et al., 2006) Shadbolt, N., Berners-Lee, T., and Hall W. (2006) "The Semantic Web Revisited", IEEE
Intelligent Systems, Vol. 21, Issue 3, pp. 96-101.

(Smith, 1980) Smith, R.G. (1980) "The Contract Net Protocol: High-level Communication and Control in a
Distributed Problem Solver", IEEE Transactions on Computers, Vol. C-29, Issue 12, pp. 1104-1113.

(Smith, 2000) Smith, G. (2000) "The Object-Z Specification Language", Software Verification Research Centre,
University of Queensland.

(Song et al., 2012) Song, Y., Chen, R., and Liu, Y. (2012) “A Non-Standard Approach for the OWL Ontologies
Checking and Reasoning”, Journal of Computers, Vol. 7, Issue 10, pp. 2454-2461.

(Sprinkle et al., 2009) Sprinkle, J., Mernik, M., Tolvanen, J.-P., and Spinellis, D. (2009) "Guest Editors'
Introduction: What Kinds of Nails Need a Domain-Specific Hammer?", IEEE Software, Vol. 26, Issue 4, pp. 15-
18.

(Spivey, 1988) Spivey, J.M. (1988) "Understanding Z: A specification language and its formal semantics",
Cambridge University Press.

(Spivey, 1992) Spivey, J.M. (1992) "The Z Notation: a Reference Manual (2nd edition)", Prentice Hall.

(Sycara et al., 2003) Sycara, K., Paolucci, M., Ankolekar, A., and Srinivasan, N. (2003) "Automated discovery,
interaction and composition of Semantic Web Services", Journal of Web Semantics: Science, Services and
Agents on the World Wide Web, Vol. 1, Issue 1, pp. 27-46.

(Taghdiri and Jackson, 2003) Taghdiri M. and Jackson D. (2003) "A Lightweight Formal Analysis of a
Multicast Key Management Scheme", Lecture Notes in Computer Science, Vol. 2767, pp 240-256.

(van Deursen et al., 2000) van Deursen, A., Klint, P., and Visser, J. (2000) "Domain-specific languages: an
annotated bibliography", ACM SIGPLAN Notices, Vol. 35, Issue 6, pp. 26-36.

(Varga et al., 2004) Varga, L.Z., Hajnal, A., and Werner, Z. (2004) "An Agent Based Approach for Migrating
Web Services to Semantic Web Services", Lecture Notes in Computer Science, Vol. 3192, pp. 371-380.

(Vidal et al., 2001) Vidal, M., Buhler, P.A., and Huhns, M.N. (2001) "Inside an Agent", IEEE Internet
Computing, Vol. 5, Issue 1, pp. 82-86.

(Wang et al., 2006) Wang, H. H., Dong, J. S., Sun, J., and Sun, J. (2006) “Reasoning support for Semantic Web
ontology family languages using Alloy”, Multiagent and Grid Systems, Vol. 2, Issue 4, pp. 455-471.

(Warwas and Hahn, 2008) Warwas, S., and Hahn, C. (2008) “The concrete syntax of the platform independent
modeling language for multiagent systems”, In Proceedings of the Agent-based Technologies and applications
for enterprise interoperability, held in conjunction with the 7th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Estoril, Portugal.

(Wooldridge and Jennings, 1995) Wooldridge, M. and Jennings, N.R. (1995) "Intelligent Agents: Theory and
Practice", The Knowledge Engineering Review, Vol. 10, Issue 2, pp. 115-152.

46

