

Accepted Manuscript

A belief-desire-intention agent architecture for partner
selection in peer-to-peer live video streaming applications

Suleyman Yildirim, Muge Sayit, Geylani Kardas

DOI: 10.1111/exsy.12086

To appear in: Expert Systems

Published online: 21 August 2014

Please cite this article as: Suleyman Yildirim, Muge Sayit, Geylani Kardas, A belief-desire
intention agent architecture for partner selection in peer-to-peer live video streaming
applications, Expert Systems, doi: 10.1111/exsy.12086

This is a PDF file of an unedited manuscript that has been accepted for publication. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before it
is published in its final form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

http://dx.doi.org/10.1111/exsy.12086
http://dx.doi.org/10.1111/exsy.12086

ACCEPTED MANUSCRIPT

A Belief-Desire-Intention Agent Architecture for Partner Selection in Peer-

to-Peer Live Video Streaming Applications

Suleyman Yildirim1,2, Muge Sayit2, and Geylani Kardas2, *
13TU.School for Technological Design, Stan Ackermans Institute, Eindhoven University of

Technology, NL-5600 MB, Eindhoven, the Netherlands

s.yildirim@tue.nl

 2International Computer Institute, Ege University, 35100, Bornova, Izmir, Turkey

muge.fesci@ege.edu.tr, geylani.kardas@ege.edu.tr

Abstract
In peer-to-peer (P2P) video streaming systems, one of the most challenging parts is to schedule video

data dissemination, i.e. each peer should carefully select the partner(s) it receives video from and the

partner(s) it sends data to. We believe that an agent-based partner selection approach may improve the

quality of streaming by taking both autonomy and dynamic plan selection into account in a goal-

oriented manner. In this study, a Belief-Desire-Intention (BDI) agent architecture for partner selection

in P2P video streaming systems is introduced. The major concern of our study is to exhibit how to

select the best partner during video streaming session while maximizing the quality of video and

minimizing delay and hop count. The effects and comparative results of executing proposed agent

behaviors are evaluated in the study. The proposed autonomous agent-based approach also provides an

infrastructure in which the best plan for the achievement of optimum streaming goal can be

dynamically determined and executed at runtime. Experimental results of the implementation have

revealed us that both of the partner selection methods (with or without agents) manage to increase the

video quality. However, the agent-based approach performs better in terms of received bitrate, delay

and hop count during streaming.

Keywords: Agent, Belief-Desire-Intention (BDI), JACK, partner selection, peer-to-peer, video

streaming.

1. Introduction

Development of software systems based on intelligent agents maintains its supremacy over

both artificial intelligence and software engineering research areas. According to a widely

accepted definition, an agent is a computer system that is situated in some environment, and

* Corresponding author. Tel: +90-232-3113223 Fax: +90-232-3887230

1

ACCEPTED MANUSCRIPT

that is capable of autonomous action in this environment in order to meet its design objectives

(Wooldridge, 2002). Considering autonomous, responsive and proactive characteristics of the

agents, they bring a promising approach for various domains including live video streaming.

Nowadays, many of the network resources are consumed by video streaming applications

running over the Internet. Peer-to-peer (P2P) video streaming systems use a method enabling

video data exchange between peers. This approach reduces the overload of the servers during

the utilization of the network resources and enables a large number of peers to enjoy video

streaming (Xie et al., 2007; Liu et al., 2010; PPLive, 2012; PPStream, 2012; Sayit et al.,

2012). In those systems, one of the most challenging parts is to schedule a video data

dissemination, i.e. each peer should carefully select the peer(s) it receives video from and the

peer(s) it sends data to. This mechanism is also known as partner selection. There are systems

in which the partner selection is made by examining the buffer levels of partners (Hei et al.,

2007), by considering upload bandwidth of partners (Zhang et al., 2005), by the distance

between the partners and the source node (Li et al., 2009), or considering the past behaviors of

the peers (Le Blond et al., 2012).

Recently, the software agents have been used in video streaming systems. Various studies

incorporate the software agent technology with P2P live video streaming applications (Molina

et al., 2009; Pournaras et al., 2009; Chen et al., 2010; Carrera and Iglesias, 2011; Orynczak

and Kotulski, 2011). However, these noteworthy studies mainly focus on the different aspects

of the streaming and they do not directly address the partner selection according to QoE

parameters (e.g. bitrate, delay) with the agent-based approach, which is crucial for P2P live

video streaming.

In this study, a novel Belief-Desire-Intention (BDI) agent architecture for partner selection is

presented. We propose an agent-based software architecture in which bitrate, delay, and hop

count knowledge from source to destination nodes are given as environment facts to the

agents who represent peers (nodes) in underlying network called as overlay network.

Considering the aforementioned facts, agents execute their plans and decide which of the

partners in the overlay network provide the optimal streaming. In addition, the proposed

method is compared with a non-agentified partner selection method. We believe that such an

agent-based partner selection may improve the quality of streaming by taking both autonomy

and dynamic plan selection into account in a goal-oriented manner. The major concern of our

2

ACCEPTED MANUSCRIPT

study is to show how to select the best partner during video streaming session while

maximizing the quality of video and minimizing delay and hop count. Furthermore, the

proposed algorithm considers the buffer level of a peer. Each peer in a P2P video streaming

system waits for a period to fill its buffer after starting the streaming application. A buffering

mechanism is required since a peer may need to consume data from its buffer if the bitrate of

the received video is not adequate to play the video file in a proper manner. A peer’s buffer

may also be filled during streaming session if one or more of the partners’ available upload

bandwidth is higher than the required bitrate of the video. In our proposed system, agent of a

peer considers the peer’s buffer level while making partner selection. Apart from these

contributions, the influence of non-agentified and agent-based partner selection methods on

this highly dynamic environment was compared and evaluated.

The rest of the paper is organized as follows: Section 2 presents a brief description of BDI

architecture that we use during the design and implementation of our system. Section 3

describes P2P live video streaming system essentials. In Section 4, we introduce our BDI

agent architecture for partner selection in P2P live video streaming. Section 5 discusses the

implementation details of the system with JACK framework (AOS, 2012a). Section 6

includes the gained experiences and achieved results. Section 7 discusses the previous studies

which make use of software agents in P2P video streaming applications. Finally, we conclude

and describe future work in Section 8.

2. Belief-Desire-Intention (BDI) Architecture

Originating from Bratman's view on humans and folk psychology (Bratman, 1987), BDI

architecture (Rao and Georgeff, 1995) brings a powerful abstraction mechanism to overcome

complex problems and has been used in many agent-based systems. An illustration of the BDI

architecture is shown in Figure 1. The core components are Beliefs, Desires, Intentions and

Plans. Beliefs represent the knowledgebase and assumptions that an agent has about its

environment. Desires stand for goals or objectives while intentions are deliberative attitudes

of the agent. Intentions are the subset of the desires that an agent has committed to. Plans,

which constitute the fundamental for the BDI architecture (Wooldridge 2002), are the

collection of steps to achieve the intentions of an agent. An agent has a set of pre-compiled

plans which is designed by the agent programmer. The decision as to which plan is employed

during the execution of the agent is defined by the context condition of each plan. After the

context condition is satisfied, the plan is deemed as applicable. Apart from these core

3

ACCEPTED MANUSCRIPT

components, there is an additional construct called as event which represents the data input

received by sensors or generated internally in order to trigger plans during the agent’s

execution.

Figure 1: BDI agent architecture (taken from (Wooldridge, 2002))

Figure 2 provides a legend for tracing the execution of the proposed system according to BDI

notions throughout this paper. The graphical symbols used to build agents and related

components in our system are listed in this figure. Those symbols are adapted from the design

palette of JACK Development Environment (JDE) (AOS, 2012b), which is used as the BDI

design and implementation tool in our study.

Figure 2: The graphical symbols and their meanings used throughout the paper

4

ACCEPTED MANUSCRIPT

3. Application Domain

With an increasing demand of video streaming over the Internet, applications which enable

the nodes in a video streaming session to send video data to each other have gained popularity

since these applications help reduce the load of servers. A network which consists of nodes

sending data to each other is called as P2P network. In video streaming applications running

on a P2P network, latency and bandwidth constraints are more stringent than for file sharing

systems running on the same type of network. Although there is no time constraint for a

packet to be received in a classical file sharing system, each packet must reach to receiver

before its play out time in a video streaming system. Therefore, video streaming multicast

systems running on a P2P network must be designed according to timing constraints based on

the play out time of video packets.

One of the most challenging parts of video streaming systems running on a P2P network is to

cope with dynamic network conditions and unpredictable node behaviors. Thus, an

application layer overlay network is created in order to adjust according to unpredictable node

behaviors or to minimize packet transmission corruption due to changing network conditions.

If an increase in packet loss rate is detected, new partner(s) may be chosen, since high packet

loss rate causes decrease in video quality or disruption in display. Selecting and/or changing

partners which video packets are received from changes this overlay architecture dynamically

during streaming session. Since this is one of the most crucial parts of a streaming system,

there are remarkable partner selection algorithms proposed in the literature. For instance,

partner selection may be performed by considering the packets belonging to the candidate

partners (Xie et al., 2007), by considering the available bandwidth of candidate partners

(Zhang et al., 2005) or by considering the distance between candidate partners and source (Li

et al., 2009). There are also some studies on partner selection according to their stability (Yu

et al., 2006; Wang et al., 2010a). In these systems, if a node stays longer than the others in the

system, then it is more preferable to be selected as a partner. In this paper, we consider three

most important parameters of a streaming system, bitrate, delay and hop count; and we

propose an agent-based software system that combines and evaluates all these parameters for

a well-planned and efficient partner selection process.

Delay, hop count and bitrate parameters from source to destination nodes are given to the

software agents as environment facts. Agents use their planning mechanism according to

these facts and finally make the decision of partner selection.

5

ACCEPTED MANUSCRIPT

As can be seen in Figure 3, the system architecture is designed in a layered manner.

According to this architecture, there is an overlay network at the bottom level and a Multi-

agent system (MAS) comprised of intelligent agents at the top level. Communication between

each node at the bottom level and an agent representing that node is handled by TCP/IP

communication which is described in detail in Section 4 of this paper. In the proposed

architecture, each peer is represented by one agent. The reason that we prefer to use one-to-

one mapping between agents and peers is the real-time operation delay constraint in P2P

video streaming system. We observed that when one agent is responsible for a group of peers,

the delay introduced by the communication between a peer and its representative agent causes

the peer to take action at a slow pace during partner selection. Hence, by defining one agent

running on top of each peer, the communication delay between the peer and its agent becomes

zero, and the system performance does not degrade due to the communication cost.

Figure 3: Layered system architecture

Agents need to take the following parameters into account in order to decide which partner to

be chosen:

Bitrate: When a node takes part in a video streaming session and queries the parent nodes, the

first parameter to be considered is the bitrate received from source to parent node. Bitrate is

the most significant parameter that influences the partner selection for node taking part in

video streaming session. When the bitrate decreases below a threshold, it directly affects the

quality of streaming, or causes disruption in display. It is important to state that we assume

the threshold at issue as 500 kbps since it is an acceptable video bitrate preferred in P2P live

video streaming systems (Xie et al., 2007).

6

ACCEPTED MANUSCRIPT

Delay: The most significant feature that distinguishes video streaming applications from file

sharing is delay. In order to continue video streaming without interruption, packets must

arrive before the playback time. Moreover, delay time from source to destination must also be

short in live streaming applications.

Hop count: Hop count is a parameter that affects packet loss and delay. It is expected that

considering hop count when deciding which partner to choose provides an advantage in terms

of both delay and packet loss.

4. Proposed Agent Architecture for Partner Selection

The architecture of the agents employed during partner selection in P2P video streaming will

be discussed in this section. It is worth noting that the discussion presented here mainly

covers the agent internals for partner selection and the effects of applying such an agent-based

partner selection during streaming. Whole software development process of the complete

MAS is out of the scope of this paper. However, interested readers may refer to our

companion work (Teket et al., 2014) for both the analysis and design of the MAS in terms of

a well-defined software methodology.

In order to gather functionalities of agents into cluster and hence cover an agent’s events,

plans and beliefs (knowledgebase), we prefer to use Capability structures (Padgham and

Winikoff, 2004). This approach enables higher level of abstraction and encapsulation than

object oriented systems, the simplification of system design, and it allows code reuse between

agents or other capabilities within the same agent (Busetta et al., 2000). Such capability

abstraction also paves the way for the easy implementation of our BDI design in various MAS

development frameworks such as JADEX (Pokahr et al., 2007) and JACK (AOS, 2012a)

since those frameworks include agent capability descriptions as first-class entities. The

capability description is mostly considered as the highest abstraction level inside Prometheus

methodology (Padgham and Winikoff, 2004) and also used during the architectural design

phase of Tropos methodology (Bresciani et al., 2004) while creating agents from actors.

However, the derivation of agent architecture given in this paper is not directly bound to those

agent-oriented software engineering (AOSE) methodologies, and hence the related BDI

design can also be realized without using the capability abstraction. As will be discussed in

the following subsections, building blocks in the introduced BDI architecture are events,

beliefs, plans, etc. regardless of the capability abstraction. In subsection 4.1, a brief

7

ACCEPTED MANUSCRIPT

description about the capabilities is given and then the details of each capability are discussed

in subsections 4.2 and 4.3.

4.1. Overview

The agents attending P2P video streaming session are called as Node agents. Figure 4

illustrates the capability types of a Node agent. TCPConnection capability is related to the

interaction with the agent’s environment. It fetches the data coming from overlay network and

adds this information to the agent’s beliefset. On the other hand, PartnerSelection capability

is related to the agents’ proactive behavior on achieving the goal of selecting appropriate

partners. It takes the advantage of sophisticated plans, elaborate decision-making and plan

reuse. To summarize, the execution mechanism of the system is as follows: First, an

environmental data is fetched by TCPConnection capability. Then, proactive behavior of the

agent carries out the partner selection according to that fetched data.

Figure 4: Agent Capability Overview

4.2. TCPConnection Capability

TCPConnection capability is responsible for communication with overlay network. It can be

regarded as an interface between the agent and its environment. Figure 5 shows the execution

cycle in TCPConnection. Agent first receives DataStreamInput event from the environment.

This event triggers SocketConnection plan which establishes a TCP/IP connection in order to

retrieve information from overlay network. "handles" statements are used in Figures 5 and 6

to represent agent plan executions when a specific event arises.

After the agent gets the data associated to each node from overlay network, it adds these

information to its knowledgebase. In order to achieve this, SocketConnection plan posts

AddToBeliefset event. When AddToBeliefset event is posted, it triggers its InitBeliefset plan

which adds the environmental data to the Partners beliefset. With each "posts" statement in

8

ACCEPTED MANUSCRIPT

Figure 5 and 6, we describe an event that the agent can post. Posting an event means that an

agent creates an instance of the event and posts it internally (i.e. sends the event to itself).

There are three sections in Partners beliefset. The first part stores the other nodes from which

Node agent actively gathers video packets. This part usually consists of three nodes, i.e. the

number of partners of nodes equals to 3. Apart from the partners, there are two node lists for a

node. One of these lists is called as membership table and the nodes exchange one or more of

its partners by selecting a node from the membership table. The other node list is called as

partnership table and the nodes in this table are selected if a suitable partner cannot be found

in the membership table. "uses" statements in Figure 5 and 6 represent such utilization of

beliefsets by the agent plans. Each "uses" statement means that an agent's plan reads or

modifies a beliefset.

Figure 5: TCPConnection capability

4.3. PartnerSelection Capability

Figure 6 illustrates the execution cycle of PartnerSelection capability. PartnerSelection

capability begins with the creation of SelectPartner event. After then, this event triggers

MonitorChanges plan. After MonitorChanges plan calculates the buffer level and determines

the node that has minimum upload bandwidth, the agent creates BufferLevel event in order to

determine which node to be removed and which of the partner is the most suitable to receive

9

ACCEPTED MANUSCRIPT

video data. This event conveys the information of buffer level and the node which is going to

be changed. There are three plans that may be executed when BufferLevel event is generated

by the Node agent. These plans are IncreaseBitrate, IncreaseBufferLevel and

ChangeByDelayAndHopcount. The selection criterion is determined by the context condition

of each plan. At this point, it is worth discussing the details of these plans.

Figure 6: PartnerSelection Capability

IncreaseBitrate plan is responsible for increasing the total received bitrate and making it

greater than the threshold. The context condition of IncreaseBitrate plan is satisfied if buffer

level is less than or equal to initial buffer level which is set between 2 and 10 before starting

the system. However, it does not take the total received bitrate into account. The execution of

the plan is as follows: It determines candidate nodes by searching membership table in

Partners beliefset. If the upload bandwidth of the node is greater than the node, which will be

removed from Partners beliefset, it is added to CandidateNodes beliefset. This process goes

on until the agent reaches to the end of the membership table. If it finds candidate nodes, the

agent probes the best node to be selected from the CandidateNodes beliefset. Then, it

10

ACCEPTED MANUSCRIPT

compares the delay of each node according to the following behavior model: If the delay

difference of two nodes is less than the threshold, the agent selects the node that has minimum

hop count. If the hop counts are equal, the agent chooses the node that has minimum delay.

Finally, if the delay difference of two nodes is greater than or equal to the threshold, the agent

again chooses the node that has minimum delay.

After determining the best candidate, the agent updates its Partners beliefset and checks

whether it managed to increase the total received bitrate above the threshold or not. If the

agent believes that it has succeeded, it calculates the average of the received bitrate, delay and

hop count of the first three partners and saves the data (see the trigger of WriteToFile by

sending SaveData event in Figure 6). When received bitrate goes down below the threshold, it

means that the agent cannot perform streaming video properly. Hence, the agent tries to find a

new way to increase the upload bandwidth above the threshold. Thus, a new task is created by

generating CriticalSituation event to search for a suitable partner (Figure 6).

When CriticalSituation arises within the Node agent, ChangeByOtherPartners plan is

executed as its context condition is true in all circumstances. We should note that

CriticalSituation event conveys the data of two nodes. One of the data is related to the node

that is going to be altered. In other words, this node is removed from the agent’s partners. The

other data is related to the node that is previously selected by IncreaseBitrate plan. Previously

selected node is compared with the node selected by ChangeByOtherPartners plan which

follows the similar selection procedure of IncreaseBitrate plan. However, it does not try to

establish CandidateNodes beliefset as IncreaseBitrate does. When the agent selects a partner

from partnership table, it also checks whether the selected node’s upload bandwidth is greater

than the node that will be removed. If the selected node’s bitrate is greater than bitrate of the

node that is previously selected by IncreaseBitrate plan, ChangeByOtherPartners plan

updates the agent’s Partners beliefset. The agent calculates the average of the received bitrate,

measured delay and hop count values of the partners and saves the data. When the selected

node’s upload bandwidth is less than the upload bandwidth of the node that is selected by

IncreaseBitrate plan, ChangeByOtherPartners plan does not select any partner. Therefore, it

saves the selection of IncreaseBitrate plan.

On the other hand, IncreaseBufferLevel plan is responsible for increasing the buffer level as

its name depicts. The context condition of this plan is satisfied when buffer level is between 2

11

ACCEPTED MANUSCRIPT

and 4 seconds. In that case, the total received bitrate might be less or greater than the

threshold. In order to increase the buffer level, the agent must either increase the total

received bitrate of the partners or decrease the threshold. Since the threshold is a user defined

static variable, the only way to increase the buffer level is to raise the total received bitrate.

Although IncreaseBitrate plan is responsible for increasing the bitrate, we choose to use

another mechanism when the amount of the buffer level is different from the context

condition of IncreaseBitrate plan. To that end, the agent searches for the nodes in

membership table. The algorithm given in Listing 1 is executed for selecting nodes in

IncreaseBufferLevel plan.

1 boolean nodeFound = false;
2 for each node N in membership table do
3 if (b(Ni) >= b(Nk) and d(Ni) <= d(Nk) and h(Ni) <= h(Nk)) then
4 select(Ni);
5 nodeFound = true;
6 end
7 end
8 if (nodeFound) then
9 AddToBeliefset(Ni);
10 RecalculateBufferLevel();
11 for each node M in active partners do
12 select(Min{b(Mi),b(Mk)});
13 end
14 postBufferLevelEvent();
15 end
16 else
17 CalculateReceivedBitrate();
18 SaveData();
19 false;//causes plan to terminate
20 end

Listing 1: Node selection algorithm in IncreaseBufferLevel plan

The execution mechanism is as follows: First, agent determines the best node which has

higher upload bandwidth, smaller delay and smaller hop count than the node that will be

changed (Lines 2 -7). If the agent finds a suitable node, it updates Partners beliefset (Line 9).

Second, the agent re-calculates the buffer level since the total received bitrate of the partners

have changed (Line 10). Third, it searches the partners and finds the node having a minimum

upload bandwidth (Lines 11 -13). At last, it posts the BufferLevel event again (Line 14). Note

that BufferLevel conveys the updated buffer level and node information to be removed from

the agent’s beliefset. This process continues until membership table is empty or buffer level

reaches above 4 seconds. In other words, the agent exhibits a goal oriented behavior by

insisting on increasing buffer level. If the membership table is empty and IncreaseBufferLevel

plan cannot find a node that increases the buffer level above 4 seconds, it saves the last

12

ACCEPTED MANUSCRIPT

selection (Lines 16 -19). Then, it finishes its execution. If IncreaseBufferLevel plan succeeds

to increase buffer level above 4 seconds and if the total received bitrate of the partners is

greater than or equal to the threshold, ChangeByDelayAndHopcount plan’s context condition

is satisfied and the related plan is started.

The purpose of ChangeByDelayAndHopcount plan is to select better partner as it has already

received satisfactory bitrate. Therefore, the agent tries to minimize hop count and delay

simultaneously. Within the framework of this plan, CandidateNodes beliefset is updated

according to the agent’s inference on partners’ delay, hop count and received bitrate.

As the last to say, the agent checks the cumulative received bitrates of the nodes in

membership table in a constant manner. In order to observe the changes, the agent sends itself

an UpdateMembershipTable event from time to time. UpdateMembershipTable event triggers

the ChangeByMembershipTable plan which removes all nodes that have inefficient amount of

cumulative bitrate.

5. Implementation of Agent-based Partner Selection

In order to implement the BDI agent architecture proposed in this paper, the JACK framework

(AOS, 2012a) was chosen. There also exist various agent platforms other than JACK for

implementing agent systems such as JADE (Bellifemine et al., 2001), JADEX (Pokhahr et al.,

2005; Pokahr et al., 2007), JASON (Bordini et al., 2007), 2APL (Dastani, 2008) and GOAL

(Hindriks, 2009). Furthermore, there is also an active work for extending the capabilities of

BDI systems by presenting expressive goals, planning and real-time execution (Sardina and

Padgham, 2011). However, the following features of JACK framework caused us to prefer

JACK during the implementation.

JACK is an agent development framework to create autonomous systems which is built on the

top of Java programming language, and which is based on the BDI architecture (Winikoff,

2005). JACK Agent Language is the main component of JACK that extends Java

programming language in both syntactic and semantic way. It has three constructions: base

classes, declarations and reasoning method statements. Base classes are Agent, Beliefset,

Event, Plan and Capability that enable programming according to the agent-oriented

paradigm. Declarations specify the relationships and dependencies between the base classes.

13

ACCEPTED MANUSCRIPT

Reasoning method statements describe the actions that the agent can perform to exhibit an

intelligent behavior.

The agents, designed according to the architecture presented in Section 4 of this paper, were

implemented by using the JACK BDI Application Programming Interface (API). Similar to

our MAS design process, we also used JACK Development Environment (JDE) (AOS,

2012b) during the system implementation step. JACK codes can easily be achieved from the

graphically modeled MAS designs inside JDE. It is not possible to discuss the full

implementation in the paper due to space limitations. However, in order to give some flavor

of the implementation, IncreaseBitrate plan of proactive behavior is discussed here with

reference to the related event and the beliefset declarations.

BufferLevelProactive event, which is received by the IncreaseBitrate plan of the agent, was

implemented as the extension of a JACK BDIGoalEvent base class (see Appendix A).

Furthermore, Partners beliefset of Node agents was implemented as JACK ClosedWorld (see

Appendix B). Each beliefset should be inherited from either ClosedWorld or OpenWorld base

class in JACK and it consists of a key field, value fields and queries. Open World semantics is

used where a belief is true, false or unknown. On the other hand, a belief is either true or false

in Closed World. Interested readers may refer to (AOS, 2012a) for further information on

these two beliefset types.

IncreaseBitrate plan was created as the subclass of JACK Plan class as expected. It covers all

declarations required for the relations between other JACK Agent Language types such as

events, beliefsets and/or interfaces the plan uses (see Appendix C). Agent reasoning and

actions required for the execution of IncreaseBitratePlan were coded inside the body()

method of the related JACK Plan class. By means of this method, the agent performs tasks in

order to achieve the goal of increasing the total received bitrate above the threshold (see

Appendix D).

6. Results

In this section, we discuss the results of executing the agent system that is constructed

according to the proposed architecture. The upload bandwidth, delay and hop count values of

the nodes in the membership tables of the agents are generated according to Beta distribution

(Beta Distribution, 2012). We choose the Beta distribution as it can generate the distributions

14

ACCEPTED MANUSCRIPT

representing different scenarios in real systems (Wang et al., 2010b). Based on the parameters

generated from the distribution model, both agent-based and non-agentified partner selections

were observed. In other words, the agent’s behavior was compared to that of the non-

agentified partner selection in which agents are not employed and the system is constructed as

a classical P2P video streaming system like (PPLive, 2012) or (PPStream, 2012). For this

classical and non-agentified system, peer software was designed and implemented to perform

the partner selection in which a peer selects the partners having the maximum upload

bandwidth. Similar to ordinary P2P streaming applications, only the instant values of delay,

hop count or bitrate properties are taken into account for the determination of best partners in

our non-agentified implementation. On the other hand, the agents in our agent-based

implementation consider the combination of all these properties, apply in the above discussed

planning mechanism and make selection in a proactive manner.

While the non-agentified approach does not employ sophisticated planning mechanism for the

partner decision, our agent-based system uses goal oriented approach when selecting the best

partner. According to the results of the experiment, it is observed that the non-agentified

system makes decisions with greedy approach, whereas proactive structure of the

implemented agent-based system applies more elaborate selection mechanisms.

Before getting into the details of graph explanations, let us introduce the abbreviations and

terms used in the graphs. For each line graph, there are two abbreviations: BL and D. While

the former stands for initial buffer level of the agent, the latter stands for the delay difference

between the two nodes. The graphs have also two terms, respectively Agent-Based and Non-

Agentified. As their names already denotes, Agent-Based represents the agent-based partner

selection while Non-Agentified represents the ordinary partner selection where the software

agents are not employed. The agent’s behavior is examined with 9 different initial buffer

levels which takes off from 2 seconds and end in 10 seconds. Note that the initial buffer level

determines the initial waiting time, i.e. the time elapsed until the playout time after streaming

session begins. During the execution of the system, the buffer level continuously changes. In

addition, for each initial buffer level, three different delay difference values are set as 0.2, 0.5

and 1 second to examine the effect of the delay difference. It is preferred to decrease the delay

difference between the partner nodes in order to decrease the playback lag between partners.

Note that, all graphs show the cumulative distribution of the selections. Due to space

limitations, the results are presented for only the initial buffer level of 4 seconds, which is an

15

ACCEPTED MANUSCRIPT

acceptable initial waiting time for P2P video streaming applications. However, the

comparison of the selections of the agent-based and the non-agentified partner selection can

be seen overall at the end of this section (in Table 1).

Figure 7 illustrates the average of the received bitrates for various delay differences after the

node selection is over. As can be seen, the percentage of selecting the nodes that have higher

bitrate is more likely in agent-based partner selection for all delay difference values. To give

an example, in Figure 7(a), the percentage of the average of the received bitrate that is smaller

than 150 kbps is almost zero in an agent-based partner selection, while it is 20% in non-

agentified method. This means that the agent does not select the nodes that have a low bitrate.

Moreover, this trend continues until the average of the received bitrate which is lower than

190 kbps. After that value, the probability of selecting the nodes that have higher bitrate

increases. This is crucial for P2P video streaming systems in which the higher bitrate a node

receives, the better quality it watches the video. For example, if the delay difference is set to

0.2 seconds, the percentage of the average of the received bitrate that is lower than 200 kbps

is around 70% in agent-based partner selection, while it is around 50% in non-agentified

partner selection (Figure 7(a)). It is also observed that the best selections are made by agent if

the delay difference is set to 0.2 seconds. If the delay difference is set to 0.5 and 1 second, we

observe that agent also outperforms the non-agentified method. For instance, the percentage

of the average of the received bitrate that is smaller than 200 kbps is almost 80% in agent

behavior while it is 60% in non-agentified method (Figure 7(b)). Similarly, the percentage of

the average of the received bitrate that is smaller than 205 kbps is 70% in agent-based partner

selection while it is 60% in non-agentified method (Figure 7(c)). As it is seen, the results

show that the proactive structure of the agents succeeds to choose the nodes which have

higher upload bandwidth.

When it comes to the measured delay, the agent always makes better decisions. As can be

seen from Figure 8, the probability of selecting the nodes that have smaller delay is higher in

agent-based partner selection than non-agentified method for all the delay difference values.

For example, in Figure 8(a), if the delay difference is set to 0.2 seconds, the percentage of the

measured delay that is smaller than 1 second is almost 60%, while it is 20% in non-agentified

method. In other words, the probability of the measured delay that is smaller than 1 second is

almost three times greater in the agent-based partner selection. The trend goes on until the

delay value is less than 2 seconds. After that value, the selections of both the agent-based and

16

ACCEPTED MANUSCRIPT

the non-agentified methods are identical. When the delay difference is set to 0.5 seconds

(Figure 8(b)), it is observed that the selections of both mechanisms do not alter dramatically

compared to Figure 8(a). If the delay difference is set to 1 second (Figure 8(c)), the

percentage of selecting the nodes that have small delay slightly decreases or remains stable in

both mechanisms. However, the agent-based partner selection outperforms the non-agentified

method for each measured delay values.

(a)

(b)

(c)

 Figure 7: Cumulative distribution of the average received bitrate (a) Delay difference

is 0.2 seconds; (b) Delay difference is 0.5 seconds; (c) Delay difference is 1 second

17

ACCEPTED MANUSCRIPT

(a)

(b)

(c)

Figure 8: Cumulative distribution of delay. (a) Delay difference is 0.2 seconds; (b) Delay

difference is 0.5 seconds; (c) Delay difference is 1 second

18

ACCEPTED MANUSCRIPT

(a)

(b)

(c)

Figure 9: Cumulative distribution of hop count. (a) Delay difference is 0.2 seconds; (b) Delay

difference is 0.5 seconds; (c) Delay difference is 1 second

Last, the agent-based partner selection also outperforms the non-agentified method when we

take the measured hop count value into account. As can be seen from Figure 9, the probability

of selecting the nodes that have smaller hop count is higher in agent-based partner selection.

The best behavior of the agent is observed if the delay difference is set to 0.2 seconds. For

instance, in Figure 9(a), the percentage of the hop count that is smaller than 2 is almost 40%

in the agent-based partner selection, while it is 20% in the non-agentified method. Another

19

ACCEPTED MANUSCRIPT

example is that if delay difference is set to 0.5 seconds (Figure 9(b)), the percentage of the

hop count that is smaller than 2.5 is 50% in the agent-based partner selection while it is 30%

in the non-agentified method. On the other hand, the selection results of both of the

mechanisms are identical after the cumulative hop count value is greater than or equal to 4

seconds for all delay difference values. However, if delay difference is set to 1, the agent-

based approach also makes a better selection compared to the non-agentified method (Figure

9(c)).

Table 1 shows all results of the agent-based and the non-agentified partner selections. It is

clear from the table that both of the mechanisms manage to increase the video quality by

keeping the average of the received bitrate value above the threshold. As mentioned in

Section 3, in order to watch the video without any interruption, a peer must exceed a certain

threshold which is defined as 500 kbps in our system. Moreover, for each initial buffer level

and corresponding delay difference parameters, the agent manages to decrease delay and hop

count better than the non-agentified method. For instance, if the initial buffer level and the

delay difference are set to 3 seconds and 0.5 seconds respectively, the average of the

measured delays in agent-based partner selection is 1.31 seconds while it is 1.52 seconds in

the non-agentified selection. Similarly, when it comes to the hop count, the average of the

measured hop counts in the agent-based partner selection is 2.9, while it is 3.2 in the non-

agentified selection. Furthermore, when the initial buffer level is less than 6 seconds, the

agent always makes better selection in terms of total received bitrate, delay and hop count.

For example, if the initial buffer level and the delay difference are set to 4 seconds and 1

second respectively, the average of the received bitrates in the agent-based partner selection is

193 kbps while it is 184 kbps in the non-agentified selection. In a similar vein, the average of

measured delays and hop counts are 1.28 seconds and 3.0 in agent-based partner selection

respectively, while they are 1.51 seconds and 3.3 in the non-agentified selection. We also

observe that the agent’s selection in terms of bitrate is steadier than the non-agentified

selection. There is a correlation between delay difference parameters and the agent’s

selection. The overall trend shows that when delay difference is set to 0.5 seconds, the

average received bitrate generally reaches a peak when the results are compared to the other

delay difference settings (i.e. 0.2 and 1 seconds). However, we cannot infer the attitude of the

non-agentified method.

20

ACCEPTED MANUSCRIPT

On the other hand, the agent’s decisions in terms of the total received bitrate may not be better

than the non-agentified method’s decisions when the initial buffer level is greater than or

equal to 6 seconds. For instance, if the initial buffer level is set to 8 seconds and the delay

difference is set to 0.2 seconds, the average received bitrate in agent-based partner selection is

192 kbps while the average received bitrate in the non-agentified selection is 196 kbps. The

reason might be that if the initial buffer level is too high (in our case it is greater than or equal

to 6 seconds), the agent may not pay attention to the total received bitrate as it is already

buffered a sufficient amount of video data in its buffer. For this reason, the agent tries to

minimize the delay and hop count. Besides, it is not preferred to choose the buffer level too

high in real live video streaming applications since it causes longer initial waiting time.

Table 1: Comparison of agent-based and non-agentified partner selection
Parameters Agent-based partner selection Non-agentified partner selection

Initial
Buffer Level
(second)

Delay
Difference
(second)

Average
Bitrate
(kbps)

Average
Delay
(second)

Average
Hop Count
(hop)

Average
Bitrate
(kbps)

Average
Delay
(second)

Average
Hop Count
(hop)

2 0.2 206 1,3 3,0 194 1,53 3,4
2 0.5 209 1,3 3,0 195 1,57 3,4
2 1 208 1,3 3,0 191 1,52 3,3
3 0.2 209 1,31 2,9 188 1,47 3,2
3 0.5 210 1,31 2,9 185 1,52 3,3
3 1 209 1,28 2,9 187 1,48 3,2
4 0.2 193 1,21 2,8 188 1,50 3,3
4 0.5 192 1,23 2,9 186 1,48 3,3
4 1 193 1,28 3,0 184 1,51 3,3
5 0.2 193 1,33 3,0 190 1,53 3,2
5 0.5 197 1,38 3,1 197 1,51 3,2
5 1 195 1,25 2,9 191 1,42 3,1
6 0.2 192 1,32 3,0 194 1,45 3,1
6 0.5 193 1,34 3,0 196 1,49 3,2
6 1 198 1,36 3,1 196 1,53 3,3
7 0.2 192 1,40 3,2 194 1,54 3,3
7 0.5 194 1,46 3,3 195 1,53 3,3
7 1 191 1,33 3,1 193 1,53 3,3
8 0.2 192 1,29 3,0 196 1,47 3,2
8 0.5 198 1,29 3,0 193 1,37 3,0
8 1 192 1,31 3,0 197 1,46 3,1
9 0.2 192 1,31 3,0 190 1,48 3,2
9 0.5 194 1,33 3,1 197 1,56 3,3
9 1 192 1,38 3,1 193 1,52 3,3
10 0.2 194 1,27 2,9 196 1,44 3,1
10 0.5 193 1,31 3,0 197 1,50 3,2
10 1 191 1,30 3,0 193 1,48 3,2

21

ACCEPTED MANUSCRIPT

7. Related Work

Recently, a number of agent-based systems have been proposed to tackle with certain

problems of P2P live video streaming. Pournaras et al. (Pournaras et al., 2009) propose

adaptive virtual organization model to build robust tree topologies. In this work, each

software agent is responsible for a node that resides in underlying network infrastructure

which is called ‘overlay network’. The nodes are controlled by agents when a failure occurs in

overlay network. In the tree-based hierarchical structures, the removal of a node may hamper

the efficiency of streaming quality. Thus, this work addresses the effect of failures of nodes in

tree overlay and how agents can be used to heal the possible failures in the tree overlay. In

(Carrera and Iglesias, 2011), a multi-agent architecture for automatic diagnosis of multimedia

streaming faults in uncertain situations is presented. The proposed system is evaluated in P2P

streaming scenario in which a multimedia provider and a multimedia consumer take part. The

authors propose two modules in order to accomplish a network diagnosis: hypothesis

generation and hypothesis confirmation. Hypothesis generation uses Bayesian inference

engine to infer the source of fault by analyzing network symptoms. The output of this phase is

a hypothesis conveyed to second phase in which the deliberation of hypothesis confirmation

takes place.

Chen et al. (Chen et al., 2010) present evolutionary games for cooperative P2P video

streaming. They discuss the real-time P2P video streaming among groups of software agents

to reduce traverse links and increase streaming performance. Peers, which are interested in

joining a live video streaming session, form a group and cooperate with each other to increase

streaming performance. According to this approach, each peer group has upload and

download capacity. Peers choose k number of agents to download streaming data from other

groups. Then, the agents distribute the data to the peers within the group. The problem is to

determine how many peers should be chosen as agents by group members. The authors state

that the probability of real-time streaming is higher compared to the non-cooperative P2P

approaches. Molina et al. (Molina et al. 2009) propose an architecture for mobile transient

networks in which a number of mobile devices deliver multimedia content to each other. The

agent-based negotiation model is used inside the ad-hoc network to reach an agreement as to

whether to deliver the content or not. In each mobile network, there is a coordinator agent

which proposes to download multimedia content. After the coordinator agent proposes a

content to download, the other agents start to negotiate and reach an agreement as to whether

22

ACCEPTED MANUSCRIPT

to download the content or not. Then, the subset of agents which agree to download the

content retrieves the specific part of the multimedia content. Orynczak and Kotulski

(Orynczak and Kotulski, 2011) present an agent-based approach for real-time applications in

terms of quality of service and security aspects. The system comprises agents which represent

each node over an underlying network, and communicate with each other to build a dynamic

routing table enabling more affecting routing. Each agent continuously observes different

parameters given by other agents to control the quality of transmissions by analyzing

bandwidth, lost packets and time difference between packets. The agents use these data to

establish dynamic routing tables which are continuously updated whenever a change is

noticed. Menkovski and Liotta (Menkovski and Liotta, 2013) discuss the design of an agent

for adaptive video streaming systems. The agent examines the traffic and makes decisions

based on the reinforcement learning. Taking the achieved quality of experience into

consideration, the agent learns an optimal control strategy.

In order to position our approach inside the current picture of the agent-based video streaming

literature, Table 2 gives a qualitative comparison of the related work by taking into

consideration the following main features of such agent-based P2P video streaming systems:

agent-peer mapping, the structure of the overlay network and the purpose of employing

agents. Enabling adaptation, selection of overlay nodes, network layer routing and providing

fault tolerance are the most encountered reasons for the use of the agents inside the P2P video

streaming.

In (Pournaras et al., 2009), although the proposed system considers QoS parameters, it

focuses on constructing resilient tree-based overlay networks while our proposed system

primarily focuses on mesh-based overlay networks. A node receives video packets from one

parent in the tree based system; on the other hand, a node in the mesh-based overlay may

receive video from one or more parents. In (Carrera and Iglesias, 2011), the authors focus on

streaming video between the two nodes, rather than designing a streaming protocol running

over a network of large amount of nodes. Chen et al. (Chen et al., 2010) use agents to cluster

nodes in a P2P network according to their bandwidth capacity without considering distance

from source or packet loss rate. In (Molina et al., 2009), the coordinator agent chooses the

peer couples, i.e. partners, according to their potential contribution, but coordinator agent does

not consider available bandwidth or packet loss between peer couples. In (Orynczak and

Kotulski, 2011), an agent may change the streaming path by changing network level routing

23

ACCEPTED MANUSCRIPT

but this work does not consider node selection for the overlay network, which is an important

parameter that provides seamless streaming in live video streaming systems. The focus of the

work presented in (Menkovski and Liotta, 2013) does not involve the partner selection since

the structure of the network is end-to-end. As a result, our BDI architecture differs from those

studies by considering the overlay node (partner) selection in mesh-based streaming systems

according to bitrate, delay and hop count at the same time.

Table 2: A qualitative comparison of agent-based P2P video streaming approaches

 Molina et
al., 2009

Pournaras
et al.,
2009

Chen et
al., 2010

Carrera
and
Iglesias,
2011

Orynczak
and
Kotulski,
2011

Menkovski
and Liotta,
2013

Our BDI
architecture

Agent-
peer
mapping

m-to-n one-to-
one

m-to-n one-to-
one

one-to-
one

one-to-one one-to-one

Structure
of the
overlay
network

mesh tree mesh end-to-
end
(unicast)

mesh end-to-end
(unicast)

mesh

Adaptation - - - - - + -

Selection
of overlay
nodes

+ + + - - - +

Network
layer
routing

- - - - + - -

Fault
tolerance

+ + + + + - +

There are also various studies which make use of agent technology including BDI

implementations for different application domains (Munroe et al., 2006). Initial attempts to

apply BDI approach to real world applications have started with space shuttle missions

(Georgeff and Ingrand, 1989), continued with military simulations for combat pilots (Murray

et al., 1995) and followed by unmanned air vehicles (Lucas et al., 2003). BDI notion is also

used in manufacturing systems. In (Fletcher et al., 2003), an agent-based holonic control

system was successfully developed. In this study, a specific type of agent is assigned for each

control unit in manufacturing system. Other real world applications are in the area of

24

ACCEPTED MANUSCRIPT

meteorological forecasting (Dance et al., 2003; Mathieson et al., 2004) in which Australian

Bureau of Meteorology aimed to enhance the forecasting and alerting capabilities by using the

multi-agent based solution. The recent studies show that BDI paradigm is still applicable to

many problems. For instance, Nordbo (Nordbo, 2011) uses an agent technology in the context

of robotics domain in which two robots exchange information in order to achieve their goals.

An agent-based decision support system is introduced in (Sokolova and Fernandez-Caballero,

2009) for evaluating an environmental impact on human health. Data mining techniques for

knowledge discovery are used by the intelligent agents as a foundation for decision making

and recommendation generation. Similar to our work, the design environment of JACK is

used during the implementation of the proposed system. Gascuena et al. (Gascuena et al.,

2011) proposed a computational agent model which is applied to surveillance systems.

Similarly, Gomez-Romero et al. (Gomez-Romero et al., 2011) presented an ontological

knowledge representation by using BDI agent architecture for tracking moving objects.

Design of a moving robot application for the detection and following of humans based on

MAS approach is discussed in (Gascuena and Fernandez-Caballero, 2011). The

implementation of the proposed system is again realized by using JACK. The last example

(Kardas et al., 2012) can be given from the stock market domain in which BDI agents are

employed during the stock trading. Although the above mentioned studies present significant

application of BDI in autonomous system realizations, none of them considers the domain of

P2P video streaming and brings an agent-based solution to the problem of optimal partner

selection.

8. Conclusion and Future Work

A BDI agent architecture has been presented for partner selection in P2P video streaming

system. To the best of our knowledge, the work described in this paper is the first attempt to

propose an agent-based partner selection for mesh-based streaming systems considering the

combination of bitrate, delay and hop count. Both required algorithms that should be executed

inside the agent plans and the implementation details of the proposed system were discussed

in the paper. Effects and comparative results of the agent-based and the non-agentified partner

selection were evaluated.

Agents execute their plans and decide which of the nodes in the overlay network should be

selected as partners for streaming. Furthermore, an autonomous agent-based approach,

brought by this study, also provides an infrastructure in which the best plan to achieve the

25

ACCEPTED MANUSCRIPT

optimum streaming or any other goals can be dynamically determined and executed at

runtime.

Finally, as has already been discussed in the paper, experimental results of the implementation

showed us that both of the partner selection methods (with or without agents) manage to

increase the video quality by keeping the average received bitrate value above the threshold.

However, the agent-based approach performs better in terms of received bitrate, delay and

hop count during the streaming.

For future work, we will take the incentive mechanisms into account. The incentive

mechanism allows us to construct a fair system, in which a peer contributing more, i.e.

reserving more upload bandwidth to the system, receives video at higher bitrate. In the next

phase of our study, we plan to implement an incentive P2P system with agents.

Acknowledgement

This work is funded by the Scientific and Technological Research Council of Turkey

(TUBITAK) Electric, Electronic and Informatics Research Group (EEEAG) under grant

111E022.

Appendix A: Implementation of BufferLevelProactive event in JACK
1 public event BufferLevelProactive extends BDIGoalEvent {
2 public double bufferLevel;
3 public int changeNode;
4 public int changeBitrate;
5 public double changeDelay;
6 public int changeHopcount;
7 #posted as
8 change(double bufferLevel,int changeNode,int changeBitrate,double
 changeDelay,int changeHopcount) {
9 this.bufferLevel = bufferLevel;
10 this.changeNode = changeNode;
11 this.changeDelay = changeDelay;
12 this.changeBitrate = changeBitrate;
13 this.changeHopcount = changeHopcount;
14 }
15 }

BufferLevelProactive event conveys buffer level and the node information that will be

removed from the agent’s beliefset (Lines 2 - 6). The information is conveyed by event’s

change() posting method (Line 8 - 14) which is declared by #posted as JACK specific method

declaration (Line 7).

26

ACCEPTED MANUSCRIPT

Appendix B: Implementation of Partners beliefset in JACK
1 public beliefset Partners extends ClosedWorld {
2 #key field int $nodeNumber;
3 #value field int $bitRate;
4 #value field double $delay;
5 #value field int $hopCount;
6 #indexed query getAllTuples(logical int $nodeNumber, logical int
 $bitRate, logical double $delay, logical int $hopCount);
7 #function query boolean checkTotalBitRate() {…}
8 #function query int getBitRateAverage() {…}
9 #function query double getDelayAverage() {…}
10 #function query double getHopCountAverage() {…}
11 }

Beliefset is expressed as a relation and consists of a key field, value fields and queries (Lines

2 - 10). In our implementation, the Node agent stores the information of the other nodes’ as

tuples. Each tuple represents a node which has an id, bitrate, delay and hop count. Key field is

analogous to primary key and represents the “id” of a node (Line 2). Value fields are

analogous to the data associated with key field, and represent the bitrate, delay and hop count

(Lines 3- 5). In addition, when the agent needs to retrieve a tuple in its relation, it makes use

of the user defined queries such as getAllTuples, getBitRateAverage, getDelayAverage and

getHopCountAverage (Lines 6 -10).

Appendix C: Implementation of IncreaseBitrate plan in JACK (Part I)
1 public plan IncreaseBitrate extends Plan {
2 #handles event BufferLevel value;
3 #posts event CriticalSituation criticalSituation;
4 #posts event SaveProactiveData printResult;
5 #uses interface Node self;
6 #uses data Partners partners;
7 #uses data CandidateNodes candidate;
8 static boolean relevant(BufferLevel value) {
9 return (value.bufferLevel <= INITIALBUFFER);
10 }
11 context() {
12 partners.getTotalBitRate() < BITRATETHRESHOLD;
13 }
14 #reasoning method
15 body()
16 {
17 (…) //will be given in the next appendix
18 }
19 }

Between lines 2-7, the declarations are given for describing the relationship between events,

beliefsets and/or interfaces. For instance, the events that are received and posted by this plan

are declared to the agent by using #handles event (Line 2) or #posts event (Lines 3 - 4).

27

ACCEPTED MANUSCRIPT

Similarly, the interfaces and beliefsets that are used are declared with #uses interface (Line 5)

and #uses data (Line 6 - 7) respectively. Second, when BufferLevel event is received, the

agent first checks whether IncreaseBitrate plan is relevant to the event via relevant() function

(Lines 8 -10). Therefore, it checks the incoming data from event by comparing event’s

bufferLevel parameter. If the bufferLevel is less than or equal to 2 seconds, relevant function

returns true and the second filtering occurs in context() method which is related to the agent’s

knowledgebase (Lines 11 -13). It uses Partners beliefset’s getTotalBitrate() function to check

the state of the world if the total received bitrate is less than the threshold. If it is true,

context() returns true and the agent starts the top level reasoning method called as body() of

the plan (Lines 15 -18).

Appendix D: Implementation of IncreaseBitrate plan in JACK (Part II)
1 #reasoning method
2 body()
3 {
4 (…)
5 for(Cursor c = partners.getAllTuples($nodeNumber,$bitRate,$delay,$hopCount);c.next()){
6 if ((i >= 3) && ($bitRate.getValue() >= value.changeBitrate) && (i < 10))
7 candidate.add($nodeNumber.getValue(),$bitRate.getValue(),$delay.getValue(),$hopCount.getValue());
8 i++ ;
9 } //end for
10 if (candidate.getAllTuples($nodeNumber,$bitRate,$delay,$hopCount).next()){
11 for (Cursor c = candidate.getAllTuples ($nodeNumber,$bitRate,$delay,$hopCount); c.next();) {
12 if (j == 0) {
13 selectNode = $nodeNumber.getValue();
14 selectBitrate = $bitRate.getValue();
15 selectDelay = $delay.getValue();
16 selectHopcount = $hopCount.getValue();
17 }
18 if ((j > 0) && (Math.abs($delay.getValue() - selectDelay)) < self.DELAY_DIFFERENCE) {
19 if (selectHopcount > $hopCount.getValue()) {
20 selectNode = $nodeNumber.getValue();
21 selectBitrate = $bitRate.getValue();
22 selectDelay = $delay.getValue();
23 selectHopcount = $hopCount.getValue();
24 }
25 if (selectHopcount == $hopCount.getValue() && selectDelay > $delay.getValue()) {
26 selectNode = $nodeNumber.getValue();
27 selectBitrate = $bitRate.getValue();
28 selectDelay = $delay.getValue();
29 selectHopcount = $hopCount.getValue();
30 }
31 }
32 if ((j > 0) && (Math.abs($delay.getValue() - selectDelay)) >= self.DELAY_DIFFERENCE
33 && selectDelay > $delay.getValue()) {
34 selectNode = $nodeNumber.getValue();
35 selectBitrate = $bitRate.getValue();
36 selectDelay = $delay.getValue();
37 selectHopcount = $hopCount.getValue();
38 }
39 j++;

28

ACCEPTED MANUSCRIPT

40 } // end for
41 partners.remove(value.changeNode,value.changeBitrate,value.changeDelay,value.changeHopcount);
42 partners.add(value.changeNode,selectBitrate,selectDelay,selectHopcount);
43 if (partners.checkTotalBitRate()){
44 @post(printResult.saveAverageData(partners.getBitRateAverage(),partners.getDelayAverage(),
45 partners.getHopCountAverage());
46 } else {
47 calculateMinUploadBandwidth();
48 if(!@subtask(criticalSituation.select(changeNode, changeBitrate, changeDelay, changeHopcount,
49 selectBitrate, selectDelay, selectHopcount));) {
50 @post(printResult.saveAverageData(partners.getBitRateAverage(),partners.getDelayAverage(),
51 partners.getHopCountAverage());
52 }//end if
53 }//end inner else
54 } else {
55 calculateMinUploadBandwidth();
56 if(!@subtask(criticalSituation.select(changeNode, changeBitrate, changeDelay, changeHopcount,
57 selectBitrate, selectDelay, selectHopcount));) {
58 @post(printResult.saveAverageData(partners.getBitRateAverage(),partners.getDelayAverage(),
59 partners.getHopCountAverage());
60 }//end if
61 }//end outer else
62 }//end body()

The agent first retrieves all tuples from Partners beliefset by querying via getAllTuples() and

assign the result to JACK Cursor (Line 5). JACK Cursor structure is similar to the relational

database cursor which returns the multiple results according to the user’s query. In addition to

cursors, there are JACK specific logical members which are passed as an argument to the

getAllTuples() function. They represent the unknown variables until an assignment to a

specific variable is done. After all tuples are retrieved, the agent iterates through membership

table and adds the tuples to candidate beliefset via add() base function of beliefset (Lines 5 -

9). After then, the agent checks the candidate beliefset via getAllTuples() (Line 10). If there is

at least one tuple in candidate beliefset, the agent performs the node selection and removes the

node that is going to be replaced with the selected node by using remove() base function of

beliefset (Line 41). Then, the selected node is inserted into the beliefset with the index of

removed node by add() method (Line 42). The next step of the plan is to check whether the

agent has achieved the goal of increasing the total received bitrate above the threshold.

Therefore, the agent checks the Partners beliefset with checkTotalBitRate() function which

returns a boolean value (Line 43). If returned value is true, meaning that the total bitrate is

above the threshold, the agent posts itself printResult event via @post reasoning method to

save the data (Line 44). Otherwise, it re-calculates the tuple which has a minimum upload

bandwidth (Line 47) and posts itself criticalSituation event to choose a partner from

partnership table via @subtask reasoning method (Line 48). Note that @subtask is different

from @post reasoning method since the agent waits for the completion of a plan triggered by

29

ACCEPTED MANUSCRIPT

the posted event. If a plan, triggered by criticalSituation event, successfully chooses a node,

@subtask method is also regarded as successful and plan continues its execution. Otherwise,

@subtask statement returns false and plan is forced to save the last selection by posting itself

printResult event via @post reasoning method (Line 50). Eventually, if the agent cannot find

any node in its candidate beliefset, it again re-calculates the tuple which has a minimum

upload bandwidth (Line 55) and posts itself criticalSituation event to choose a partner from

partnership table via @subtask reasoning method (Line 56). If the method fails, @subtask

method returns false and then the plan is forced to save the last selection by posting itself

printResult event via @post reasoning method (Line 58).

References

(AOS, 2012a) Agent Oriented Software Group (2012) "JACK Intelligent Agents", available
at: http://www.aosgrp.com/documentation/jack/Agent_Manual.pdf (last access: January
2014).

(AOS, 2012b) Agent Oriented Software Group (2012) "JACK Intelligent Agents
Development Environment", available at:
http://www.aosgrp.com/documentation/jack/JDE_Manual.pdf (last access: January 2014).

(Bellifemine et al., 2001) Bellifemine F., Poggi A, and Rimassa G. (2001) “Developing Multi-
Agent Systems with a FIPA-compliant Agent Framework”, Software: Practice and
Experience, Vol. 31, Issue 2, pp. 103-128.

(Beta Distribution, 2012) Beta Distribution (2012) available at:
http://www.mathworld.wolfram.com/BetaDistribution.html (last access: January 2014)

(Bordini et al., 2007) Bordini, R.H., Hubner, J.F., and Wooldridge, M. (2007) “Programming
Multi-Agent Systems in AgentSpeak using Jason”, John Wiley & Sons.

(Bratman, 1987) Bratman, M. (1987) "Intention, Plans, and Practical Reason", Harvard
University Press, Cambridge, MA.

(Bresciani et al., 2004) Bresciani P, Perini A, Giorgini P, Giunchiglia F, and Mylopoulos J.
"Tropos: An agent-oriented software development methodology", Autonomous Agents and
Multi-Agent Systems, Vol. 8, Issue 3, pp. 203-236.

(Busetta et al., 2000) Busetta, P., Howden, N., Ronnquist, R., and Hodgson, A. (2000)
"Structuring BDI agents in functional clusters", Lecture Notes in Computer Science, Vol.
1757, pp. 277–289.

(Carrera and Iglesias, 2011) Carrera, A. and Iglesias, C.A. (2011) "Multi-agent Architecture
for Heterogeneous Reasoning under Uncertainty Combining MSBN and Ontologies in
Distributed Network Diagnosis", In proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2011), pp.159-
162.

30

ACCEPTED MANUSCRIPT

(Chen et al., 2010) Chen, Y., Wang, B., Lin, W.S., Wu, Y., and Liu, K.J.R. (2010)
"Evolutionary games for cooperative P2P video streaming", In proceedings of the 17th IEEE
International Conference on Image Processing (ICIP 2010), pp. 4453-4456.

(Dance et al., 2003) Dance, S., Gorman, M., Padgham, L., Winikoff, M. (2003) "A deployed
multi agent system for meteorological alerts". In proceedings of Deployed Applications of
Autonomous Agents and Multiagent Systems Workshop, held in AAMAS'03, Melbourne,
Australia.

(Dastani, 2008) Dastani, M. (2008) “2APL: a practical agent programming language”,
Autonomous Agents and Multi-Agent Systems, Vol. 16, Issue 3, pp. 214-248.

(Fletcher et al., 2003) Fletcher, M., Lucas, A., Jarvis, D., Jarvis, J., Ronnquist, R. R.,
McFarlane, D.C., Brusey, J., and Thorne, A. (2003) "JACK-based holonic control of a gift
box packing cell", Technical Report, Distributed Information and Automation Laboratory,
Cambridge, UK.

(Gascuena and Fernandez-Caballero, 2011) Gascuena, J.M. and Fernandez-Caballero, A.
(2011) “Agent-oriented modeling and development of a person-following mobile robot”,
Expert Systems with Applications, Vol. 38, Issue 4, pp. 4280-4290.

(Gascuena et al., 2011) Gascuena, J.M., Fernandez-Caballero, A., Lopez, M.T., and Delgado,
A.E. (2011) "Knowledge modeling through computational agents: application to surveillance
systems", Expert Systems, Vol. 28, Issue 4, pp. 306-323.

(Georgeff and Ingrand, 1989) Georgeff, M.P. and Ingrand, F.F. (1989) "Monitoring and
control of spacecraft systems using procedural reasoning", In proceedings of the Space
Operations Automation and Robotics Workshop.

(Gomez-Romero et al., 2011) Gomez-Romero, J., Patricio, M.A., Garcia, J., and Molina, J.M.
(2011) "Communication in distributed tracking systems: an ontology-based approach to
improve cooperation", Expert Systems, Vol. 28, Issue 4, pp. 288-305.

(Hei et al., 2007) Hei, X., Liu, Y., and Ross, K.W. (2007) "Inferring Network-Wide Quality in
P2P Live Streaming Systems", IEEE Journal on Selected Areas in Communications, Vol. 25,
Issue 9, pp. 1640-1654.

(Hindriks, 2009) Hindriks, K. (2009) “Programming rational agents in goal”, In Bordini et al.
(Eds): Multi-Agent Programming: Languages, Tools and Applications. Springer, pp. 119-157.

(Kardas et al., 2012) Kardas, G., Challenger, M., Yildirim, S., and Yamuc, A. (2012) "Design
and implementation of a multiagent stock trading system", Software: Practice and Experience,
Vol. 42, Issue 10, pp. 1247-1273.

(Le Blond et al., 2012) Le Blond, S., Le Fessant, F., and Le Merrer, E. (2012) " Choosing
partners based on availability in P2P networks", ACM Transactions on Autonomous and
Adaptive Systems, Vol. 7, Issue 2, Article 25, pp. 1-14.

31

ACCEPTED MANUSCRIPT

(Li et al., 2009) Li, Y.-T.H., Ren, D., Chan, S.-H.G., and Begen, A.C. (2009) "Low-delay
mesh with peer churns for peer-to-peer streaming", In proceedings of the International
Conference on Multimedia and Expo (ICME 2009), NJ, USA, IEEE Press, pp. 1546-1547.

(Liu et al., 2010) Liu, Z., Wu, C., Li, B., and Zhao, S. (2010) "UUSee: large-scale operational
on-demand streaming with random network coding", In proceedings of the 29th Conference
on Information communications (INFOCOM 2010), NJ, USA, IEEE Press, pp. 2070-2078.

(Lucas et al., 2003) Lucas, A., Ronnquist, R., Ljungberg, M., Howden, N., Corke, P., and
Sikka, P. (2003) "Teamed UAVs - a new approach with intelligent agents", In proceedings of
the 2nd conference on AIAA Unmanned Unlimited Conference, San Diego, CA, USA.

(Mathieson et al., 2004) Mathieson, I., Dance, S., Padgham, L., Gorman, M., and Winikoff,
M. (2004) "An open meteorological alerting system: issues and solutions", In proceedings of
the 27th Australasian Computer Science Conference, Dunedin, New Zealand, pp. 351-358.

(Menkovski and Liotta, 2013) Menkovski, V., and Liotta, A. (2013) “Intelligent control for
adaptive video streaming”, In proceedings of IEEE International Conference on Consumer
Electronics (ICCE 2013), Las Vegas, Nevada, USA, IEEE Press, pp. 127-128.

(Molina et al., 2009) Molina, B., Pileggi, S.F., Esteve, M., and Palau, C.E. (2009) "A
negotiation framework for content distribution in mobile transient networks", Journal of
Network and Computer Applications, Vol. 32, Issue 5, pp. 1000-1011.

(Munroe et al., 2006) Munroe, S., Miller, T., Belecheanu, R.A., Pechoucek, M., McBurney,
P., and Luck, M. (2006) “Crossing the agent technology chasm: Lessons, experiences and
challenges in commercial applications of agents”, The Knowledge Engineering Review, Vol.
21, Issue 4, pp. 345-392.

(Murray et al., 1995) Murray, G., Steuart, S., Appla, D., McIlroy, D., Heinze, C., Cross, M.,
Chandran, A., Raszka, R., Rao, A.S., Pegler, A., Morley, D., and Busetta, P. (1995) "The
challenge of whole air mission modeling", In proceedings of the Australian Joint Conference
on Artificial Intelligence (AI ’95), Melbourne, Australia.

(Nordbo, 2011) Nordbo, E. (2011) "Inter-Agent Communication in Multi-Agent Systems",
Master’s Thesis, Norwegian University of Science and Technology.

(Orynczak and Kotulski, 2011) Orynczak, G. and Kotulski, Z. (2011) "Agent based
infrastructure for real-time applications", Annales UMCS, Informatica, Vol. 11, Issue 4, pp.
33-47.

(Padgham and Winikoff, 2004) Padgham, L. and Winikoff, M. (2004) “Developing Intelligent
Agent Systems - A practical guide”, John Wiley & Sons.

(Pokhahr et al., 2005) Pokahr, A., Braubach, L., and Lamersdorf, W. (2005) “Jadex: A BDI
Reasoning Engine”, In Bordini et al. (Eds): Multi-Agent Programming Languages, Platforms
and Applications, Springer, pp. 149-174.

32

ACCEPTED MANUSCRIPT

(Pokahr et al., 2007) Pokahr, A., Braubach, L., Walczak, A., and Lamersdorf, W. (2007)
“Jadex - Engineering Goal-Oriented Agents”, In Bellifemine et al. (Eds): Developing Multi-
Agent Systems with JADE, Wiley Publishing, pp. 254-258.

(Pournaras et al., 2009) Pournaras, E., Warnier, M., and Brazier, F. (2009) "Adaptive Agent-
Based Self-Organization for Robust Hierarchical Topologies", In proceedings of the 2009
International Conference on Adaptive and Intelligent Systems (ICAIS 2009), Washington,
DC, USA, IEEE Computer Society, pp. 69-76.

(PPLive, 2012) PPLive (2012), available at: http://www.pplive.com (last access: January
2014).

(PPStream, 2012) PPStream (2012), available at: http://www.ppstream.com (last access:
January 2014).

(Rao and Georgeff, 1995) Rao, A. and Georgeff, M. (1995) "BDI Agents: From Theory to
Practice", In proceedings of the 1st International Conference on Multi-Agent Systems
(ICMAS-95), San Francisco, pp. 312-319.

(Sardina and Padgham, 2011) Sardina, S. and Padgham, L. (2011) “A BDI agent
programming language with failure recovery, declarative goals, and planning”, Autonomous
Agents and Multi-Agent Systems, Vol. 23, Issue 1, pp. 18-70.

(Sayit et al., 2012) Sayit, M.F., Tunali, E.T., and Tekalp, A.M. (2012) "Resilient peer-to-peer
streaming of scalable video over hierarchical multicast trees with backup parent pools",
Signal Processing: Image Communication, Vol. 27, Issue 2, pp. 113-125.

(Sokolova and Fernandez-Caballero, 2009) Sokolova, M.V. and Fernandez-Caballero, A.
(2009) "Modeling and implementing an agent-based environmental health impact decision
support system", Expert Systems with Applications, Vol. 36, Issue 2, pp. 2603-2614.

(Teket et al., 2014) Teket, K.D., Sayit, M. and Kardas, G. (2014) “Software agents for peer-
to-peer video streaming”, IET Software, DOI: 10.1049/iet-sen.2013.0181.

(Wang et al., 2010a) Wang F., Xiong Y., and Liu J. (2010) “mTreebone: A Collaborative
Tree-Mesh Overlay Network for Multicast Video Streaming”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 21, Issue 3, pp. 379-392.

(Wang et al., 2010b) Wang, M., Xu, L., Ramamurthy, B. (2010) “Comparing multi-channel
Peer-to-Peer video streaming system designs”, In proceedings of the 17th IEEE Workshop on
Local and Metropolitan Area Networks, NE, USA, pp. 1-6.

(Winikoff, 2005) Winikoff, M. (2005) “JACK Intelligent Agents: An Industrial Strength
Platform”, In Bordini et al. (Eds): Multi-Agent Programming Languages, Platforms and
Applications, Springer, pp. 175-193.

(Wooldridge, 2002) Wooldridge, M. (2002) "An Introduction to Multi-agent Systems", John
Wiley & Sons.

33

ACCEPTED MANUSCRIPT

(Xie et al., 2007) Xie, S., Li, B., Keung, G.Y., and Zhang, X. (2007) "Coolstreaming: Design,
Theory, and Practice", IEEE Transactions on Multimedia, Vol. 9, Issue 8, pp. 1661-1671.

(Yu et al., 2006) Yu H., Zheng D., Zhao B.Y., and Zheng W. (2006) “Understanding user
behavior in large-scale video-on demand systems”, ACM SIGOPS Operating Systems
Review, Vol. 40, Issue 4 , pp. 333–344.

(Zhang et al., 2005) Zhang, X., Liu, J., Li, B., and Yum, Y.-S.P. (2005)
"CoolStreaming/DONet: a data-driven overlay network for peer-to-peer live media
streaming", In proceedings of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2005), Miami, FL, USA, pp. 2102-2111.

The Authors

Suleyman Yildirim received his B.Sc. degree in Applied Mathematics in 2008 and M.Sc.
degree in Information Technologies in 2012 both from Ege University, Turkey. His main
research area covers design and implementation of autonomous agent systems for various
application domains such as intelligent stock trading and effective live video streaming. He is
currently with Stan Ackermans Institute, Eindhoven University of Technology, the
Netherlands and pursuing a PDEng degree in Software Technology.

Muge Sayit received Ph.D. and M.Sc. degrees in Information Technologies from International
Computer Institute, Ege University Turkey, in 2011 and 2005, respectively and received her
B.Sc. degree in Mathematics from Ege University in 1999. She has been working as an
assistant professor at International Computer Institute, Turkey for two years. Her research
interests include P2P networks, live streaming and video-on-demand.

Geylani Kardas received his B.Sc. degree in Computer Engineering from Ege University,
Turkey, in 2001, and received his M.Sc. and Ph.D. degrees in Information Technologies from
International Computer Institute, Ege University, Turkey, in 2003 and 2008 respectively.
Since 2009, he is an assistant professor with International Computer Institute, Turkey. His
main research interests cover autonomous and intelligent agent systems, agent-oriented
software engineering and model driven development of software systems.

34

